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SUMMARY Combined input-crosspoint buffered (CICB) switches re-
lax arbitration timing and provide high-performance switching for packet
switches with high-speed ports. It has been shown that these switches, with
one-cell crosspoint buffer and round-robin arbitration at input and output
ports, provide 100% throughput under uniform traffic. However, under ad-
missible traffic patterns with nonuniform distributions, only weight-based
selection schemes are reported to provide high throughput. This paper pro-
poses a round-robin based arbitration scheme for a CICB packet switch that
provides 100% throughput for several admissible traffic patterns, including
those with uniform and nonuniform distributions, using one-cell crosspoint
buffers and no speedup. The presented scheme uses adaptable-size frames,
where the frame size is determined by the traffic load.
key words: buffered crossbar, stability, adaptable frame, admissible traffic,
crosspoint buffer

1. Introduction

The deployment of higher-speed interconnection technolo-
gies and the advances in digital compression techniques
are resulting in an increased volume of traffic on the Inter-
net. This growth motivates the search for high-capacity and
high-speed switches.

The performance of a switch can be analyzed accord-
ing to the adopted buffering strategy. A switch with buffers∗

at the inputs is named input-buffered (IB) switch. In an IB
switch, the input buffers store packets that cannot be for-
warded to the outputs because of output contention. An
IB switch has better scalability that an output-buffered (OB)
switch as the switch fabric and input buffers in an IB switch
work at the same speed as the external lines (no speedup),
while an OB switch needs to speedup the switch and buffers
N times, where N is the number of input and output ports.
However, IB switches need to resolve input and output con-
tention before cells are forwarded to the outputs. Arbiters at
input and outputs perform contention resolution by means
of a parallel matching process. Furthermore, the switch-
ing performance of an IB switch requires complex matching
schemes to provide high-switching performance. This high
complexity limits the switch port speeds. The requirements
for arbiters to be feasible and to provide a high performance
are: (a) low complexity, (b) fast contention resolution, (c)
fairness, and, (d) high matching efficiency. As an example,
the matching scheme must perform input or output arbitra-
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tion within 6.4 ns in an IB switch with 40 Gbps (OC-768)
ports and 64-byte cells, assuming that input and output arbi-
trations may use up to half of a time slot and that the trans-
mission delays are decreased to negligible amounts (e.g., the
arbiters are implemented in the same chip, in a centralized
way).

Crosspoint buffered (CB) packet switches are an alter-
native to IB switches to relax arbitration timing and to pro-
vide high-performance switching for packet switches with
high-speed ports. The arbitration in a CB switch is only
performed for input selection at each output of the buffered
crossbar, where packets stored in the crosspoint buffers are
considered. However, the number of buffers in a cross-
bar grows in the same order as the number of crosspoints,
O(N2). This makes implementation costly for a large buffer
size or large N. One way to keep the buffer complexity fea-
sible is to use crosspoint buffers that are small in size.

An example of a CB switch was proposed in [1], where
a 2×2 crossbar chip with a crosspoint memory of 16 Kbytes
was implemented to provide an acceptable cell loss. In ad-
dition to the crosspoint buffers, placement of input buffers
can be used to reduce the memory amount at the cross-
points. A variety of combined input-crosspoint buffered
switch (CICB) switches were presented in [2]-[6]. CICB
switches with a single-cell buffer were proposed in [2], [3].
These switches used first-in first output (FIFO) input buffers
at the input ports, or FIFO-CICB switches. The switches
provide a throughput of 91%, where the head-of-line (HOL)
blocking [5] was still present. The FIFO buffers at the in-
puts limit the maximum throughput in that switch. As in
IB switches, the HOL blocking problem for FIFO buffers
can be overcome in CICB switches by using virtual output
queues (VOQs), or VOQ-CICB switches. For the sake of
brevity, we refer to VOQ-CICB switches as CICB switches
in the remainder of this paper.

CICB switches use time efficiently as input and out-
put port selections are performed separately. Back to the
example of the stringent timing, a CICB switch with 40-
Gbps and 64-byte packets can perform input (or output) ar-
bitration within 12.8 ns, therefore, the timing for arbitra-
tion is extended. It is common to find the following prac-
tices in packet switch design. 1) Segmentation of incoming
variable-size packets at the ingress side of a switch to per-
form internal switching with fixed-size packets, or cells, and
re-assembling the packets at the egress side before they de-
part from the switch. 2) Use of VOQs to avoid HOL block-
ing. 3) Use of crossbar fabrics for implementation of packet
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switches because of their non-blocking capability, simplic-
ity, and market availability. This paper follows these prac-
tices.

In CICB switches, high matching efficiency is achieved
with simpler arbitration schemes than those used in buffer-
less crossbars (i.e., IB switches) at the expense of having
to accommodate buffers in the crosspoints. These features
have been shown to be attractive in several switches [6]-
[15].

A CICB switch with timestamp-based arbitration and
VOQs at the input ports showed that the crosspoint-buffer
size can be small if the VOQs are provided with enough
storing capacity [7]. Furthermore, it has been shown that
a CICB switch using one-cell crosspoint buffers, a simple
round-robin arbitration (RR) scheme for input and output
arbitration, and a credit-based flow control provide 100%
throughput for uniform traffic [10]. However, as actual traf-
fic may present nonuniform distributions, it is necessary
to provide arbitration schemes that provide 100% through-
put for admissible traffic. Admissible traffic is defined as:∑

i λi, j ≤ 1, and
∑

j λi, j ≤ 1, where λi, j is the cell arrival rate
at input i for output j.

One way to provide 100% throughput under nonuni-
form traffic patterns is by using weight-based arbitration
schemes, where weights are assigned to input queues pro-
portionally to their occupancy or HOL cell age. It has
been shown that weight-based [13] and priority-based [14]
schemes in buffered crossbars can provide high through-
put under various traffic patterns. Two schemes were pre-
sented in [13]: one is based on the selection of the longest
VOQ occupancy at inputs and round-robin selection at the
outputs; the other scheme is based on the selection of the
oldest cell first (OCF) instead of VOQ occupancy. How-
ever, weight-based schemes need to perform comparisons
among all contending queues, which can be a large number,
thus increasing the implementation complexity. Moreover,
weight-based schemes (e.g., queue-occupancy based) may
starve some queues for very long time to provide more ser-
vice to the congested ones, presenting unfairness. On the
other hand, RR algorithms have been shown to provide fair-
ness and implementation simplicity, as no comparisons are
needed among queues, and high-performance under uniform
traffic [16]. However, schemes based on round-robin selec-
tion have not been shown to provide nearly 100% through-
put under nonuniform traffic patterns with a buffered cross-
bar that have crosspoint buffers of small size. For exam-
ple, it has been shown that a switch using RR needs a large
crosspoint buffer to provide high throughput under admis-
sible unbalanced traffic [17], where the unbalanced traffic
model is a nonuniform traffic pattern [10]. This large buffer
can make the implementation of a switch costly.

A question arises: is it possible to provide an arbi-
tration scheme based on round-robin selection for buffered
crossbars such that a switch can deliver high throughput un-
der admissible traffic with nonuniform distributions, such as
unbalanced traffic, with a small crosspoint buffer size?

Frame-based matching have been shown to have im-
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Fig. 1 N × N buffered crossbar with VOQs.

proved switching performance under different traffic scenar-
ios [18]. However, how to set the frame size is a complex is-
sue. This paper proposes an arbitration scheme for buffered
crossbars, based on round-robin selection, that uses the con-
cept of adaptable-size frame. The frame size is called adapt-
able as it is determined by the amount of service that a queue
receives and by the arrival traffic load. This paper shows that
this arbitration scheme can achieve nearly 100% through-
put under several nonuniform traffic patterns with one-cell
crosspoint buffers. This paper also proves that this switch
retains the high performance, 100% throughput, of simple
round-robin arbitration under uniform traffic.

This paper is organized as follows. Section 2 presents
the switch model under study. Section 3 introduces the pro-
posed arbitration scheme. Section 4 presents a stability anal-
ysis of the proposed arbitration scheme. Section 5 presents
a simulation study of the throughput and delay performance
of the resulting switch under uniform and nonuniform traffic
patterns. Section 6 discusses the properties of the proposed
arbitration scheme. Section 7 presents the conclusions.

2. Combined Input-Crosspoint Buffered Switch Model

Figure 1 shows a buffered crossbar (BC) switch with N in-
puts and outputs. In this switch model, there are N VOQs
at each input. A VOQ at input i, where 0 ≤ i ≤ N − 1, that
stores cells for output j, where 0 ≤ j ≤ N − 1, is denoted as
VOQi, j. A crosspoint (CP) element in the BC that connects
input port i to output port j is denoted as CPi, j. The buffer at
CPi, j is denoted as CPBi, j. The size of CPBi, j, k, is indicated
by the number of cells that can be stored. A credit-based
flow-control mechanism indicates to input i whether CPBi, j
has room available for a cell or not, as described in [10].
For this flow-control mechanism, there is a credit counter
in each VOQ that counts the number of outstanding cells
(i.e., cells sent to CPB). The credit counter increases by one
each time a cell is sent to the CPB. When a cell is forwarded
from the CPB to the output, the crossbar sends a release bit
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to the credit counter, and the credit counter is decreased by
one. To avoid overflow, once the credit counter reaches the
value of k, then the VOQ is inhibited of sending a cell to the
CPB. VOQi, j is said to be eligible for selection if the VOQ
is not empty and the corresponding CPBi, j, at BC, has room
to store a cell.

The round trip (RT ) time, as in [10], is defined as the
sum of the delays of the input arbitration (IA), the transmis-
sion of a cell from an input to the crossbar (d1), the output
arbitration (OA), and the transmission of the flow-control
information back from the crossbar to the input (d2). Figure
1 shows an example of RT for input 0 by showing the trans-
mission delays for d1 and d2, and arbitration times, IA and
OA. Cell and bit alignments are included in the transmission
times. The condition for this switch to avoid underflow, is
such that:

RT = d1 + OA + d2 + IA ≤ k (1)

where k is the crosspoint buffer size, in time slots, which
is equivalent to the number of cells that can be stored. In
other words, the crosspoint buffer must be able to store a
number of cells to keep the buffer busy (i.e., transmitting
cells) during at least one RT time.

3. Round-robin with Adaptable-size Frame (RR-AF)
Arbitration Scheme

The proposed arbitration scheme is round-robin based. Each
time a VOQ (or a CPB at an output) is selected by the ar-
biter, the VOQ gets the right to forward a frame, where a
frame is formed by one or more cells. Each cell of a frame
is dispatched in one time slot. The frame size is determined
by the serviced and unserviced traffic, such that no interven-
tion is needed to select the frame size. We call this arbitra-
tion round-robin with adaptable-size frame (RR-AF). The
amount of serviced (and unserviced) traffic depends on the
experienced load by queues.

In each VOQ (and CPB), there are two counters: a
frame-size counter, FS Ci, j(t), and a current service counter,
CS Ci, j(t). The value of FS Ci, j(t), |FS Ci, j(t)|, indicates
the frame size; that is, the maximum number of cells that
VOQi, j can send in back-to-back time slots to the buffered
crossbar, one cell per time slot. The initial value of
|FS Ci, j(t)| is one cell (i.e., its minimum value).† CS Ci, j(t)
counts the number of serviced cells at time slot t in a frame
corresponding to a VOQ, where the frame size is indicated
by FSC, in a regressive fashion.†† The initial value of
CS Ci, j(t), |CS Ci, j(t)|, is one cell (i.e., its minimum value).

The input arbitration process is as follows. An in-
put arbiter selects an eligible VOQi, j′ in round-robin fash-
ion, starting from the pointer position, j. For the selected

†It is considered that |FS Ci, j(t)| can be as large as needed, al-
though practical results have shown that its value does not reach
large numbers.
††A regressive-fashion count is used in CSC as CSC only con-

siders FSC at the end of a serviced frame.
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Fig. 2 Example of RR-AF among three queues.

VOQi, j′ , if |CS Ci, j′(t)| > 1, |CS Ci, j′(t + 1)| = |CS Ci, j′(t)| −1,
and the input pointer remains at VOQi, j′ , so that this VOQ
has the higher priority for service in the next time slot and
the frame transmission can continue. If |CS Ci, j′ (t)| = 1, the
input pointer is updated to ( j′+1) module N, |FS Ci, j′(t)|
is increased by f cells, and |CS Ci, j′(t)| = |FS Ci, j′ (t)|. For
any other VOQi,h, where h , j′, which is empty or in-
hibited by the flow-control mechanism, and it is positioned
between the pointed VOQi, j and the selected VOQi, j′ : if
|FS Ci,h(t)| > 1, |FS Ci,h(t + 1)| = |FS Ci,h(t)| − 1. If there
exist one or more VOQs that fit the description of VOQi,h at
a given time slot, it is said that those VOQs missed a service
opportunity at that time slot. The increment of the frame
size, done by f cells, is performed each time the previous
complete frame of a VOQ has been serviced. The value of
f has to be chosen as discussed in the following section.

For the sake of clarity, the following pseudo-code de-
scribes the input arbitration scheme, as seen at an input:
-At time slot t, starting from the pointer position j, find the
nearest eligible VOQi, j′ in a round-robin fashion.
-Send the HOL cell from VOQi, j′ to CPBi, j′ time slot t + 1.

-If |CS Ci, j′ (t)| > 1 then
|CS Ci, j′(t + 1)|=|CS Ci, j′(t)| − 1,
the pointer points to j’.

-else |FS Ci, j′(t + 1)| = |FS Ci, j′(t)| + f ,
|CS Ci, j′(t + 1)| = |FS Ci, j′ (t + 1)|,
the pointer points to (j’+1) module N.

-For VOQ(i, h), where j ≤ h < j′ for j < j′, or 0 ≤ h < j′

and j ≤ h ≤ N − 1 for j > j′:
FS Ci,h(t + 1) = FS Ci,h(t) − 1.†††

- Go to the next time slot.
Note that f may be equal to a constant or a variable value.
In general, f assumes the finite value of N, unless otherwise
stated. This assumption is justified in Section 5. The value
of f affects the performance of RR-AF in different traffic
scenarios. Note that when f = 0, RR-AF becomes RR.

The output arbitration works in a similar way to the
input arbitration, considering CPBi, j and the corresponding
counters in each crosspoint. Figure 2 shows an example of

†††Note that when j′ = j, there is no VOQ(i, h).
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RR-AF at an input. Assume that the queues shown in the
figure are the VOQs of input i in a 3× 3 switch. Initially, all
queues have three cells each, as Figure 2.a shows. Assuming
that the FSC for each queue has the initial value of one, a cell
from each queue is served in a round-robin fashion. Then,
each frame is increased by N cells; therefore, the remaining
two cells in each queue are served back-to-back. The cells
leave the input as Figure 2.b shows.
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Fig. 3 Example of VOQs missing opportunities for cell forwarding.

Figure 3 shows an example of the adjustment of FS Ci, j
in an input of a 4 × 4 switch. In this example, VOQi,2
and VOQi,3 have cells (as Figure 3.a shows), one and three,
respectively, and no VOQ is inhibited by the flow-control
mechanism. At time slot t, the pointer of RR-AF points
to VOQi,0. During this time slot, the input arbiter selects
VOQi,2 to send a cell to the buffered crossbar. Then VOQi,0
and VOQi,1 miss an opportunity to send cells as they are
empty and their FSCs are decreased by one at the end of
the time slot. Note that VOQi,0 and VOQi,1 are considered
VOQi,h for this time slot as defined in the description of RR-
AF. Table 3 shows the evolution of the FSC values for each
VOQ during 6 time slots. In the next time slot, t + 1, VOQi,2
is served, and it becomes empty. As the pointer points to
this VOQ, FS Ci,2 is decreased to 1 in the next time slot.
Therefore, the arbiter selects VOQi,3 at time slot t + 2 as the
next VOQ to receive service. Then, the pointer is moved to
VOQi,3. At time slot t + 3, VOQi,3 is again selected. Since
the last frame cell of VOQi,3 is selected, FS Ci,3 is updated
to 2 + N = 2 + 4 = 6. However, since there are no more cells
in this VOQ, FS Ci,3 decreases by one in the subsequent time
slots. In this table, a dash in time slots t + 4 and t + 5 means
that no j is selected. Figure 3.b shows the order in which
cells are served.

Time slot
FSC t t + 1 t + 2 t + 3 t + 4 t + 5

FS Ci,0 2 1 1 1 1 1
FS Ci,1 2 1 1 1 1 1
FS Ci,2 2 2 1 1 1 1
FS Ci,3 2 2 2 6 5 4

Selected j 2 3 3 3 - -
Table 1 Evolution of FSC of example in Figure 3.

4. Stability Study

RR-AF arbitration is based on round-robin and it aims to
improve the throughput under non-uniform traffic. The
attractiveness of RR-AF lies on keeping the property of
round-robin based schemes to deliver stability, and there-
fore, 100% throughput under uniform traffic. We define the
stability of a switch as having the occupancy of VOQi, j finite
as time increases.

In this section, we prove that RR-AF, with f in a gen-
eral sense, provides 100% throughput under admissible traf-
fic, despite the use of the adaptable-size frame concept. We
focus this proof on the input arbitration and VOQs. How-
ever, the results apply to the output arbitration and cross-
point buffers.
In our analysis, we use the following definitions.

Definition 1: A cycle is a service opportunity given to a
VOQ where the number of cells that can be sent in consecu-
tive time slots to the crosspoint can be up to the frame size.
The cycle length is given in the number of time slots that
the VOQ receives service. The start of a cycle is determined
when a VOQ is selected to receive service at time slot t if
that VOQ received service at time t − 1.

Definition 2: The completion service rate Rc
i, j is the rate at

which VOQi, j finishes frame service per cycle.

Definition 3: The miss service rate Rm
i, j is the rate at what

VOQi, j misses service per cycle, including the following
two reasons of the service miss: i) when the number of cells
in a VOQ is smaller than the frame size, and ii) when a VOQ
cannot send cells to the crosspoint for lacking of room in the
crosspoint buffer. Therefore, Rm

i, j = 1 − Rc
i, j.

In addition, we use the following notations:
Ti, j denotes the accumulative total number of time

slots that VOQi, j receives service from t0 to any
time t, where t0 is the starting time and t is any
time slot such that t > t0.

σi, j is the cumulative number of opportunities a VOQ
receives for service from cycle n0, the time before
VOQ receives any service during the switch work-
ing time, to cycle n.

Cinc
i, j is the cumulative number of cycles where FSC in-

creases until cycle n.
Cmin

i, j is the cumulative number of cycles where FSC has
no changed because it has reached the minimum
of one cell.

In this section, for the sake of clarity, we denote the
value of FSC at the end of cycle n as FS Ci, j(n). Note that
FS C(n) is different from FS C(t) in Section 3, where the
first refers to a serving cycle and the second to a time slot,
respectively.

In addition, let E[FS Ci, j(n)] denote the expected frame
size of any VOQ at the end of nth cycle. Since the average
arrival rate is λi, j, let’s λi, jE(x) be the number of cell arrivals
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per cycle (based on Little’s theorem), where E(x) is the aver-
age number of time slots that a VOQ receives service. Also,
we denote the occupancy of a VOQ at the end of cycle n as
Li, j(n).

Under traffic with uniform distribution among all out-
puts, the stability of the switch is directly related to the sta-
bility of of the frame size of each queue. The stability of
RR-AF is then based in the proof of the following claim:

Theorem 1: A CICB switch using RR-AF scheduling al-
gorithm is stable under traffic with uniform distribution.

Proof 1: We assume that all inputs receive traffic indepen-
dently and identically distributed. Therefore, identical ser-
vice is expected in each VOQ.

Since the service that a VOQ (or CPB) receives is de-
termined by FSC, then we define the following lemma.

Lemma 1: In a CICB packet switch using RR-AF as input
arbitration, VOQi, j is stable if FS Ci, j is stable, under uni-
form traffic.

Proof 2: When FS Ci j(n) is stable, Li, j(n) can be either
cases:

(i) limn→∞ Li, j(n) = ∞.
(ii) limn→∞ Li, j(n) = a, where a is a finite value and a ≥ 1.

Let’s consider the case (i) first: in a cycle, the service
to VOQi, j always complete because limn→∞ Li, j(n) = ∞.
FS Ci, j(n) will be increased by f each time. Therefore
FS Ci, j(n) can not be bounded by a finite value, which con-
tradicts with the assumption that FS Ci j(n) is stable.

Now let’s consider the case (ii). limn→∞ Li, j(n) = a
means VOQi, j receives service all the time and Li, j(n) will
never go to infinity. Since we have already proved that case
(i) is impossible, so only case (ii) stands.

Summing up the cases above, if FS C(n) is stable, L(n)
is stable. This claim is established as a sufficient condition.

�

For completeness, we state the following corollary:

Corollary 1: Under uniform traffic, if FS Ci, j(n) is unsta-
ble, then Li, j(n) is unstable.

Proof 3: We prove that the following state is false: if
limn→∞FS Ci, j(n) = ∞ then Li, j(n) is stable. Let’s assume
that the statement is true. There must be that Li, j(n) is
bounded by a finite value b (i.e., limn→∞ L(n) = b) and
therefore FS Ci, j(n) increases its value by f each cycle un-
til it reaches the value of b. At this point FS C(n) cannot
continue increasing its value at each cycle, and therefore
FS Ci, j(n) converges to a finite value b, which contradicts
the initial assumption. Therefore, if FS Ci, j(n) is unstable,
and Li, j(n) cannot be stable.

�

To continue with the proof of Theorem 1, it remains
to prove that FS Ci, j(n) is stable. For this, let’s consider the
behavior of FS Ci, j(n), and by stating the following lemma:

Lemma 2: A CICB switch using RR-AF and under traffic
with uniform distribution has Rm

i, j >
f

f +1 .

Proof 4: The accumulated FS C value from cycles n0 to n,
where n > n0, is

FS Ci, j(n) = FS Ci, j(0)+ fCinc−(σi, j−Cinc
i, j −Cmin

i, j ), (2)

where FS Ci, j(0) is the initial FSC value at n0.
Let’s assume that a frame is completely served at this

cycle. The inequality involving the stationary state follows:

FS Ci, j(0) + fCinc
i, j − (σi, j −Cinc

i, j −Cmin
i, j ) ≤ λi jE(x) + δi, j,

(3)

where δi, j is the discrepancy between the actual and the ex-
pected values. Then, we can express Cinc as:

Cinc
i, j ≤

λi j
Ti, j

σi, j
+ σi, j + δi, j −Cmin

i, j − FS Ci, j(0)

f + 1
. (4)

Recalling that Rc
i, j =

Cinc
i, j

σi, j
and using (4), we have:

Cinc
i, j

σi, j
≤ 1

f + 1
+
λi j

Ti, j

σi, j
+ δi, j −Cmin

i, j − FS Ci, j(0)

σi, j( f + 1)
. (5)

Let’s consider that the switch has been functioning for
a very long period of time, such that σi, j has a very large
value. Therefore, we have:

Rc
i, j ≤

1
f + 1

, (6)

or

Rm
i, j >

f
f + 1

. (7)

�

Now, with Lemma 2 proved, the dynamics of FS C are
used to define the value of the frame size at time cycle n + 1,
FS Ci, j(n + 1), as:

E[FS Ci, j(n + 1)] = (FS Ci, j(n) + f )(1 − Rm
i, j) +

(FS Ci, j(n) − 1)Rm
i, j, (8)

where E[FS Ci, j(n+1)] is the expected value of FSC at cycle
n+1. This equation considers an increment and a decrement
of the FSC with probabilities 1 − Rm

i, j and Rm
i, j, respectively,

at time slot n.
Considering that FS Ci, j(n + 2) = FS Ci, j(n + 1 + 1):

E[FS Ci, j(n+2)]−E[FS Ci, j(n+1)] = f−Rm
i, j( f +1). (9)

According to the definition of stability in the sense of
Lyapunov [19], if E[FS Ci, j(n + l + 1)] − E[FS Ci, j(n + l)] =

−ε < 0, then FS C is stable.



6
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Recalling Rm from Lemma 2, and substituting Rm =
f +µ
f +1 in (7), where 0 < µ < 1, it is clear that:

Rm =
f + µ

f + 1
>

f
f + 1

. (10)

Considering that l = 1 and n can be any service cycle,
we substitute (10) in (9):

E[FS Ci, j(n + 2)] − E[FS Ci, j(n + 1)] = f −
(

f + µ

f + 1
)( f + 1), (11)

which is:

E[FS Ci, j(n + 2)] − E[FS Ci, j(n + 1)] = −µ, (12)

for any cycle n during steady state. This equality shows the
stability of FS C of any VOQ. Therefore, a packet switch
using RR-AF arbitration under uniform traffic is stable.

�

5. Performance Evaluation

In this section, the performance evaluations of two CICB
switches, one using RR-AF arbitration and the other using
RR arbitration, are presented. In addition, an OB switch
is considered in our evaluations. The performance evalua-
tions are produced through computer simulation. The traf-
fic models considered have destinations with uniform and
nonuniform distributions, the latter called unbalanced. Both
models use Bernoulli arrivals. The simulation does not con-
sider the segmentation and re-assembly delays. Simulation
results are obtained with a 95% confidence interval, not
greater than 5% for the average cell delay.

5.1 Uniform Traffic

Figure 4 shows simulation results of two 32 × 32 CICB
switches with RR-AF, RR, and an OB switch under uniform
traffic with Bernoulli arrivals (l = 1) and bursts with average
lengths of 10 and 100 cells (l = 10 and l = 100). The burst
length is exponentially distributed. The buffered crossbars
have crosspoint buffers with a size of one cell each. The
simulation shows that the RR-AF arbitration scheme pro-
vides 100% throughput under uniform traffic.

This figure also shows that the average delay perfor-
mance of RR-AF under Bernoulli arrivals is close to that of
RR, and therefore, to that of an OB switch. The adaptable
frame-size condition in the arbitration does not degrade the
throughput performance, neither does it increase the average
delay under this traffic model. As the RR-AF uses the his-
tory of serviced and unserviced traffic from the queues (i.e.,
VOQ and CPB), the switch practically adapts itself to uni-
form traffic. In addition, Figure 5 shows that RR-AF arbi-
tration offers a similar performance to that of an OB switch
under bursty traffic. The average delay is then proportional
to the burst length and the throughput is unaffected.

RR-AF was simulated with different sizes of k. The
result of the simulation shows that there is no measurable
improvement by increasing the size of k. This result is ex-
pected as the average delay of RR-AF with k = 1 is close
to that of an OB switch. Therefore, the increasing of k neg-
ligibly affects the results. As in [10], the size of k needs to
be determined by the RT time. As the size of k does not
affect the performance of RR-AF, k is assigned the value of
one cell, (i.e., k = 1), in the remainder of the paper, unless
otherwise stated.

Another important point is to observe how the incre-
ment of the frame size, f , affects the switch performance
under uniform traffic. The value of f has been assumed to be
N until this point. With RR arbitration, i.e., f =0, switches
deliver high throughput and an average cell delay that are
independent of the switch size, under uniform traffic [10]. It
is interesting to see if this property holds for RR-AF. Figure
5 shows the average delay of RR-AF under different switch
sizes for f = 1 and f = N. The values of the average cell de-
lay for all switches show no difference for input loads below
0.8, therefore, those values are not shown.

This figure shows that for small switch sizes (e.g., N =

{4, 8}), it is more efficient to have a small f value, (e.g.,
f = 1). As the switch size increases, it is more efficient
to use large f values (e.g., f = N).

We also tested RR-AF under overloading conditions
to observe fairness among inputs. We simulated an 8 × 8
switch, where inputs 0 to 6 received an input load of 0.1 and
input 7 received an input load of 0.5. All this traffic was cre-
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Input Input Load Service Load
0 0.1 0.1
1 0.1 0.1
2 0.1 0.1
3 0.1 0.1
4 0.1 0.1
5 0.1 0.1
6 0.1 0.1
7 0.5 0.3

Table 2 Sharing in a overloaded switch using RRAF.

ated with a uniform distribution. In this way, the switch was
overloaded. Table 2 shows the simulation results. These re-
sults show that inputs 0 to 6 received a service load of 0.1,
and input 7 received a service load of 0.3. In this way, RR-
FA presented a fair distribution of bandwidth among all in-
puts and provided the available bandwidth to the overloaded
input 7 without affecting the service for the others.

5.2 Unbalanced Traffic

RR-AF and RR arbitrations were simulated under a nonuni-
form traffic model, the unbalanced traffic model [10]. The
unbalanced traffic model uses a probability, w, as the frac-
tion of input load directed to a single predetermined output,
while the rest of the input load is directed to all outputs with
uniform distribution. Let us consider input port s, output
port d, and the offered input load for each input port ρ. The
traffic load from input port s to output port d, ρs,d is given
by,

ρs,d =

{
ρ
(
w + 1−w

N

)
if s = d

ρ 1−w
N otherwise.

(13)

When w = 0, the offered traffic is uniform. On the other
hand, when w = 1, it is completely completely directional,
from input s to output d, where s = d.

Two combined input-crosspoint buffered switches of
size N = 32, one with RR-AF and the other with RR, were
simulated under unbalanced traffic. The switch with RR-
AF uses k = 1 and for comparison, RR uses k = 1 and
k = N = 32. Figure 6 shows that RR-AF, with k = 1
and f = N, provides well above 99% throughput under the
complete range of w. It is considered that this throughput
is nearly 100% for practical purposes. These results show
that RR-AF with k = 1 outperforms RR with k = 32. This
results in a feasible implementation of buffered crossbars as
the size of the crosspoint buffer is reduced. In this example,
RR, with k = 32 and a cell size of 64 bytes, would need 16
Mb of memory, while RR-AF, with k = 1, would need 512
Kb of memory. Furthermore, the switch with RR-AF can
provide nearly 100% throughput under unbalanced traffic.

The high throughput of RR-AF is the product of in-
creasing or decreasing service for a queue in proportion to
its received and missed service, respectively. RR-AF en-
sures service to the queues with high load by increasing the
frame size, and to the other queues by using round-robin
selection. In addition, the decreasing policy (i.e., FSC is
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Fig. 7 Throughput performance of a 32x32 switch for different f values.

decremented by one unit each time the VOQ misses service)
for the frame-size counter ensures that the counter does not
increase infinitely, as observed experimentally.

Figure 7 shows a 32 × 32 switch with RR-AF under
unbalanced traffic. This graph shows optimal values of f to
achieve a high throughput. When f = 1, the switch does
not reach 99% throughput. The values of f to achieve over
99% throughput are f ≥ 8 in this switch. The throughput
is the nearest to 100% when f = N/2 = 16. Note that the
lower throughput value along the w range is the one con-
sidered. Therefore, although the graph shows some small
differences in the measured throughput for some values of w
with different values for f , it is considered that when f ≥ 8
the throughput performance is similar for a 32 × 32 switch.

To illustrate the dependency of N, Figure 8 shows
the throughput of RR-AF for different switch sizes, N =

{4, 8, 16, 32, 64}, with f = 1 and f = N.
As expected, RR-AF with f = 1 resembles RR.

Therefore, the throughput is generally low for medium-to-
large switch sizes under this traffic type. Switches with
N = {8, 16, 32, 64} have a throughput below 99% when
f = 1. However, those switches have nearly 100% through-
put when f = N. Note that contrary to the case of uniform
traffic, an 8 × 8 switch delivers a low performance when
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f = 1 under unbalanced traffic.† In general, the through-
put of RR-AF improves for medium-to-large switches with
large f values (e.g., f = {N/2,N}).

5.3 Chang’s and asymmetric traffic models

RR-Af with f = N, is also tested under other nonuniform
traffic models: Chang’s [20] and asymmetric [21].

Chang’s traffic model can be defined as ρ = 0 for i =

j and ρ = 1
N−1 , otherwise. The asymmetric traffic model

can be defined as having different load for each input-output
pair, such as ρi,(i+ j) mod N = ρa j, where a0 = 0, a1 = (r −
1)/(rN − 1), a j = a1r j−1 ∀ j , 0, and ρi, j/ρ(i+1) mod N , j = r,
∀i , 0, (i + 1) mod N , 0, and r = (100 : 1)−1/(N−2).

Figure 9 shows the average cell delay of a 32 × 32
switch using RR-AF under and the average cell delay of an
OB switch under these traffic models. As the figure shows,
the throughput of RR-AF is 100% under Chang’s and Asym-
metric traffic models. The average delay under Chang’s traf-
fic is larger than that of the asymmetric’s traffic; however,
the difference is small. RR-AF adapts the frame size to the
different loads offered to each input and output. RR-AF has
an average delay close to that of an OB switch under these
traffic models.

To observe the impact of f under different switch sizes,
we simulated RR-AF under N = {4, 8, 16, 32} and different
f values, f = {0, ..., 2N}. Note that when f = 0, the RR-
AF becomes equivalent to RR. This value was considered
here as it makes the switch deliver lower average delay un-
der Chang’s traffic in a 4 × 4 switch. Figure 10 shows the
simulation results with the smallest and largest values of f .
These results show that switches with small N deliver higher
performance when f is small. As N increases, the switch
performance becomes independent of f .

Figure 11 shows the simulation of switches with dif-
ferent N and different f values. Similar to the results ex-
perienced under Chang’s traffic, RR-AF needs a small f for
small switches (N = {4, 8}) and the performance becomes
less sensitive to f for larger switches. In this way, f can

†For an 8 × 8 switch, the performance is optimal under both
uniform and unbalanced traffic patterns when f = {2, 4}.
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ent N and f .

be chosen equal to N for a 32 × 32 switch to provide high
switching performance under any of the traffic models con-
sidered here.

6. Properties of RR-AF

Under uniform traffic, the frame counters of the queues are
not expected to increase largely because of the cell distribu-
tion. The frame’s size increasing and decreasing processes
are balanced for all queues. This results in an arbitration that
behaves as RR.
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Under unbalanced traffic, some queues are expected to
have heavier loads than others. The queues with large oc-
cupancies have a higher probability of servicing a complete
frame in each opportunity of service, and of having their
frame size increased, consequently. The queues with low
occupancy tend to have a frame size rather small because
they miss service opportunities. This different behavior of
frame sizes results in higher service rates for queues with a
larger number of arrivals than those for queues with a small
number of arrivals. Moreover, the round-robin policy en-
sures that all queues receive service.

To give an idea of the frame size in the presented exper-
iments, the frame size was allowed to take maximum values
of 64 and 256 (when N = 32), and the performance was
not affected under any traffic type. In this way, input-output
pairs (e.g., i − j) that received large amounts of traffic for
long period of times do not affect the starting-service latency
for newly created connections (i.e., i− j′, where j′ , j) when
using a limited frame size.

6.1 Complexity

The implementation complexity of RR-AF is low because
of the following reasons: 1) a single-cell crosspoint buffer
is sufficient to make the switch deliver high performance;
2) the arbitration scheme is round-robin based. RR-AF per-
forms no comparisons among different queues. Arbiters do
not differentiate queues as there are no priorities or weights
considered.

The provision of FSC and CSC counters to a queue is
the major hardware addition compared to the implementa-
tion of RR. Figure 12 shows the implementation of RR-AF
for an input arbiter. An output arbiter would be implemented
in similar way, where the crosspoint buffers send a request
to the round-robin arbiter instead of the VOQs. A request,
represented as the number of outstanding cells in the frame,
enters the round-robin arbiter. The request is different from
zero if the non-empty flag (NFi, j) is one; NFi, j is one when
the VOQ is non-empty and CPBi, j has available room for
another cell.

The round-robin arbiter performs the selection, consid-
ering the pointer value and the existing requests. The arbiter
outputs the index of the VOQ (or j) that is selected and as-

serts the update enable (UE) signal if the CSC counter of
the selected VOQ equals one. The pointer is updated with
the selected VOQ index as described by the RR-AF scheme.
If the UE signal is 1, the pointer updates its value to ( j + 1)
mod N. Otherwise, the updated pointer value is j. The value
of FS Ci, j counter is updated by a logic block (i.e., FSC up-
date logic).

The FSC, CSC counters, and arbiter pointers are up-
dated at most once in a time slot. As the figure shows, the
FSC update, if this occurs, is processed at the same time as
the pointer update takes place. Therefore, the time complex-
ity of RR-AF is equivalent to that of a simple RR.

7. Conclusions

This paper introduced a novel arbitration scheme for input-
crosspoint buffered crossbars based in round-robin selec-
tion. This scheme uses the concept of adaptable-size frame,
where the frame size depends on the service received by a
queue.

This paper proved that the round-robin scheme with
adaptable-size frame arbitration delivers 100% throughput
under uniform traffic. The presented simulation results show
that this throughput is achieved with low average cell delay
and that the analytical result can be extended to nonuniform
traffic patterns, including the unbalanced traffic model.

The results also show that a buffered crossbar with one-
cell crosspoint buffers is sufficient to provide such through-
put with the proposed round-robin based arbitration. We
showed that a 32 × 32 CICB switch using RR-AF and 512
Kb of memory would deliver a higher performance than a
CICB switch using RR and 16 Mb of memory, therefore, re-
ducing the required memory by a factor of N (e.g., 32 in this
case).

This arbitration scheme does not need to compare the
status of different queues, such as weights or priorities, as it
is based on simple round-robin. Furthermore, the effect of
the frame increase under different values, for uniform and
unbalanced traffic models, was studied with several switch
sizes.

In addition to high throughput, this switch provides
timing relaxation that allows high-speed arbitration and
scalability.
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