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Abstract. Legislators, designers of legal information systems, as well as citi-
zens face often problems due to the interdependence of the laws and the growing
number of references needed to interpret them. In this paper, we introduce the
”Legislation Network” as a novel approach to address several quite challenging
issues for identifying and quantifying the complexity inside the Legal Domain.
We have collected an extensive data set of a more than 60-year old legislation cor-
pus, as published in the Official Journal of the European Union, and we further
analysed it as a complex network, thus gaining insight into its topological struc-
ture. Among other issues, we have performed a temporal analysis of the evolution
of the Legislation Network, as well as a robust resilience test to assess its vulnera-
bility under specific cases that may lead to possible breakdowns. Results are quite
promising, showing that our approach can lead towards an enhanced explanation
in respect to the structure and evolution of legislation properties.

1 Introduction

Legislation is a large collection of different normative documents, which keeps grow-
ing and changing with time. As legislation increases in size and complexity, finding a
relevant norm may be a challenging task even for experts.

Furthermore, the process of drawing up a consistent and coherent legislation frame-
work becomes a more and more challenging task. Drafting of new or amending existing
legislation are very complicated processes. As a result, authorities at European, national
and local level, often consider proposed regulations for months or years before they fi-
nally become effective. Thus, it is critical to firstly quantify the legal complexity and
then work towards the provision of a model that will assist us to reveal the emergent
dependencies among the legislation corpus.

Typically, legal documents refer to authoritative documents and sources e.g., most
commonly regulations, treaties, court decisions, and statutes. Computer scientists and
legal experts have used citation analysis methods, in order to construct case law citation
networks, as well as to further model and quantify the complexity of the legislation
corpus [1,2,3,4].

However, studied networks contain only court decisions, making them less suitable
for other legal systems than Common law e.g., Civil law. Also, relations between case
documents on the studied networks are only references. Thus, the hierarchical structure
of the normative system is absent from the adopted model. Our approach differs from
previous works that deal with the specific problem, as we do not utilize the legislation
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corpus in terms of a citation network. Instead, we employ a multi relationship model in
which two or more legal documents, belonging to the same or different types, may be
linked to others by more than one relationships. Unlike previous studies of legal citation
networks, our model encompasses many aspects such as hierarchy between the sources
of law and the different types of relations between legal documents. This modeling
approach transforms legislation corpus into a multi-relational network: a network with
a heterogeneous set of edge labels that can represent relationships of various categories
in a single data structure.

We investigate the topological structure of the Legislation Network to discover
properties and behaviours that transcend the modeling abstraction. Results are quite
promising, showing that the Legislation Network is a scale free, small-world network.
This can be reflected as an evolutionary advantage since these kind of networks are
more robust to disturbance than other network architectures [5].

Since the legislation corpus evolves over time, a temporal analysis of the evolution
of the Legislation Network reveals otherwise hidden aspects of the legislation process.
The Legislation Network is obeying densification power law [6], with the number of
active edges, connections between legal documents, growing faster than the number of
active node, legal documents.

We also performed a resilience test on the Legislation Network in order to under-
stand and predict the behaviour of the network under malfunctions. We analysed its
behaviour when its nodes (legal documents) or edges (connections) between them are
removed. This may be the result of a temporal process since legislation evolves over
time e.g,. law that is amended, invalidated or cease to exist.

In this paper, we propose a novel approach to model the legislation corpus. A model
that can be applied to civil law collections, such as the laws of the European Union. To
the best of our knowledge, our work is the first work that deals with the specific problem
in a sense that it: i) models civil law as a network with various types of relations, ii)
identifies several topological characteristics of it, iii) performs a temporal analysis over
the evolution of the legislation corpus and iv) performs a resilience test on the legislation
corpus to assess its vulnerability.

The rest of this paper is organized as follows. Section 2 briefly reviews related
work and approaches. In Section 3 we provide a short overview of network analysis
principles, introduce the examined datasets and our network construction method. In
Section 4 we analyse the structure and the temporal evolution of the legislation corpus
and perform a resilience test on it. Finally, Section 5 concludes and discusses further
work.

2 Related work

Citation analysis has been used in the field of law to construct case law citation networks
[7]. The American legal system has been the one that has undergone the widest series of
studies in this direction. [8] examined the network structure of precedent-based judicial
decision making, using data from United States Supreme Court. Fowler et al. [9] exper-
imented with methods to identify the most central decisions of the US Supreme Court,



Network Analysis in the Legal Domain 3

while afterwards [1] they studied how the norm of stare decisis 3 [10] had changed over
time in the jurisprudence of the US Supreme Court, as to identify the doctrine’s most
important related precedents 4.

In [11] the network of Canadian case law is examined with network analysis algo-
rithms, concluding that indegree centrality and PageRank scores of case law network are
effective predictors of the frequency with which those cases will be viewed on the Cana-
dian Legal Information Institute website. In contrast, van Opijnen [12] concluded that
network algorithms, which have been used in previous research, especially in-degree,
HITS and PageRank [13], might not be the most appropriate to measure legal authority.
The same researcher proposed a model for automated rating of Case law which incor-
porates data from the publication and the citation of legal cases to estimate the legal
importance of judgments [14].

Smith observed that the network of US Supreme Court decisions followed a power-
law distribution [3]. The authors of [15] described a visualization-based interactive legal
research tool that allows users to easily navigate in the legal semantic citation networks
and study how citations are interrelated. In [4] a framework for measuring relative legal
complexity is proposed, taking into account the structure, language, and interdepen-
dence of legal sources.

However, these studies focus on Common law: a law developed by judges through
decisions of courts, which is fundamentally different with the Civil law that is used
across the European Union. For quantifying the complexity of the judicial corpus through
network analysis in the Civil law domain, Winkels et al have used a sample of 15,053
cases from the Dutch Supreme Court [16]. The authors verified that Fowler results also
apply for the citation network of the sampled Dutch legal system. Similarly, the com-
plexity of the French legal code was analysed in the work described in [2], where the
authors identified structural properties of the French legal code network by sampling 52
legal codes.

Precedent in international courts is studied in [17]. Authors applied network anal-
ysis techniques to case citations by the European court of human rights as to conclude
that international and domestic review courts develop their authority in similar ways.
In a analogous manner, the International Criminal Court [18], the Italian Constitutional
Court [19] were examined from a network-science perspective. Finally, a toolkit allow-
ing legal scholars to apply network and visual analytics techniques to E.U. case law is
presented in [20].

In all of the above studies, the case law corpus is treated as a citation network,
thus showing the effectiveness of network analysis in the legal domain. In one hand, it
was supported that case law citation networks contain valuable information, capable of
measuring legal authority, identifying authoritative precedent, evaluating the relevance
of court decisions, or even predicting the cases that will receive more citations in the
future. Yet, on the other hand, citation network analysis over the legislation corpus,

3 A legal norm inherited from English common law that encourages judges to follow precedent
by letting the past decision stand.

4 A judicial decision in a court case that may serve as an authoritative example in future similar
cases.
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provides us information over a single dimension view. Edges on the graph are of the
same type and just simple references between judicial documents.

However, in the real-life paradigm of legal domain, there are multiple and hetero-
geneous networks, each representing a particular kind of relationship, and each kind of
relationship plays a distinct role in a particular legal norm. Thus, in order to construct
a network model that simulates legislation in a quite robust way, we have to take into
account the multi-scale structure of law. Distinct features of the law as the hierarchy
between the sources of law, or different types of relations between legal documents
should be properly carved and incorporated into a model, as we further analyse in the
following sections.

3 Legislation Modelling

In this work, we model the way laws are correlated through their graph properties.
However, in order to fully model the legislation corpus we have to properly analyse it
and carefully identify its unique features. In the following sections we discusses some
background information on network analysis concepts and techniques (Section 3.1),
describe the dataset used for the legislation analysis (Section 3.2) and the way the re-
spective network is constructed (Section 3.3).

3.1 Background

In this section, we give a short introduction of relevant concepts and techniques pro-
posed in the literature.

A network, also called graph, is a set of items, called vertices or edges, with con-
nections between them, called arcs or edges. More formally, a graph is an ordered pair
G = (V,A) consisting of a set V of vertices (nodes) with a set A of arcs (edges), which
are 2-element subsets of V . This rather simple modeling framework can be made more
powerful if one extends it to include additional levels of detail. For example there may
be more than one different types of nodes/edges, nodes and edges could appear and dis-
appear within time periods, edges could be directed, pointing in only one direction, or
not, multiple edges may exist between the same pair of nodes etc. Thus, graphs whose
structure is irregular, complex and dynamically evolving in time can be formed and
used to describe a wide variety of underlying systems.

Usually, networks are the infrastructure of some system, e.g., disease spreading on
social networks, and this system is what we are really interested in. The advantage
of modeling a system as a network is that we can say much about the behavior of
the system without studying the actual dynamics at all. Analyzing the structure of a
network, one can reveal important clues about its behavior, e.g., predict how fast a virus
will spread [21], assess which are the most important nodes [22,13] and predict how
robust to damage an area of the network is [23].

Various network models have been proposed in the literature to help us understand
or even predict the behavior of natural or man-made systems e.g., transportation net-
works [24], the internet [25], food webs [26], the network of metabolic pathways [27] ,
networks of brain neurons [28], social networks [29] and many others.
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Research has shown that real networks are far from being random, but display
generic organizing principles [30]. Among the mathematical properties that character-
ize these principles are:

– Degree distribution. The degree of a node in a network is the number of edges the
node has to other nodes. Since not all nodes in a network have the same number of
edges, the degree distribution P(k) of a network is defined to be the fraction of nodes
in the network with degree k. In other words, the distribution function P(k), gives the
probability that a randomly selected node has exactly k edges.
In random graphs [31], where edges are placed randomly, the majority of nodes have
approximately the same degree, close to the average degree k of the network and the
degree distribution is a Poisson distribution.
Unlike random graphs, for a large number of real networks, there are quite a few very
highly connected nodes and the vast majority of nodes has only few connections to
other nodes [5]. Since the range of degree values varies very greatly, such a network
is called scale-free network. In many cases the degree distribution P(k) follows a
power law; that means that the way the probability decreases with k seems to be a
reasonably close fit to K−γ for some γ , i.e., P(k)∞K−γ . The parameter γ , called the
power-law exponent for the degree distribution, varies between 2 and 3 in real-world
networks, although it may lie outside these bounds.
Such deviations from the normal distribution usually signify some important corre-
lations within the system. Fat tailed probability distributions have been detected in
many complex systems, spanning different branches of natural sciences, as well as
social phenomena.

– Clustering coefficient. The clustering coefficient quantifies the tendency of nodes
to cluster together. The clustering coefficient of a node is defined by the proportion
of links (edges) between the nodes within its neighborhood, immediately connected
nodes, divided by the number of links that could possibly exist between them.
In real networks the clustering coefficient is typically much larger than it is in a ran-
dom network of equal number of nodes and edges [5]. In practice, a high clustering
coefficient, compared to random graph of same size, indicates that there are groups
(clusters) of nodes that are highly interconnected among themselves, but have few
connections to other clusters.

– Small world (six degrees of separation). A small-world network [29,32] is a net-
work where the number of steps required to travel between two randomly chosen
nodes grows sufficiently slowly as a function of the number of nodes in the network.
In other words, despite their often large size, there is a relatively short path between
any two nodes. Thus, in small world networks, while most nodes are not neighbors
of one another, most nodes can be reached from every other by a small number of
steps. Small-world properties are found in many real-world networks, e.g., railway
networks [24], metabolite processing networks [33], networks of brain neurons [28],
food webs [26] and the World Wide Web [25].

– Weakness in spite of overall strength.
An interesting phenomenon of complex networks is their ”Achilles’ heel”: robustness
versus fragility [34]. In a power law distributed small world network, deletion of a
random node rarely causes a dramatic increase in shortest path length. By contrast, in
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a random network, in which all nodes have roughly the same number of connections,
deleting a random node is likely to increase the mean-shortest path length slightly,
but significantly, for almost any node deleted. In this sense, random networks are
vulnerable to random perturbations, whereas small-world networks are robust. How-
ever, small-world networks are vulnerable to targeted attack of hubs, whereas random
networks cannot be targeted for catastrophic failure [23,35].

3.2 Dataset used for the legislation analysis

European Union law consists of founding treaties and legislation, such as Regulations
and Directives, which have direct or indirect effect on the laws of European Union
member states. There are three sources of European Union (EU) law:

a primary, the Treaties establishing the EU,
b secondary, regulations and directives which are based on the Treaties,
c supplementary law, the case law of the Court of Justice, international law and the

general principles of law.

The official legal portal of the European Communities is offered by the EUR-Lex5,
a free public service for the dissemination of EU law. EUR-Lex contains all documents
printed in the Official Journal of the EU dating back to 1951. For the purposes of our
work, we have downloaded all documents since then and we have extracted unnecessary
html formatting option, in order to obtain a text copy of the European Communities
legal database.

Within this database, documents are organized into sectors. Table 1 summarizes the
sectors of the EUR-Lex database, along with their corresponding number of documents,
as of July 2013. We have extracted all legislation concerning Sectors 1 to 6 from the
database, in accordance with the three sources of EU law, accounting for a total number
of 249,690 documents.

Table 1: Explanation of the EUR-Lex sector classification mechanism (#docs corre-
sponds to the number of documents within each sector, as of July 2013)

EUR-Lex Classification

Sec. Title Explanation # docs

1 Treaties Treaties establishing the EU / supplementing Treaties 8652
2 International agreements Agreements between the EU and other sovereign countries 8564
3 Legislation Secondary legislation to implement EU policy 120,550
4 Complementary legislation Agreements between Member States 1231
5 Preparatory acts Proposals for future legislation/ opinions 73,123
6 Jurisprudence Case law (judgments, orders, interpretations and other acts) 37,570

TOTAL 249,690

5 http://eur-lex.europa.eu
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EUR-Lex database offers analytical metadata for each document. The bibliographic
notes of the documents contain information such as dates of effect and validity, the legal
form of the document, authors, the subject matter, the legal document from which the
document draws its authority, as well as various relationships to other documents and
classifications.

We considered that fields, which provide links to other documents in the database,
are of particular significance and importance for our study. In Figure 1, we provide a vi-
sual representation example of a sequence of modifications imposed to a legal document
in the form of amendments. The council directive 370L0220, dated 20 March 1970, was
amended by directive 383L0351 in 16 June 1983 and then further amended by directive
389L0491 in 17 July 1989. Note that this is a bidirectional relationship, since directive
383L0351 modifies/amends directive 370L0220 then directive 370L0220 is amended
by 383L0351.

Fig. 1: Cross-reference links between legal documents in the EUR-lex. Amended by
and Amendment to are bidirectional relationships

References in the legislation can be divided into two different categories6 : (a) read
only references that do not modify the target document and (b) edit references that
modify either the text or the lifecycle of the target document. Instruments cited is an
example of the former, while amended by is an example of the latter.

Table 2 provides an overview of the major category types for the references found
in the EU law database. It also identifies that the “Instruments cited” reference type
consists of more than the half of the Legislation Network (close to 55%). If we consider
the respective corpus as simple instances of citation networks, like previous studies,
then we would have nearly neglected 45% of the total relations. This also indicates
that previous studies, that focus solely on citation analysis over legal corpora, ignore a
significant amount of the networks properties.

6 Internal reference is a reference that points to an article in the same regulation and is excluded
from the scope of our study.



8 Marios Koniaris et al.

Table 2: Type of references found in the EUR-Lex
EUR-Lex cross-references

Type Explanation % of Ref

Amended by The document is amended by another 9,50%
Amendment to The document amends another document 9,50%
Legal basis The document is authorized by the mentioning document 23,50%
Instruments cited The document cites other docs 54,93%
Affected by case The document was altered as of a case result 2,00%
Other Various types of references. 0,57%

3.3 Legislation Network Construction

Generally, legislation consists of a number of normative documents that are cross-
referred to each other. Thus, a directed network can be formed if a legal document
refers to another (outgoing link), or is refereed by another document (incoming link).
Furthermore, since legal documents can only refer to existing ones, our modeling graph
is in fact a directed acyclic graph (DAG).

Figure 2 displays the formation of EU law network from the legal document database.
Nodes of the network represent the legal documents. Every document in the legal col-
lection is analysed for cross references. If a cross reference is found between two doc-
uments, then a suitable edge connects those two nodes.

Fig. 2: A fraction of the EU Law Network

Node types vary according to the corresponding sector of the legal document, as
already explained in Table 1. Edges of the graph have many types according to the
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types of references found in the EUR-Lex database, as depicted in Table 2. In total the
graph consists of 234,287 nodes and 998,595 edges connecting the nodes.

Nodes and edges on the legislation network have temporal attributes also. Each
node is marked with a date of effect, the date that the legislation became effective and a
date of expiry, the date that the legislation will cease to effect. Quite often legislation is
adopted without an explicitly stated expiry date, also called as sunset close. For those
nodes, without a sunset close, we have set an expiration date for the year 9999. Edges
follow the temporal distribution of the corresponding nodes. That is, an edge is consid-
ered valid only for the time periods between the effective dates and sunset close of the
nodes they connect. This characteristic attribute of the Legislation Network is of special
importance; it allows to reproduce active legislation in any given point in time.

The EU Legislation Network, as many real-world networks, exhibits both temporal
evolution and multi-scale structure. It is a multilayer network [36], as it is a network
with a heterogeneous set of edge labels, which represent references of various types
(Legal basis, Instruments cited, etc.).

Figure 3 provides a visual representation of the Legislation Network. Various legal
documents such as Treaties (red nodes/ layer), International agreements (blue nodes/
layer) and Legislation (green nodes/ layer) are connected through edges of type Legal
Basis (dotted line) and Instruments cited (continuous line).

Treaties

Jurisprudence

Legislation

Legal basis

Instruments Cited

a b

Fig. 3: (a) An example of the multi layer structure of the Legislation Network. Legal
documents belonging to different sectors, represented with different colors, are inter-
connected with different types of relationships i.e., Legal Basis, Instruments cited. (b)
Representation of the same network using layers. (Best viewed in color.)

Alongside with the whole network, Legislation Network (LN), we identified the
following sub networks, which we additionally examine in detail through the rest of the
paper :

– The (sub) network of Regulations (RN). In this network, we keep track only of
legal documents that belong to the sector Legislation of EUR-Lex. We identified
this network as this network accounts for the corpus of secondary legislation to
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implement EU policy, as it contains EU regulations7, directives 8 and decisions9

with a direct or indirect effect on EU member states.
– The (sub) network of Instruments cited (ICN). The network of Instruments cited

contains all documents of the Legislation Network and only those edges connecting
nodes of type Instruments cited. We identified this network as it resembles a citation
network as it is studied in previous works

– The (sub) network of Legal basis (LBN). Within this network, we keep only the
edges of type Legal basis. An edge is added the network from node legal document
A to node legal document B if A is authorized by B. This network is of great
importance for everyone trying to identify the internal hierarchy of the legislation
corpus.

Nevertheless, our approach is of general usage and any particular combination of
node and edge filtering technique can be applied within the proposed modeling ap-
proach; a researcher interested only in Case law e.g., judgments from the court of Jus-
tice, may study the corresponding Jurisprudence Network, a researcher studying the
evolution of E.U. treaties may confide his/her analysis on the Network of Treaties,
while one interested in identifying the effects of court decisions over the legislation
may partition the Legislation Network based on the ”Affected by case” type of legal
reference.

In order to construct the sub-networks we divide the Legislation Network into sub-
graphs based on the following criteria: sector type, reference type, time period or even
a combination of them. Algorithm 1, described below, divides the legislation graph in
a sub-graph of specific sector of legislation. Corresponding E.U. legislation Sectors are
presented in Table 1.

Algorithm 1 Produce legislation graph of specific sector
Input: legislation graph G, legislation sector s
Output: legislation graph G of specific sector

Sectors← list of legislation sectors
for all sector ∈ Sectors do

if s 6= sector then
n← nodes in G of sector type s
e← edges(n)
G← G⊂ (n,e)

end if
end for
return G

Similarly, Algorithm 2 separates the legislation graph in a sub-graph of specific
relations. Applicable types of legislation references are presented in Table 2.

7 Regulations are of general application, binding in their entirety and directly applicable.
8 Directives are binding, as to the result to be achieved, upon any or all of the Member States to

whom they are addressed.
9 Decisions are binding in their entirety.
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Algorithm 2 Produce legislation graph with specific relations
Input: legislation graph G, relation type r
Output: legislation graph G of specific relation
1: Relations← list of legislation relations
2: for all relation ∈ Relations do
3: if r 6= relation then
4: e← edges in G of relation type r
5: G← G⊂ (e)
6: end if
7: end for
8: return G

While access to legislation generally retrieves the current legislation on a topic,
point-in-time legislation systems address a different problem, namely that lawyers,
judges and anyone else considering the legal implications of past events need to know
what the legislation stated at some point in the past when a transaction or events oc-
curred which have led to a dispute and perhaps to litigation [37].

The following Algorithm 3 can be applied to create a sub graph that represent leg-
islation in effect for a given time step frame.

Algorithm 3 Produce legislation in effect for time period t
Input: Complete legislation graph G, time step period t
Output: legislation (in effect) graph G for time period t
1: n1← expired nodes in G . date of expiration < t
2: e1← edges(n1)
3: n2← (future) nodes in G, . date of affect > t
4: e2← edges(n2)
5: G← G⊂ (n1,n2,e1,e2)
6: return G

Table 3 summarizes various properties of the Legislation Network and sub networks
that we further analyze. For each network we indicate the number of nodes, the number
of edges, the average degree, the diameter, the average path length, the size of the giant
component (g.c.) and the number of isolated nodes. Additionally, using parentheses, we
display the metrics for the current version of each sub network. That is, using Algorithm
3 we form the current (active) version of each network and measure the aforementioned
properties.

The diameter and average path length of the Instruments cited network appear anal-
ogously higher compared with the other networks. In contrast, the average degree and
average path length metrics of the Legal basis network are quite smaller than in the
other networks, as this network contains only edges of type Legal Basis. Furthermore,
we note that the current (active) version of each sub-network is less connected, a smaller
percent of nodes belong to the g.c. and consequently there are more isolated nodes.
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Table 3: Legislation Network and sub Networks basic properties. Numbers in parenthe-
ses refer to the current (active) version of each network.
Metrics/ Network Legislation (LN) Regulations (RN) Inst. cited (ICN) Legal basis (LBN)

# of nodes 234,287 (122,091) 115,105 (36,330) 140,208 (85,417) 163,095 (51,898)
# of edges 998,595 (524,503) 338,134 (72,605) 554,917 (387,803) 237,531 (74,467)
Average degree 8.52 (8.59) 5.88 (4.00) 7.92 (9.08) 2.91 (2.87)
Network diameter 39 (33) 41 (30) 79 (60) 6 (6)
Average path length 7.22 (7.58) 7.00 (7.20) 7.54 (6.90) 1.66 (1:48)
Size of g.c. 233,337 (116,790) 112,532 (29,583) 133,211 (78,140) 161,081 (49,038)
% of g.c 99.6% (95.7%) 97.8% (81.4%) 95% (91.5%) 98.8% (94.5%)
Isolated nodes 950 (5,301) 2,573 (6,747) 6,997 (7,277) 2,014 (2,860)

4 Network Analysis

In this section, we apply our modeling approach as to identify/characterize various
properties of the Legislation network. We examine the Legislation Network structure
and try to identify, otherwise, hidden organizing principles of the legislation corpus
(Section 4.1). We proceed with studying how the legislation corpus evolves over time
(Section 4.2), as new laws get introduced and others are amended or invalidated. Fi-
nally, we evaluate the tolerance of the Legislation Network to errors/ breakdowns, by
performing a resilience test (Section 4.3). The Legislation Network structure was pre-
sented in a preliminary work of ours [38], while in this work, we enrich our model and
extend the study by adding its Temporal Evolution and Resilience test.

4.1 Network Structure

The characterization of the structural properties of the underlying network is a very
crucial issue to understand the function of a complex system [39]. An important real-
ization of network analysis is that networks in natural, technological and social systems
are not random, but follow a series of basic organizing principles in their structure and
evolution, thus distinguishing them from randomly linked networks [5]. Network struc-
ture analysis inspects both macro and micro measures of the network topology. Macro
measures describe the network structure in a global view and help us interpret the in-
fluence of network structure to individual nodes in the network. On the contrary, micro
measures quantify the relative importance of a node within the network and assist us
perceive the influence of individual nodes to the global network structure.

A popular model for visualizing the macroscopic connectivity structure of directed
networks is the bow-tie model e.g., the bow-tie structure of the Web [40]. Figure 5
visualizes the bow-tie structure of the Legislation Network, while sizes of the various
components are given in Table 4.

The bow-tie consists of the following components:

– SCC, The main (core) component is the connected component named SCC, con-
taining all legal documents that can reach each other along directed edges,
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Fig. 4: Connectivity structure of the Legislation Network based on the Bow-tie model.
One can pass from any node of IN through SCC to any node of OUT. Hanging off IN and
OUT are TENDRILS containing nodes that are reachable from portions of IN, or that
can reach portions of OUT, without passage through SCC. It is possible for a TENDRIL
hanging off from IN to be hooked into a TENDRIL leading into OUT, forming a TUBE
– a passage from a portion of IN to a portion of OUT without touching SCC.

Table 4: Sizes of bow-tie components for the Legislation Network
Component # of nodes % of nodes

SCC 91,107 38.89%
IN 121,093 51.68%
OUT 6,314 2.70%
TUBES 1,300 0.55%
TENDRILS 13,523 5.77%
OTHERS 950 0.41%

– IN, it contains non-core legal documents that can reach the core via a directed path,
– OUT, it consists of legal documents that can be reached from the core,
– TUBES, tubes are formed by non-core legal documents reachable from IN and that

can reach OUT,
– TENDRILS, legal documents reachable from IN, or that can reach OUT, but not

belonging to the above components,
– DISCONNECTED, the remaining documents are disconnected.

Observing the macro structure in the legislation network we note that the SCC (core)
and IN components are larger and the OUT component significantly smaller, compared
to other studies e.g, the web [40]. Currently, almost all nodes belong to the g.c. (0.41%
disconnected component), about 40% of the nodes belong to the larger strongly con-
nected component of the legislation network and 50% of nodes can reach the CORE
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with a direct path. The link structure of the legislation network is well interconnected.
Most legal documents belong to the giant component, and from any document it is
possible to reach almost any other. This is probably due to an implicit aim of the legis-
lation system, that is driving to related/ connected documents. In this way the content
of each document can be fully understood after visiting many different documents. Fur-
thermore, observing the evolution of this macro structure in the Legislation Network,
as can be seen in Figure 6, both the SCC (core) and G.C. components are getting larger
over time.

SCC G.C.

1960 1970 1980 1990 2000 2010 1960 1970 1980 1990 2000 2010
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Fig. 5: Relative size of the SCC (core) and G.C. components with respect to the rest of
the graph

A well established metric for networks is the degree distribution, P(k), giving the
probability that a randomly selected node has k links. A popular visualization of the
degree distribution is the Lorenz curve, a type of plot to measure inequality originally
used in economics [41]. In a network degree plot, the Lorenz curve is a straight di-
agonal line when all nodes have the same degree and curved otherwise. It visualizes
statements of the form ”X% of nodes with smallest degree account for Y% of edges”.
The Gini coefficient [42] is the ratio of the area between the line of perfect equality and
the observed Lorenz curve to the area between the line of perfect equality and the line
of perfect inequality. The Gini coefficient is mainly used in economics to characterize
the inequality present in the distribution of wealth, but it can be used to measure the het-
erogeneity of any empirical distribution. The Gini coefficient takes values between zero
and one, with zero denoting total equality between degrees, and one denoting the dom-
inance of a single node. The higher the coefficient, the more unequal the distribution
is.
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Fig. 6: Lorenz curve and Gini coefficient for the number of references per legal doc-
ument distribution in the Legislation Network. We annotated values for the 1% effect
and the Pareto 80/20 rule.(Best viewed in color.)

Figure 7 presents the Lorenz curve along with the Gini coefficient for the Legis-
lation Network. If the Legislation Network were to be a random network, the Lorenz
curve should be close to the straight diagonal line and its degrees should follow a Pois-
son distribution. Interestingly, in the contained plots, we can see that the Lorenz curve
is not close to the straight diagonal line, but deviates towards inequality. The majority
of documents are cross referenced by only a few times, while there are a few documents
that are widely linked. We notice that numerous small-degree nodes coexist with a few
hubs, nodes with an exceptionally large number of links. The top-1% of the highest
degree nodes accounts for 7% of all inward and 4% of all outward links. We also anno-
tated the Pareto 80/20 rule: percent of the highest degree nodes accounting for 80% of
all links. For instance in Figure 7a we can see that 80% of all inward links is attributed
to the 17% highest in-degree nodes in the Legislation Network, while 80% of all out-
ward links is attributed to the 40% of the highest out-degree nodes , as showed in Figure
7b.

In many cases the degree distribution, P(k), decays as a power-law, following

P(k)∞K−γ (1)

where γ is a constant parameter of the distribution known as the exponent or scaling
parameter, that typically lies in the range 2 < γ < 3. This feature is common to large
scale communication, biological and social systems [5,22,43] and to the network of US
Supreme Court decisions [1,3]. In practice, few empirical phenomena obey power laws
for all values of x. More often, the power law applies only for values greater than some
minimum xmin. In such cases, we say that the tail of the distribution follows a power
law.

In order to classify the degree distribution in the Legislation Network, we fit a power
law model to the degree distribution using the methodology outlined in [44]. Specifi-
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cally, each observed vertex degree, x, in the Legislation Network represents a candidate
threshold value, xmin, above which the scaling behavior associated with the power law
model may provide a plausible fit. We then find the associated parameter values which
maximize the fit to the degree distribution above each candidate thresh-old value and se-
lect the best overall fit, given the corresponding threshold and parameter values. Testing
whether the model is plausible given the network degree distribution, involves synthe-
sizing m = 2500 sample degree distributions from a theoretical version of each model
with the threshold and parameter values equal to those estimated for the observed de-
gree distribution 10. The power law model can be ruled out if 10%, p < 0.10, or fewer
of the fits to the synthetic sets are poorer than the best fit to the actual data.

In Table 5 we show results from fitting a power-law form to the Legislation Net-
work, inward and outward links, alongside with a variety of generic statistics for the
degree distributions such as mean, standard deviation, and maximum value. The last
column of the table reports the p− value for the power-law model, which gives a mea-
sure of how plausible the power law is as a fit to the data 11.

Table 5: Basic statistics for the degree distribution such as mean, standard deviation, and
maximum value of the Legislation Network, along with power-law fits. n denotes the
size of nodes, n, tail is the size of the fitted power-law region, γ is the scaling parameter
and xmin the restricted power-law fit. p−value estimates were derived from a bootstrap
using 2500 replications. (Statistically significant values are denoted in bold.)
Network (Direction) n 〈x〉 σ xmax xmin γ ntail p

Legislation Network (In) 141,798 7.04 54.91 6373 34 ± 15 2.24 ± 0.15 4351 ± 29,700 0.232
Legislation Network (Out) 224,856 4.44 8.2 1160 34 ± 11 3.55 ± 0.42 2210 ± 36,000 0.246

Results of our heavy tailed analysis are plotted in Figure 8. The left column accounts
for inward links while the right column represents outward links. For each sub-network,
we provide the frequency distribution plot on log log scales (top row) and the cumu-
lative degree distribution alongside with the fitted power-law and distributions (bottom
row). We note that σ values are significantly larger larger than 〈x〉, revealing large vari-
ations in node degrees. The majority of documents are cross referenced by only a few
times, while there are a few documents that are widely linked. Power law is a plau-
sible fit for the distribution of inward links, γin = 2.24 and outward links, γout = 3.55
in the Legislation Network, with statistically significant p− values, 0.232 and 0.246
respectively.

Useful insights to understand the origin of this heterogeneity, can be derived by
the preferential attachment process12, which was initially proposed in the context of
wealth distributions [46] and afterwards utilized in complex networks [47]. The under-

10 For the p-value to be accurate to about 2 decimal digits, we would choose to generate m= 2500
synthetic sets, as suggested in [44].

11 We used the R poweRlaw package for heavy tailed distributions presented in [45].
12 Also known as cumulative advantage or ”the rich get richer”.
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Fig. 7: The Legislation Network frequency distribution plot on log log scales for inward
links 8a and outward links 8b. Fitted power-law and the cumulative degree distribution
for inward links 8c and outward links 8d.

ling principle of the preferential attachment process is that new nodes attach preferen-
tially to already well connected nodes, thus resulting in networks with skewed degree
distributions. In such model, the distribution of connections is highly susceptible to its
initial starting conditions. In the microscopic statistics of the legal domain when judges
write opinions, they cite cases and other authorities that are the most relevant ones to
the case they are deciding. With computer-assisted legal research tasks and widespread
commercial legal search engines they are more likely to utilize higher-ranked legal doc-
ument. Lawyers also rely on this cross citation as to form a well-grounded legal analy-
sis. Therefore judges and lawyers are more likely to utilize or to link to, thus increasing
the degree of, documents that already have a high degree (popular). Similarly, legal
documents atop centrality-based rankings are there due to their high degree. If a legal
document is already popular, it is more likely to receive another link. In other words,
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we notice a rich-get-richer phenomenon that amplifies the popularity of highly ranked
documents.

Another important topological characteristic that many real graphs were found to
exhibit is the so called small-world [29]. According to [32] small-world networks are
defined as having a small diameter and high clustering. Many social, technological,
biological and information networks have been studied and categorized as small-world
networks [30]. Small-world networks can be seen as systems that are both globally and
locally efficient, in terms of how efficiently information is exchanged over the network
[48].
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Fig. 8: a) The plot of shortest path length distribution for the Legislation Network. On an
average each legal document is 7 hops away from any other in the network. b) Clustering
coefficient per degree on log log scale. Slope of dotted line is −1.1 (Best viewed in
color.)

Small world properties are measured by the average shortest path 13 and clustering
coefficient 14 metrics. The distribution of shortest path lengths is plotted in Figure 9a.
The diameter D of the Legislation Network, defined as the maximum of the shortest path
lengths, is 39 and the average shortest path, the mean of geodesic distance between any
pairs that have at least a path connecting them, is 7.22. We do notice the presence of

13 Average number of steps along the shortest paths for all possible pairs of network nodes.
14 Clustering coefficient is a measure of the degree to which nodes in a graph tend to cluster

together.
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the ”six degrees of separation” phenomenon in spite of huge size of the Legislation
Network.

The distribution of the degree-dependent clustering coefficient C(k) is shown in 9b.
For clarity, we added the line with slope −1.1 in the log-log scale. Although a clear
power law may not be a plausible fit, the clustering coefficient is inversely proportional
to degree k. High-degree nodes are linked to many nodes, probably belonging to differ-
ent groups, thus, resulting in small clustering coefficient of the large-degree nodes. On
the contrary, low-degree nodes generally belong to well-interconnected communities,
corresponding to high clustering coefficient of the low-connectivity nodes. This pattern
as studied in [49], indicates the existence of a hierarchical architecture in the network. A
hierarchical architecture implies that sparsely connected nodes are part of highly clus-
tered areas, with communication between the different highly clustered neighborhoods
being maintained by a few hubs.

In order to classify a network as a small-world network, the candidate network
metrics are compared with Erdös-Rényi random networks [31], with the same number
of nodes and edges. If a network exposes the small world properties, then it is expected
that average shortest path is slightly shorter than of a random network and the average
clustering coefficient is of magnitude larger than that of a random network.

Similar to many studies on the small-world networks [30], our analysis is restricted
to the giant components in the networks i.e., the maximal connected sub-graph of the
network. Table 6 summarizes the results of our analysis on the Legislation Network
and the current (active) versions of the legislation sub-networks we consider. Average
shortest path and average clustering coefficient metrics are denoted by Lnet and Cnet and
the corresponding random network ones are symbolized as Lrand and Crand respectively.

Table 6: Small world metrics
Lnet Cnet Lrand Crand

Legislation Network (LN) 7,22 0,011 8,64 3,73e-05

(current) Legislation (LN) 7,58 0,0215 7,97 7,86e-05
(current) Regulations (RN) 7,2 0,00707 12,4 0,000156
(current) Inst. cited (ICN) 6,9 0,0343 7,26 0,000126
(current) Legal basis (LBN) 1,48 0,000278 24,1 5,68e-05

We notice that, despite the variations in the metrics, all of the networks satisfy
the small-world conditions. Interestingly not only the Legislation Network presents
small world characteristics, but also the current (active) versions of the Legislation
sub-networks also. Comparing our results with other studies, as presented in [30], we
see that the average shortest path lengths in the legislation sub graphs are distinctively
smaller than the values of networks reported and of magnitude smaller than the theo-
retical average degree of the corresponding random model. We attribute this finding to
the nature of law and its hierarchical form. Legal documents are made by the authority
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given by other legal documents, which reduces their total number of references well
below the expected number from the random model.

Finally, the tendency for nodes in networks to be connected to other nodes that
are like (or unlike) them in some way, assortativity, has been studied in [50]. While
assortativity is often examined in terms of a node’s degree, other discrete criteria/ char-
acteristics of the examined network models can be applied. In terms of degree values,
social networks, exhibit assortative mixing since nodes tend to be connected with other
nodes with similar degree values, while on the contrary technological and biological
networks exhibit dissortativity, as high degree nodes tend to attach to low degree ones.
The level of assortative mixing in a network is measured by the assortativity coefficient,
with positive values implying that the network is assortative, negative values that it is
dis-assortative and zero assortativity shows no correlation.

The Legislation Network exhibits a small degree of dis-assortativity (-0.0904) in
terms of nodes degree, as high degree nodes (hubs) are more likely to connect to nodes
of lower degree. On the contrary, the assortativity coefficient in terms of document
type connectivity, sector classification Table 1, is 0.443, revealing that there is a strong
tendency of legal documents to connect with legal documents belonging to the same
type and thus form clusters of the same sector.

4.2 Temporal Evolution of Legislation

Real-world networks evolve over time by the addition and deletion of nodes and edges.
The Legislation Network also evolves over time, with nodes and edges appearing or
disappearing, as new laws are being continuously created and other laws are amended,
invalidated or cease to exist. A complementary issue, over-looked in the legal citation
network literature, are the temporal aspects of those networks. As with network topol-
ogy, the temporal structure of node/ edge activation’s can affect dynamics of systems
interacting through the network [51].

In this section, we present our main findings on studying the evolution of legislation
over time. We analyze the temporal evolution of the Legislation Network by deriving
static graphs that capture both temporal and topological properties of the system. We
segment the legislation data into adjacent time windows, annually divided time inter-
vals, considering only active nodes and edges, and then study the time evolution of the
network structure in these windows.

In order to evaluate the temporal evolution of the Legislation Network, we con-
sidered sub-graphs at annually divided time intervals (time step frames – t = 1year).
For each time frame, from 1951 up to 2013, we create a sub-network using all legis-
lation that it was in effect on year Y , by incrementally removing nodes/ edges, legal
documents/ relations, from the legislation graph, according to the dates of affect and
cancellation of affect within the current time frame, utilizing Algorithm 3.

Figure 10a illustrates the respective evolution on a sector basis. The x axis represents
time while the y axis represents the growth of legislation corpus per sector. The active
legislation corpus grows over the years in respect to all types of sectors. Similarly, in
Figure 10b , the y axis represents the growth of legislation corpus along the various
edges of the legislation graph. The number of active edges, connection between active
legal documents, grows over the years in respect to all types of reference categories.
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Additionally, we also examined the evolution of these graphs over time. Leskovek
et al. [6] studied a range of different networks, from several domains, focusing on the
way in which fundamental network properties vary with time. They concluded that the
densification power law is a property that holds across a range of diverse networks.
According to the densification power law the number of edges is growing faster than
the number of nodes.

In general, the densification power law is defined from the following form:

E(t)∞N(t)α (2)

where E(t) and N(t) denote the number of edges and nodes of the graph at time t, while
a ranges between 1 and 2.

In detail, our analysis was conducted on the four representative sub-networks pre-
sented in the previous section. Furthermore, the current version of each sub-network
was formed and analysed for each year over our Legislation Network. In accordance
with the findings of [6], the Legislation Network also follows a densification power
law; the number of edges, connection between legal documents, grow faster than the
number of nodes, legal documents15. Results of our temporal analysis are presented in
Figure 11. For each sub-network, we illustrate on log log scales the number of active
edges (relations between legal documents) and nodes (legal documents). The number
of active relations between legal documents is growing faster than the number of active
legal documents for all the sub-networks examined. We plan on a future work to utilize
this property as to provide an evolutionary model, in order to describe the legislation
process.

4.3 Resilience of the Legislation Network

While myriads of regulations try to formalize and regulate systemic risk in various do-
mains e.g., financial systemic risk, the concept of systemic risk applies to every complex
system. Cascading failures in a network of interconnected system components has been
studied in the literature [52], but overlooked in legal domain. As stated in [53] the legal
system must not only anticipate systemic failures in the systems it is designed to regu-
late, but also anticipate systemic risk in the legal system as well. Motivated by this idea,
within this section, we describe an experiment for further studying the resilience of the
Legislation Network. We do acknowledge the underling complexity of such evaluation
that depends on legal experts explaining the legal consequences of the raw outcomes.

A fundamental issue in the analysis of complex networks is the assessment of their
stability, aiming to understand and predict the behavior of a system under any type of
malfunctions. Resilience refers to the ability of a network to avoid breakdowns when a
fraction of its components is removed. Over the past few years a large number of net-
works have been evaluated for tolerance to errors and attacks, while several approaches
have been proposed [23,54,30]. Usually tolerance to errors is measured in terms of

15 We note that our findings, overall expansion (growth) of the network, are based on examining
the active legislation network in each adjacent time window and not on the whole ”static”
version of the Legislation network. In the latter case this is an obvious finding since legal
documents cite previous legal documents.
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(d) Legal basis Network (LBN)

Fig. 10: Number of edges e(t) versus number of nodes n(t), in log-log scales, for the
active version of legislation sub-graphs. All graphs obey the Densification Power Law,
with a consistently good fit. Slopes: a = 1.142, 1.085, 1.167 and 1.002, respectively.
Values for the coefficient of determination R2 are also reported.

changes to the diameter or the size of the giant component of the networks under eval-
uation when a fraction of nodes are removed in a random manner. On the contrary, un-
der the assumption that an malicious agent will deliberately target the most connected
nodes, tolerance to attacks is measured when a fraction of the most connected nodes,
sorted in decreasing order, are removed from the network.

In our experimentation, we analysed and quantitatively measured the behavior of
the Legislation Network, in case where some of its nodes (legal documents) or edges
(connections) between nodes are removed. In real-life cases, this may be reflected when
laws are amended, invalidated or cease to exist, especially during major deregulation
reforms into various industry segments. Furthermore complying with one rule could
require actions that make complying with another rule more difficult. Similarly, because
legal rules often are interrelated through techniques, such as cross-referencing and stare
decisis, the way one rule is interpreted and applied could affect the meaning or operation
of other rules [53].

We evaluated the changes in giant component of the graph, which is the largest
connected sub-graph, when a small fraction of the nodes is removed 16. Since we cannot
think of a real life scenario, where inactive legislation get’s invalidated, we use in our
analysis the current (active) version of each sub-network as presented in Section 3.3,
utilizing Algorithm 3. In order to simulate errors we randomly removed nodes, while
for simulating attacks we removed nodes according to their degree in decreasing order.

16 The deletion of a node causes also the deletion of all of its edges.
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For each of the four legislation sub-graphs, we have created an Erdös-Rényi ran-
dom network with same number of nodes and edges. Those random networks helped
us to visualize the effects of power law distribution and small-world properties that
were previously described. All the eight networks were tested under our error/ attack
assumptions with a removal rate of 5% of remaining nodes at each step. Then, on each
step, we calculated the giant component of the network according to the amount of re-
maining nodes. The whole procedure was repeated 1,000 times and averaged values of
the fraction of nodes in the giant component were calculated.

Results of our resilience evaluation are presented in Figure 12. For each sub-network,
we illustrate the percentage of the giant component according to the fraction of removed
nodes. According with simillar studies in the literature [5], the Legislation Network, a
scale-free network, presents an exceptional robustness against random node failures.
However, as a result of this resilience, in cases where the highest number of edges are
attacked, the Legislation Network breaks down earlier than random networks. The Leg-
islation Network (LN) is a scale-free network with many low degree nodes and a few
highly connected ones. Random node removal affects mostly low degree nodes, thus
marginally altering the network topology. In such cases, the network behaves like a
random network. At the same time, the removal of the highly connected nodes has a
catastrophic effect leaving the network highly divided.

As far as the Instruments Cited (ICN) sub-network, which resembles a citation net-
work, appears to be the most resilient among the others. However, using it in such
scenarios would provide us with inaccurate results, since simple citations do not often
convey any special meaning in the legislation process.

On the other hand, the Legal Basis(LBN) legislation sub-graph appears to be the
least resilient of the four. This sub-network consists only of edges of type Legal basis
and it represents the internal hierarchy of the legislation corpus. Highly influential laws,
which serve as legal basis for several others, play an important role in the Legislation
Network. These laws keep the network connected and modifications on them can induce
serious consequences on the Legislation Network.

For a real life example, of the consequences that might occur after a single court
decision we consider Ireland’s drug loophole case17. Ireland’s Court of Appeal found
parts of the 1977 Misuse of Drugs Act to be unconstitutional 18, since the act was added
via ministerial order and without consulting the Oireachtas (both houses of the Irish
parliament). After the Act was first passed, almost 40 years ago, successive amend-
ments have added drugs to the original ”banned” list. With the court’s decision all off
the amendments have been declared invalid, thus, opening a loophole in the legal sys-
tem. In accordance with our previous findings on the structure and the topology of the
Legislation Network, e.g., scale free network, small world, growing diameter and den-
sification power law, we expect that this type of legal ”accidents” will become more
frequently and with exponential cascading failures.

Authorities at various levels within the E.U. e.g., European, national, local level
would benefit from an impact analysis of changes to the Legislation Network. Our pro-

17 edition.cnn.com/2015/03/11/europe/ireland-legal-drugs/
18 Stanislav Bederev v Ireland, The Attorney General and the Director of Public Prosecutions

(Irish Court of Appeal), 1409 (2014).
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Fig. 11: Resilience of the Legislation Network. Fraction of nodes in the giant compo-
nent as a function of the fraction of removed nodes in the 4 legislation sub-networks
and random networks with the same dimensions. The Instruments Cited sub-network
appears to be the most resilient of the four under targeted attack and the Legal Basis as
the least resilient. (Best viewed in color.)

posed model should provide assistance to legal experts, as to properly access the legal
consequences of proposed legislation changes.

5 Conclusions

In this paper, we introduce a network-based approach to model the law: the Legislation
Network. Our approach offers a model to create a systematic alternative structure to
a naturally evolved normative system. The Legislation Network is a multi-relational
network that accommodates the hierarchy between the sources of law and can represent
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relationships of various categories between legal documents, along with their temporal
evolution.

To the best of our knowledge, this work significantly differs from most previous
legal citation analysis studies, and the monolithic view to the legislation corpus they
share. We assume that there exist multiple, heterogeneous legislation sub-networks and
a sophisticated examination of their properties would generate important new relation-
ships in the real-life paradigm.

Characterizing the structural properties of a network is of fundamental importance
to understand the complex dynamics of the modelled system. The Legislation Network
is highly heterogeneous with respect to the number of edges incident on a node. The
degree distribution of legal documents follows a power law and, even it is resilient to
the random loss of nodes, it is very vulnerable to attacks targeting the high-degree ones.
The connectivity of the Legislation network relies on a small set of very important legal
documents. Modifying such legal documents, like actions of amending or cancellation,
can cause an avalanche of unintended consequences to the legislation corpus. We plan
to further evaluate the resilience of the sub-networks by employing a wider range of
criteria to determine the importance of the removed under attack nodes, such as be-
tweenness, Hits and PageRank.

We also studied the temporal evolution of the Legislation Network. Results showed
that the Legislation Network becomes denser over time, with the number of edges grow-
ing faster than the number of nodes. Further studies based upon the discovered charac-
teristics of Legislation Network may provide us with a richer model to better explain the
structure and evolution of legislation. Towards this, we plan to further evaluate whether
the graph patterns observed in the current study can be fitted into other well established
graph generators, like the Preferential attachment [5] and Forest Fire [6] models.

In parallel to all the above, we intend to extend our model and use it for link pre-
diction, trying to predict whether and how many times a legal document will be cited in
the future, given its position in the evolved Legislation Network. A more sophisticated
approach will be to predict which legal documents (and/or when) will become amended
or even invalidated.

In addition, our model can be exploited for visualizing the legal corpus. Graph visu-
alizations are used to convey the content of a graph as they can highlight patterns, reveal
clusters and related connections. We believe that a visualization system for the Legisla-
tion Network can be of great assistance to both citizens and legal experts, helping them
to easily navigate the legislation corpus. Another great benefit of such an approach, lies
in the fact that legislation can be exploited not only from the traditional point-of-view,
but as a graph of hyper-textual information with temporal properties. As an example,
it will be easier for lawmakers to monitor the effect of a possible change in the whole
normative system, thus taking appropriate actions. In such a system, the use of domain-
specific ontologies [55] and linked data techniques [56] would further enrich the added
value of Legislation Network.

Finally, our modelling approach can be used to improve the effectiveness of legal
information retrieval systems [57]. Our hypothesis is that the Legislation Network can
be exploited for text retrieval, in the same manner as hyperlink graphs on the Web.
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