
IEICE TRANS. COMMUN., VOL.E89–B, NO.12 DECEMBER 2006
3179

INVITED PAPER Special Section on Software Defined Radio Technology and Its Applications

A Survey on Dynamically Reconfigurable Processors

Hideharu AMANO†a), Member

SUMMARY Dynamically reconfigurable processors are consisting of
an array of processing elements whose functions and interconnections can
be dynamically changed. 9 commercial systems are picked up, and their
array structures, processing elements and interconnection architectures are
classified.
key words: dynamically reconfigurable processors

1. Introduction

SoC (System-on-a-Chip) which integrates an embedded
CPU, standard I/O, and application specific hardware has
been widely developed for various consumer electronics and
mobile products including cellular phones, portable game
machines, digital audio systems, DVD players, and network
controllers. Devices implemented with SoC are well suited
for intense applications and the custom design enables the
reduction in die size and power consumption. Efforts to
develop SoCs much faster than its current pace has led to
the introduction of new design methodologies such as the
C based description language and hardware/software co-
synthesis models.

However, recent advances and introduction of new
technologies in the areas such as signal processing, data
communications, and network protocol handling have made
the SoC a less attractive option. The higher development
costs, diversification of the product line, necessity for swift
and comprehensive response toward new standards, and low
quantity of the devices shipped are some of the factors that
discourage implementation onto an SoC. Moreover, floor-
planning and chip layouts are becoming to be the new bot-
tlenecks in design especially in advanced CMOS processes
where wiring delay is critical. Unfortunately, high level de-
sign technologies for SoC design cannot contribute much in
solving these problems.

A chip combining a CPU and a coarse grain recon-
figurable fabric has received attention as a solution to this
problem. Since the configuration of a coarse grain recon-
figurable device is flexible, the same chip can be used for
various applications. It can also be “refitted” after shipment
by rewriting the configuration data. Because most applica-
tions do not need special types of computing units, fine grain
reconfigurable architecture using LUT(Look Up Table)s is

Manuscript received July 18, 2006.
Manuscript revised August 19, 2006.
†The author is with the Department of Information and Com-

puter Science, Keio University, Yokohama-shi, 223-8522 Japan.
a) E-mail: hunga@am.ics.keio.ac.jp

DOI: 10.1093/ietcom/e89–b.12.3179

not always efficient in performance and cost. Although large
scale FPGA(Field Programmable Gate Array)s with embed-
ded CPUs (i.e. Xilinx’s Virtex-II Pro, Virtex-IV/FX and Al-
tera’s Excalibur) are commercially available, their main tar-
get remains to be in prototyping due to high costs.

Recent coarse grain dynamic reconfigurable devices
have been developed to achieve high performance and flex-
ibility for a fraction of the cost of an FPGA. It incorporates
the following properties: (1) A coarse grain cell consisting
of an ALU (Arithmetic Logic Unit), a data manipulator, a
register file and other functional modules is adopted as the
primitive processing element; (2) In reducing the cost and
die size, dynamically reconfiguration which enables time-
multiplexed execution is introduced; and (3) High level de-
sign entry and functional synthesis techniques developed for
SoC design can be adopted for designing these devices.

Here, recent commercially available dynamically re-
configurable processors are surveyed from the viewpoint of
their architectural designs. First, we introduce some typical
structures and how they work using some examples. Then,
commercial systems are classified with their method of dy-
namic reconfiguration, structure of processing elements and
interconnection networks.

2. Overview of Dynamically Reconfigurable Processors

2.1 Target Systems

Table 1 shows main target systems of this survey. Most of
them are commercially available currently or near future ex-
cept CS2112 which is picked up as a frontier commercial
machine.

SONY’s VME (Virtual Mobile Engine) [37] which is
embedded in a portable game machine PSP cannot be in-
cluded, since its detail has not been disclosed. NTT’s dy-

Table 1 Target systems.

Name Company Reference
CS2112 Chameleon [1]

DAPDNA-2 IPFlex [2]
DRP-1 NEC electronics [3]
FE-GA Hitachi [4]
Xpp-64 PACT [5]

D-Fabrix Elixent∗ [6]
Kilocore KC256 Rapport [8]

ADRES IMEC [9]
S5-engine Stretch [11]

Cluster machine Fujitsu [10]

Copyright c© 2006 The Institute of Electronics, Information and Communication Engineers

3180
IEICE TRANS. COMMUN., VOL.E89–B, NO.12 DECEMBER 2006

Fig. 1 An example of processing element (DPU of CS2112).

namically reconfigurable devices PCA [12] and PCA-2 [13]
are also omitted with the following reasons: (1) Their ar-
chitecture based on the asynchronous operation, serial data
communication, and fine-grained logic elements is com-
pletely different from others and hard to be discussed to-
gether. (2) They are research prototypes rather than com-
mercial ones.

2.2 PE Array Structure

Dynamically reconfigurable processors are consisting of an
array of PEs (Processing Elements) whose functions and in-
terconnection can be dynamically changed. A PE provides
an ALU for numerical and logical calculations, logics for
shift/mask operations, registers or register files and multi-
plexors for switching the data-flow between such compo-
nents. Figure 1 shows a PE (Data Processing Unit: DPU) of
CS2112 [1] which is consisting of typical components. Al-
though the data bit-width of the DPU is 16bits, it is various
from 4bits (D-Fabrix and S5-engine) to 32bits (DAPDNA-2)
as shown later. The operation of ALU, shift/mask logic, and
data paths between components are controlled with configu-
ration data or instructions stored in configuration/instruction
memory. Note that each PE does not have its own program
counter nor instruction fetch unit. Although the element is
called “Processing Element”, it is not a common PE used
in multiprocessors but used as a part of a large data-path by
connecting with others.

A certain number of PEs (16-512) are connected to
form an array structure. A typical structure is a square
mesh, and as described later, both direct interconnection and
switch connected bus structures are used. On the edge of the
PE array, distributed memory modules are provided to hold
streaming data. Input/Output data is directly transferred at
the edge of the PE array directly to/from each PE or dis-
tributed memory modules. Figure 2 shows an array of PACT
Xpp-64 [5]. 8 × 8 computational PE (ALU-PAE) are con-
nected with 2 dimensional mesh, and at the both sides, mem-
ory modules (RAM-PAEs) for storing data are provided.

Like FPGAs, the paths between PEs are also decided
with configuration data which is stored into the configura-
tion memory provided in the switching modules. That is,
the operation of PE and interconnection between them are
fully programmable by the configuration data. The config-
uration data is often called “instructions” when the total PE

Fig. 2 An array structure of PACT-Xpp.

array is treated as a large data-path for computations.
Unlike FPGAs based on the fine-grain LUTs, a dy-

namically reconfigurable processor is a coarse grain pro-
grammable device. The coarse grain structure is less flex-
ible than the fine grain structure, that is, it is not suitable to
form state machines and complicated bit-wise random log-
ics. However, it achieves high performance per cost for me-
dia processing required for most hardware accelerators of
recent SoCs.

2.3 Dynamic Reconfiguration

Only by using the coarse grain structure, the performance
per cost of programmable devices is far from that of ded-
icated hardware. So, by making the best use of reconfig-
urable property, dynamic reconfiguration is introduced to
enhance the area efficiency by changing its structure dynam-
ically. That is, by using a single PE array for multiple tasks,
the semiconductor area can be utilized efficiently compared
with dedicated hardware logic.

The simplest way for dynamic reconfiguration is pro-
viding a single or several on-chip memory modules in the
chip, and storing multiple sets of configuration data. The ar-
ray configuration can be changed by transferring new con-
figuration data from the memory to each PE and switches
through the configuration bus as shown in Fig. 3. Common
media processing is consisting of multiple tasks which are
executed sequentially. When a task executed on the PE ar-
ray is finished, the configuration data corresponding to the
next task is transferred and executed. Here, this method is
called “configuration delivery”, and a configuration data set
corresponding to a task working on a PE array is called the
“hardware context”. Xpp, D-Fabrix and S5-engine fall into
this type. It usually takes more than 10 micro-seconds to
send the configuration, and during the configuration trans-
fer, the computation on the array is, at least, partially sus-
pended.

Another dynamic reconfiguration method is called
“multicontext” reconfiguration. In this method, each PE
provides a memory module that stores the configuration
data sets for the corresponding PE and interconnection of

AMANO: A SURVEY ON DYNAMICALLY RECONFIGURABLE PROCESSORS
3181

Fig. 3 Configuration delivery method.

Fig. 4 Multicontext mechanism.

surrounding buses. The context number is broadcasted
throughout the chip, and used as a pointer to the context
memories. By changing the context number and reading
the context memory simultaneously, the context is switched
with a clock cycle (Fig. 4). This in turn means that the con-
figuration data for a context is distributed to each PE, and a
context is switched by configuration data read-out from each
of the context memories.

With either method, the hardware context can be
changed much faster than that of FPGAs which often re-
quires milli-seconds to load the configuration data. One
reason comes from that the total amount of configuration
data for coarse-grain dynamically reconfigurable processor
is much smaller (1/10–1/100) than those for fine-grained FP-
GAs [14]. Although context switching can be done with a
clock cycle in multicontext devices, the area of each PE is
increased with the distributed context memory. The area of
configuration memory which provides 32 contexts is almost
the same as that of a PE itself [9].

2.4 Interconnection with a Host Processor

A dynamically reconfigurable processor is used as an ac-
celerator of a host embedded processor. Some of them are
designed as an IP (Intellectual Property) which can be used
in various SoCs.

The host processor is often “configurable processors”,
and the dynamically reconfigurable processor can be tightly
coupled by sharing registers. Figure 5(a) shows Toshiba’s
MeP configurable processor with Elixent’s D-Fabrix as a re-
configurable extension [6]. In such systems, a task executed
in the PE array is treated as a reconfigurable operation of
the host processor, and the dynamically reconfigurable pro-
cessor behaves like a kind of pipelined execution unit of the

Fig. 5 Interconnection with the host processor.

host processor. Similarly, S5-engine is composed in a Ten-
sillica’s configurable processor Xtensa [11].

However, even in this case, the dynamically recon-
figurable processor executes its task autonomously, that is,
loop-level tasks are allocated and executed by using the di-
rect data transfer path between the host memory and dis-
tributed memory modules in the PE array.

Some dynamically reconfigurable processors are con-
nected with the host more loosely as shown in Fig. 5(b). In
this case, the stream data is transferred between host mem-
ory and distributed memory modules in the PE array with
the DMA controller similar to other accelerators in SoCs.
Since a dynamically reconfigurable processor can execute
a single task at a time, a multiple-core structure with mul-
tiple dynamically reconfigurable processors is efficient for
performance enhancement. A multiprocessor with multiple
FE-GA cores and multiple SH-4 CPUs is now under devel-
opment by Hitachi [15], and Fujitsu’s cluster machine is
consisting of multiple clusters each of which is relatively
small scale PE arrays [10].

2.5 Parallel Execution and C-Level Programming

By making the best use of their flexibility, various parallel
algorithms can be executed on the PE array of the dynami-
cally reconfigurable processors. The simplest way is gener-
ating data-flow graph from C language, and mapped into the
array directly. Then, the streaming data is inserted and exe-
cuted in the pipelined manner. Kilocore KC256 [8], which
is a commercial version of PipeRench [17] has specialized
structure for the pipelined execution. As shown in Fig. 6,
it is consisting of “stripe”s each of which is corresponding
to a stage of a pipeline. By the dynamic reconfiguration of
“stripe”s, a pipeline with arbitrary number of stages can be
virtually implemented on 16 stripes each of which has 16
PEs.

For media processing, a certain size of streaming data
corresponding to a window or frame stored in distributed
memory modules are processed simultaneously by PEs it-
eratively like the SIMD(Single Instruction stream Multiple

3182
IEICE TRANS. COMMUN., VOL.E89–B, NO.12 DECEMBER 2006

Fig. 6 KC256 for pipeline execution.

Data Streams) manner. However, unlike common SIMD
processing, operations of each PE and data transfer between
PEs/memory modules can be various and flexible. In the
multicontext dynamically reconfigurable processor, the con-
text can be switched clock by clock, thus, the datapath for
processing can be switched in every clock cycle. By using
context switching, the ILP (Instruction Level Parallelism)
from LLP (Loop-level parallelism) can be efficiently uti-
lized.

C-language based programming is mainly used for dy-
namically reconfigurable processors, since the data-flow
graph can be directly mapped into the PE array. For DRP-
1 of NEC electronics, a sophisticated design tool Muske-
teer [16] divides the target task into an optimized number
of contexts, and schedules them by using functional synthe-
sis techniques. By using the tool, the program described
in BDL (Behavior Description Language), a C-like hard-
ware description language can be automatically translated
into configuration data for each context. The programming
environment for S5-engine analyzes the target C program,
and detects the loop to be executed in the PE array. Other
systems also prepare their own high level design tools.

2.6 How Different between Other Architectures?

Dynamically reconfigurable processors have been intro-
duced mainly compared with fine-grained reconfigurable
devices FPGAs. Here, they are compared with other archi-
tectures.

2.6.1 Tile Processors vs. Dynamically Reconfigurable
Processors

Tile processors, a type of on-chip MIMD (Multiple Instruc-
tion stremas Multiple Data Streams) processors also con-
sists of an array of processing elements. MIT’s RAW [24],
PicoChip [23] and Quicksilver’s ACM [25] fall into this cat-
egory. The most important difference is that a processing
element of Tile processors is a powerful CPU with program
counter and its own instruction memory, while one used in
dynamically reconfigurable processors is just a part of data-
path without any instruction fetch mechanism. So, the semi-
conductor area for a PE of dynamically reconfigurable pro-

Fig. 7 The structure of IMEC ADRES.

cessors is much smaller than that of Tile processors. This
property is advantageous, since the main target of dynam-
ically reconfigurable processors is embedded systems for
consumer electronics and mobile systems.

2.6.2 VLIW vs. Dynamically Reconfigurable Processors

A multicontext device changes its structure with a clock cy-
cle by loading new configuration data from context memory
modules distributed to each PE and switch. If the context
pointer is treated as a program counter, the total configura-
tion data can be thought as a very long instruction. From
this viewpoint, a dynamically reconfigurable processor is
a VLIW (Very Large Instruction Word) computer that pro-
vides an extremely large datapath and a limited instruction
fetch mechanism. From the opposite viewpoint, an instruc-
tion execution in a common stored programming computer
is treated as a type of hardware context switching, since the
interconnection and operations of the datapath are changed
by executing an instruction.

However, in a common VLIW machine, source/
destination operands are registers, and so an instruction is
formed with relatively simple combination of operations. In
dynamically reconfigurable processors, a certain set of data
is stored in the distributed memory modules in the PE array,
and processed iteratively within a context. That is, more
parallelism can be easily utilized in dynamically reconfig-
urable processors. Instead, the number of available contexts
is strictly limited in dynamically reconfigurable processors,
and it is difficult to execute complicated programs. ADRES
[9] has a VLIW part in the array of PEs. As shown in Fig. 7,
the upper most 8 PEs (FUs) are directly connected with a
shared register file, and work in the VLIW mode. For the
task with more parallelism, the data is moved to the PE ar-
ray, and processed in the dynamically reconfigurable pro-
cessor mode.

2.6.3 SIMD vs. Dynamically Reconfigurable Processors

ALU arrays are also used in a special purpose SIMD (Sin-
gle Instruction stream and Multiple Data streams) machines
including ClearSpeed [26]. Since a single context pointer is

AMANO: A SURVEY ON DYNAMICALLY RECONFIGURABLE PROCESSORS
3183

Fig. 8 The position of dynamically reconfigurable processors.

used in a dynamically reconfigurable processor, the control
flow is simple as SIMD machines.

However, operations and interconnections of a dynam-
ically reconfigurable processor are much flexible. Instead,
the SIMD machine requires much smaller instruction code
than that of dynamically reconfigurable processors and so a
long and complicated program code can be executed with
powerful instruction fetch mechanism.

Figure 8 shows the position of the dynamically recon-
figurable processors. It classifies architectures with the com-
plexity of each processing element, parallelism (number of
used processing elements), and the number of available con-
texts. Chip-multiprocessors and VLIW machines based on
the stored programming computers can execute enormous
number of contexts by executing instructions but the number
of PE is not many, so they are located on the right front upper
side. Tile processors which have more number of processors
with less complexity than typical chip-multiprocessors are
located lower back position of them. In contrast, FPGA with
numerous number of fine grain LUTs but cannot change the
context occupies the left bottom back position. Dynami-
cally reconfigurable processors are widely distributed be-
tween both ends of the diagram. Its position is lower than
that of Tile processors because of less complexity of each
PE, but of course, higher than that of FPGAs. From the
viewpoint of parallelism (number of used processing ele-
ments), it is less than that of FPGAs but more than that of
Tile processors. Since the space of dynamically reconfig-
urable processors is wide, the characteristics of systems are
also various as shown in later.

3. A Survey of Detail Structures

3.1 Basic Classification

Table 2 shows fundamental features of the target systems.
First, they can be classified by the method of dynamic recon-
figuration: configuration delivery (D) or multicontext (M)
introduced before. The maximum number of contexts which
can be stored in a PE is attached for multicontext devices.

Table 2 Fundamental features.

Name Conf. PE array Data PEs
CS2112 M (8) Hetero 16/32 108

DAPDNA-2 M (4) Hetero 32 376
FE-GA M (4) Hetero 16 32

Cluster machine M Hetero 16 15/c
DRP-1 M (16) Homo-Out 8 512

Kilocore KC256 M/D Homo-All 8 256
ADRES M (32) Homo-All 16 64
Xpp-64 D Homo-Non 24 64

D-Fabrix D Homo-Non 4 576
S5-engine D Homo-Out 4/8 -

Kilocore KC256 shown in Fig. 6 has a special configuration
mechanism. In this architecture, a stripe is re-configured
with a clock cycle to form a virtual pipeline with a power-
ful configuration bus. Since the configuration data can be
transferred from outside the chip, the number of context is
unlimited.

Then, they can be classified whether the PE array is ho-
mogeneous or heterogeneous. Homogeneous means that all
PEs are the same structure, while more than two types of
PEs are used in heterogeneous structure. The key design is-
sue is how multipliers are implemented in a PE array. Need-
less to say, multipliers are essential for digital signal pro-
cessing, but the semiconductor area of a multiplier is much
larger than that for an adder or shift/mask logics. For some
applications including encryption/decryption, it is often use-
less.

So, the array structure of dynamically reconfigurable
processors can be classified as follows based on the multi-
plier implementation.

• Multipliers are implemented on some PEs (or some
PEs are dedicated for multipliers), but not included in
others. So, the array structure becomes heterogeneous
(Hetero). In this structure, the number of PE with mul-
tipliers in the total PE array becomes a design choice.
For example, FE-GA provides 8 multipliers (MLT) in
24 total PEs as shown in Fig. 9. The number is ana-
lyzed in Table 3†, and the ratio becomes roughly 1 : 3.
• Every PE provides its own multiplier. In this case, the

PE array becomes homogeneous (Homo-All).
• Every PE does not have any multiplier. The multi-

plier is structured with an array of multiple adders and
shifters. The PE array also becomes homogeneous
(Homo-None).
• Every PE does not have any multiplier, but the dedi-

cated multipliers are provided outside the PE array. For
example, DRP-1 provides eight multipliers outside the
PE array. They can be connected with PEs in the array
with some restrictions. S5-engine has dedicated array
of multipliers other than the general purpose PE array.
The PE array becomes homogeneous (Homo-Out), if
outside multipliers are not taken into account.

The bit-width treated in a PE is another important fac-
tor, since it is related to the application target. 16bits-PE

†In Cluster machine, the PE is configurable [10].

3184
IEICE TRANS. COMMUN., VOL.E89–B, NO.12 DECEMBER 2006

Fig. 9 Structure of FE-GA.

Table 3 Number of multipliers PE.

Name Multipliers Other PEs Ratio
CS2112 24 84 1 : 3.5

DAPDNA-2 56 168 1 : 3.3
FE-GA 8 24 1 : 3

is popular but other bit-widths are also used. The number
of PEs are not so important, since most of dynamically re-
configurable processors are scalable in a certain unit of PE
array (The unit is often called a “Tile”). Table 3 also shows
the size of the PE array† D-Fabrix and S-5 engine are tightly
coupled with configurable processors, use the delivery con-
figuration, and consist of a large size array of small PEs.
In such machines, the time for configuration delivery can
be hidden by the host CPU execution, and the high area-
efficiency is required. On the other hand, DAPDNA-2 de-
signed mainly for high-end image processing applications
uses relatively large PEs and the multicontext structure.

3.2 PE Structure

Although the supported functions are almost similar, the PE
structure is various. First, they can be classified by the in-
put/output registers as shown in Fig. 10:

• Output only (O) : KC256, D-Fabrix, Cluster Machine
and ADRES fall into this category. Some of them have
a bypassing mechanism which allow the direct inter-
connection of the PE body.
• Input/Output (I/O): CS2112, DAPDNA-2, FE-GA and

Xpp-64 are included. Most of them have the bypassing
mechanism.
• Programmable (P): the registers used in DRP-1 can be

connected both for input data and output data.

Practically, input registers are used only when the data
transfer from the remote PEs or distributed memory module
takes a long delay. For the viewpoint of the cost, output
register only structure is advantageous. There are no PEs
without register or with an input register only.

Next, a PE is characterized whether it provides register
files (R) or not (N). The PE array which provides register
files can store intermediate data in each PE, for iteratively

Fig. 10 Classification based on input/output registers.

Fig. 11 Classification based on register files.

computing in SIMD/MIMD manner. Figure 11 shows the
classification.

Finally, a PE can be categorized by the number of com-
ponents and interconnection with them as shown in Fig. 12,
that is, whether it is consisting of a single or multiple com-
ponents. When a PE has only a component (S), it is a versa-
tile ALU or Functional Units, and complex operations like
shift-and-add can be executed. Such a component can have
2-input (S-2) or 3-input (S-3).

When a PE is consisting of multiple components, they
are specialized modules like an ALU, a shift/mask logic, or a
multiplier. In FE-GA and Xpp-64, they cannot be connected
with each other inside the PE and works independently (M-
I). That is, these components only share the input/output of
the PE. On the other hand, in DRP-1 and DAPDNA-2, these
components can be connected inside the PEs (M-C). The
interconnection is changeable with some limitation.

Table 4 shows the summary of PE structure. This table
shows that the combination of each feature is various and in-
dependent from the fundamental features shown in Table 2.
Some of features may come from their main target applica-
tions, but it is difficult to find a certain tendency.

†The number of D-Fabrix is one which is embedded in ET1D
(MeP). The number of PEs in S5-engine has not been disclosed.

AMANO: A SURVEY ON DYNAMICALLY RECONFIGURABLE PROCESSORS
3185

Fig. 12 Component structure.

Table 4 PE structure.

Name Register Reg.File PE body
CS2112 I/O N S-2

DAPDNA-2 I/O N M-C
FE-GA O N M-I

Cluster machine O N S-2
DRP-1 P R M-C

Kilocore KC256 O R S-2
ADRES O R S-3
Xpp-64 I/O N M-I

D-Fabrix O N S-2

3.3 Interconnection Structure

Interconnection networks used in the PE array is also var-
ious as shown in Table 5. The popular interconnection
method is a square bus structure (2D-bus) providing a switch
matrix at intersection of buses like island-style FPGAs
(Fig. 13(1)). Like FPGAs, a switch matrix is statically set
with the configuration data. Connection blocks to connect
PEs and buses are also required. However, unlike FPGAs,
most of buses are uni-directional, that is, the direction of
data transfer is fixed. The double, quad and long length
wires are not used, and all wires are single length which
connect neighboring switches. This comes from the fact
that compared with fine grain FPGA, the number of PE is
small but its area is large. So, various length wires are not
needed and fixed directional data transfer is preferred. Fi-
nally, the most important difference is that the setting of
switching matrix can be changed by dynamic reconfigura-
tion, especially, every clock cycle in multicontext devices.
That is, in such devices, additional wiring resource is avail-
able by switching the context.

Table 5 Interconnection structure.

Name Interconnect
CS2112 Tile base, 2D-bus

DAPDNA-2 Segment base, 2D-bus
FE-GA 2D-mesh direct, Crossbar for memories

Cluster machine 3-stage switch
DRP-1 Tile base, 2D-bus

Kilocore KC256 Crossbar for row direction
ADRES 2D-mesh direct with extra links
Xpp-64 2D-bus and direct

D-Fabrix Chess-board like switch connection

Fig. 13 Interconnection structure.

Fig. 14 Interconnection structure of D-Fabrix.

Another popular method is based on direct inter-
connection (Direct) between PEs like Tile processors
(Fig. 13(2)). In FE-GA (Fig. 9), complete nearest neighbor
connection is provided between computational PEs, while
long additional links are used in ADRES (Fig. 7). In the di-
rect interconnection, the delay for switch matrices and con-
nection blocks of the square bus structure can be omitted.
Thus, the low latency data transfer can be done between
direct connected PEs. On the other hand, a long delay is
needed to transfer data between distant PEs.

Large switching matrix can be directly used to connect
a number of PEs as shown in Fig. 13(3). Since the number

3186
IEICE TRANS. COMMUN., VOL.E89–B, NO.12 DECEMBER 2006

of PEs connected with a single switching matrix is limited,
various types indirect interconnection is used. In D-Fabrix,
chess-board like interconnection between PEs and switch
matrix is used as shown in Fig. 14. Fujitsu’s cluster ma-
chine uses three-stage indirect switching network to connect
all PEs in a cluster. In FE-GA, although computational PEs
are connected directly with wires, they are connected with
distributed memory modules with Load/Store units through
a powerful switch matrix (Fig. 14). Using this switch ma-
trix, the data stored in memory modules can be transferred
to any PEs located at the edge of the array.

4. Application to Wireless Communication

Although dynamically reconfigurable processors have not
been utilized for software radio directly, researches on wire-
less communication using such devices have been reported
recently.

Fujitsu’s cluster architecture is designed mainly for
wireless communication. By using customized clustered
structure, it achieves better performance than DAPDNA-
2 in several tasks for wireless LAN. A RAKE receiver
[38] and OFDM receiver [39] have been implemented us-
ing coarse grain dynamically reconfigurable processors. An
adaptive Viterbi-decoder [40] was implemented on DRP-1
that can change its structure depending on the S/N (Sig-
nal/Noise) ratio to optimize the power consumption. En-
cryption/Decryption used in wireless communication is one
of main target applications of dynamically reconfigurable
processors and so various types of implementation have
been tried [41].

Dynamically reconfigurable processors have a various
benefits for the software radio, but further studies are re-
quired especially for decreasing the power consumption.

5. Conclusion

Tables 2, 4 and 5 show that the structure of dynamically re-
configurable processors are various for their target applica-
tion and the usage in the SoC. That is, there is no architec-
ture which is suitable every target application field. Since
the practical use of them has just started, the architectural
trade-off has not been well analyzed qualitatively. However,
some practical analysis results has been reported recently
[7], [18], and in the near future, the optimal structure will be
selected automatically when the target application and SoC
are fixed.

In this survey, since the targets are focused on systems
from companies, important research activities [19]–[22] and
early contributions [27], [30]–[36] for establishing dynami-
cally reconfigurable processors are omitted. Some of them
can be followed by the references.

References

[1] X. Tang, M. Aalsma, and R. Jou, “A compiler directed approach to
hiding configuration latency in chameleon processors,” Proc. FPL,
(LNCS 1896), pp.29–38, 2000.

[2] T. Sugawara, K. Ide, and T. Sato, “Dynamically reconfigurable pro-
cessor implemented with IPFlex’s DAPDNA technology,” IEICE
Trans. Inf. & Syst., vol.E87-D, no.8, pp.1997–2003, Aug. 2004.

[3] M. Motomura, “A dynamically reconfigurable processor architec-
ture,” Microprocessor Forum, Oct. 2002.

[4] T. Kodama, T. Tsunoda, M. Takada, H. Tanaka, Y. Akita, M. Sato,
and M. Ito, “Flexible engine: A dynamic reconfigurable accelerator
with high performance and low power consumption,” Proc. COOL
Chips IX, pp.393–408, April 2006.

[5] M. Petrov, T. Murgan, F. May, M. Vorbach, P. Zipf, and M. Glesner,
“The XPP architecture and its co-simulation within the simulink en-
vironment,” Proc. FPL, pp.761–770, 2004.

[6] T. Stansfield, “Using multiplexers for control and data in D-fabrix,”
Proc. FPL, pp.416–425, Sept. 2003.

[7] T. Matsumoto, K. Kimura, H. Takano, T. Amatsubo, K. Mori, K.
Senda, S. Inoue, and M. Matsui, “Performance evaluation of re-
configurable processing array in area efficiency and operating fre-
quency,” Proc. COOL Chips IX, pp.423–434, April 2006.

[8] B. Levine, “Kilocore: Scalable, high-performance, and power ef-
ficient coarse-grained reconfigurable fabrics,” Proc. Int. Symp. on
Advaned Reconfigurable Systems, pp.129–158, Dec. 2005.

[9] F.-J. Veredas, M. Scheppler, W. Moffat, and B. Mei, “Custom imple-
menttion of the coarse-gained reconfiguarble ADRES architecture
for multimedia purposes,” Proc. FPL, pp.106–111, Sept. 2005.

[10] M. Saito, H. Fujisawa, N. Ujiie, and H. Yoshizawa, “Cluster archi-
tecture for reconfigurable singal processing engine for wireless com-
munication,” Proc. FPL, pp.353–359, Sept. 2005.

[11] J.M. Arnord, “S5: The architecture and development flow of a soft-
ware configurable proecssor,” Proc. ICFPT, pp.121–128, Dec. 2005.

[12] T. Shiozawa, K. Oguri, K. Nagami, H. Ito, and R. Konishi, “A hard-
ware implementation of constraint satisfaction problem based on
new reconfigurable LSI architecture,” Proc. FPL 1998 (LNCS 1482),
pp.426–430, Aug. 1998.

[13] N. Imlig, T. Shiozawa, K. Nagami, Y. Nakane, R. Konishi, H. Ito,
and A. Nagoya, “Scalable space/time-shared stream-processing on
the run-time reconfigurable PCA architecture,” Proc. RAW 2001,
pp.1441–1449, April 2001.

[14] T. Kitaoka, H. Amano, and K. Anjo, “Reducing the configuration
loading time of a coarse grain multicontext reconfigurable device,”
Proc. FPL (LNCS2778), pp.171–180, 2003.

[15] H. Shikano, Y. Suzuki, Y. Wada, J. Shirako, K. Kimura, and H.
Kasahara, “Performance evaluation of heterogeneous chip multi-
processor with MP3 audio encoder,” Proc. COOL Chips IX, pp.349–
363, April 2006.

[16] T. Awashima, “Dynamically reconfigurable processor and its C-level
design tool,” Proc. Int. Symp. on Advaned Reconfigurable Systems,
pp.159–172, Dec. 2005.

[17] S.C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R.R.
Taylor, and R. Laufer, “PipeRench: A coprocessor for streaming
multimedia acceleration,” Proc. 26th Annual International Sympo-
sium on Computer Architecture, pp.28–39, 1999.

[18] Y. Hasegawa, S. Abe, S. Kurotaki, V. Tuan, N. Katsura, T. Naka-
mura, T. Nishimura, and H. Amano, “Performance and power
analysis of time-multiplexed execution on dynamically reconfig-
urable processor,” Proc. Reconfigurable Architecture Workshop
(RAW2006), April 2006.

[19] T. Miyamori and K. Olukotun, “A quantitative analysis of recon-
figurable coprocessors for multimedia applications,” Proc. FCCM,
pp.2–11, 1998.

[20] H. Singh, M-H. Lee, G. Lu, F.J. Kurdahi, N. Bagherzadeh, and E.M.
Chaves, “MorphoSys: An intergrated reconfigurable system for
data-parallel and computation-intensize applications,” IEEE Trans.
Comput., vol.49, no.5, pp.465–480, 2000.

[21] C. Wolinski, M. Gokhale, and K. McCabe, “A polymorphous com-
puting fabric,” IEEE Micro, vol.22, no.4, pp.56–68, Sept./Oct. 2002.

[22] K. Tanigawa, T. Kawasaki, and T. Hironaka, “A coarse-grained re-
configurable architecture with low cost configuration data compres-

AMANO: A SURVEY ON DYNAMICALLY RECONFIGURABLE PROCESSORS
3187

sion mechanism,” Proc. ICFPT, pp.311–314, 2003.
[23] http://www.picochip.com/
[24] M.B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B.

Greenwald, H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma,
A. Saraf, M. Seneski, N. Shnidman, V. Strumpen, M. Frank, S.
Amarasinghe, and A. Agarwal, “The RAW microprocessor: A com-
putational fabric for software circuits and general purpose pro-
grams,” IEEE Micro, vol.22, no.2, pp.25–35, March/April 2002.

[25] F. Furtek, E. Hogenauer, and J. Scheuermann, “Interconnecting het-
erogeneous nodes in an adaptive computing machine,” Proc. FPL,
pp.125–134, 2004.

[26] http://www.clearspeed.com/
[27] A. DeHon, “Dynamically programmable gate arrays: A step to-

ward increased computational density,” Proc. Canadian Workshop
on Field Programmable Devices, pp.47–54, 1996.

[28] K. Tanigawa, T. Hironaka, A. Kojima, and N. Yoshida, “PARS ar-
chitecture: A reconfigurable architecture with generalized execu-
tion model — Design and implementation of its prototype proces-
sor,” IEICE Trans. Inf. & Syst., vol.E86-D, no.5, pp.830–840, May
2003.

[29] F. Furtek, E. Hogenauer, and J. Scheuermann, “Interconnecting het-
erogeneous nodes in an adaptive computing machine,” Proc. FPL,
pp.125–134, 2004.

[30] S. Trimberger, D. Carberry, A. Johnson, and J. Wong, “A time-
multiplexed FPGA,” Proc. FCCM, pp.22–28, 1997.

[31] T. Fujii, K. Furuta, M. Motomura, M. Nomura, M. Mizuno, K. Anjo,
K. Wakabayashi, Y. Hirota, Y. Nakazawa, H. Ito, and M. Yamashina,
“A dynamically reconfigurable logic engine with a multi-context
multi-mode unified-cell architecture,” Proc. Intl. Solid-State Circuits
Conf., pp.360–361, 1999.

[32] M. Wirthlin and B. Hutchings, “A dynamic instruction set com-
puter,” Proc. FCCM, pp.99–107, 1995.

[33] R. Witting and P. Chow, “OneChip: An FPGA processor with recon-
figurable logic,” Proc. FCCM, pp.126–135, 1996.

[34] J. Hauser and J. Wawrzynek, “Garp: A MIPS processor with a re-
configurable coprocessor,” Proc. IEEE Symposium on FPGAs for
Custom Computing Machines, pp.12–21, 1997.

[35] S. Hauck, T.W. Fry, M.M. Hosler, and J.P. Kao, “The chimaera re-
configurable functional unit,” Proc. FCCM, pp.87–96, 1997.

[36] X.-P. Ling and H. Amano, “WASMII: A data driven computer on a
virtual hardware,” Proc. FCCM, pp.33–42, 1993.

[37] Y. Kurose, I. Kumata, M. Okabe, H. Hanaki, K. Seno, K. Hasegawa,
H. Ozawa, S. Horiike, T. Wada, S. Arima, K. Taniguchi, K. Ono, H.
Hokazono, T. Hiroi, T. Hirano, and S. Takashima, “A 90 nm embed-
ded DRAM single chip LSI with a 3D graphics, H.264 codec engine,
and a reconfigurable processor,” Hot Chips 16, 2004.

[38] G.J.M. Smit, P.J.M. Havinga, L.T. Smit, P.M. Heysters, and M.A.J.
Rosein, “Dynamic reconfiguration in mobile systems,” Proc. FPL,
pp.171–181, 2002.

[39] C. Ebeling, C. Fisher, G. Xing, M. Shen, and H. Liu, “Implementing
an OFDM receiver on the RaPiD reconfigurable architecture,” Proc.
FPL, pp.21–30, 2003.

[40] S. Abe, Y. Hasegawa, T. Toi, T. Inuo, and H. Amano, “Adaptive com-
puting on the dynamically reconfigurable processor,” Proc. COOL
Chips IX, pp.412–421, April 2006.

[41] Y. Hasegawa, S. Abe, H. Matsutani, H. Amano, K. Anjo, and T.
Awashima, “An adaptive cyptographic accelerator for IPsec on dy-
namically reconfigurable processor,” Proc. FPT, pp.163–172, Dec.
2006.

Hideharu Amano received the Ph.D. de-
gree from Keio University, Japan in 1986. He
is now a Professor in the Department of Infor-
mation and Computer Science, Keio University.
His research insterests include the area of paral-
lel architectures and reconfigurable computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

