
2292
IEICE TRANS. COMMUN., VOL.E89–B, NO.9 SEPTEMBER 2006

INVITED PAPER Special Section on Networking Technologies for Overlay Networks

Towards a Service Oriented Internet

Jaideep CHANDRASHEKAR†a), Zhi-Li ZHANG††b), Zhenhai DUAN†††c),
and Y. Thomas HOU††††d), Nonmembers

SUMMARY Today’s Internet remains faithful to its original design that
dates back more than two decades. In spite of tremendous diversity in users,
as well as the sheer variety of applications that it supports, it still provides
a single, basic, service offering—unicast packet delivery. While this legacy
architecture seemed adequate till recently, it cannot support the require-
ments of newer services and applications which are demanded by the grow-
ing, and increasingly sophisticated, user population. The traditional way to
solve this impasse has been by using overlay networks to address individual
requirements. This does not address the fundamental, underlying problem,
i.e., the ossification of the Internet architecture. In this paper, we describe
the design of a new Service Oriented Internet framework that enables the
flexible and effective deployment of new applications and services. The
framework we describe utilizes the existing IP network and presents the
abstraction of a service layer that enables communication between service
end-points and can better support requirements such as availability, robust-
ness, mobility, etc., that are demanded by the newly emerging applications
and services.
key words: service-oriented, overlays, architecture

1. Introduction

Over the course of the last two decades, the Internet has been
transformed from an academic network to a ubiquitous com-
munication infrastructure. Today’s Internet is very much
an integral part of society, underlying many key commer-
cial, cultural and social activities. In stark contrast to this
transformation, the architectural design of the Internet re-
main unchanged since its beginning. As was the case when
first deployed, the Internet today supports the same (single)
basic communication paradigm: best-effort unicast packet
delivery, or stated differently—packet delivery between two
fixed end interfaces. While this basic design has so far en-
dured, this is no longer the case; the requirements of emerg-
ing services and applications are very hard to support (given
the design). The tension arises from the fact that these new
applications, which are quite hard to deploy (effectively)
with today’s Internet architecture, are crucial for the future
growth and evolution of the Internet. The traditional com-
munication paradigm, i.e., that of communication between
fixed end hosts is somewhat outdated. For instance, when

Manuscript received January 23, 2006.
†The author is with Intel Research/CTL, USA.
††The author is with University of Minnesota, USA.
†††The author is with Florida State University, USA.
††††The author is with Virginia Tech, USA.
a) E-mail: jaideep.chandrashekar@intel.com
b) E-mail: zhzhang@cs.umn.edu
c) E-mail: duan@cs.fsu.edu
d) E-mail: thou@vt.edu

DOI: 10.1093/ietcom/e89–b.9.2292

people perform a search engine lookup, say using Google,
any of the thousands of Google servers can be be pressed
into service; the identity of the particular server is irrelevant
from the user’s point of view. Thus, we argue that com-
munication between service end-points is a more powerful
paradigm than the traditional model.

However, supporting such a paradigm is very hard with
today’s Internet. Consequently, application requirements
such as availability, reliability, mobility, quality of service,
etc., are incredibly difficult to support. Take for instance the
notion of availability in the context of a video streaming ap-
plication. Supporting availability, in this case, requires the
ability to migrate a streaming session to a different server
during the lifetime of the video session. However, in the
existing design, a binding between the client and a server
needs to be established before any video frames are trans-
ferred. If the particular server were to fail, the session will
abort, even though there may be other available servers that
can serve up the same video frames.

The traditional way to address such requirements has
been to deploy various ad-hoc mechanisms piecemeal. Ex-
amples include the deployment of content distribution net-
works, application specific overlay networks, etc. However,
it is important to realize that these approaches are intended
as a short term solution and do not address the underlying
problem.

In this paper, we present a new architecture, which we
term the “Service Oriented Internet” or SOI, that is best de-
scribed as an efficient, generic, unifying framework to easily
allow new services and applications to be deployed. SOI
uses the underlying IP fabric to actually carry the bits and
presents the abstraction of a service layer, that forwards
packets between service end points. In the design of the
SOI architecture, we introduce three key abstractions: (1)
the notion of a service cloud, which is simply a collection of
service entities that are deployed by a service provider. The
simplest example would be a cooperating hierarchy of web
proxy servers; (2) a new two-level, location-independent ad-
dressing scheme; and (3) a new abstract service layer that
is used to forward packets (to the appropriate service end-
points).

2. Service Oriented Internet

Overlay networks have emerged as an effective way to im-
plement functionality which otherwise would require signif-

Copyright c© 2006 The Institute of Electronics, Information and Communication Engineers



CHANDRASHEKAR et al.: TOWARDS A SERVICE ORIENTED INTERNET
2293

Fig. 1 Illustration of the SOI architecture.

icant change at the IP layer; they can be realized with very
little overhead or infrastructure support. A set of end-nodes
can form an overlay network without any additional support
from the underlying network (or the ISP’s carrying traffic
between the nodes). However, this transparency comes at
some cost. Firstly, by being completely oblivious of the un-
derlying network layer, there are certain inefficiencies that
cannot be avoided; very often, an overlay neighbor could
actually be very far away in terms of the IP level network.
Second, in most cases, overlays provide services (or realize
applications) that are mandated on a well behaved underly-
ing network. Presently, ISP’s do not differentiate between
traffic forwarded over an overlay and other traffic sharing
the same network. Providing handles for the network to
identify, and differentiate, packets carried over an overlay,
is important from the view of supporting QoS requirements.
Third, if we were to imagine a number of overlay networks
on the same underlying network, each of them would have
to replicate some common functions. For example, consider
a situation where overlay A provides a streaming video ser-
vice and overlay B is used for multicast video conferenc-
ing. Both overlays deliver real-time traffic; hence, both are
likely to perform active measurements to support path se-
lection and forwarding. Clearly, this replication is clearly
inefficient. The obvious improvement is to decouple the
active measurement component from the overlay operation
and allow the different overlays to share a common mea-
surement infrastructure. A similar idea has been discussed
in [1], where the authors advocate a routing underlay that
takes over the common tasks.

The underlying idea that lies behind our architecture
is that services can be deployed as overlays, but to address
the performance limitations of the overlays and to ensure
support for the requirements of newer applications, we also
need an underlying infrastructure which addresses the spe-
cific shortcomings of the traditional overlay paradigm. In
the rest of the paper, we focus on the details of such an in-
frastructure.

We distinguish between data transport networks,
which roughly correspond to the existing autonomous sys-
tems (and the IP networks), and service overlay networks

(SON), each of which provides a well defined service (or
set of services). The role of the data transport networks is to
provide bit-pipes to the service overlay networks that ride on
top. On the other hand, service overlay networks, provide
specific value-added services to subscribers. For instance,
we can think of VoIP service clouds, or content distribu-
tion clouds (think of the entire Akamai infrastructure as a
cloud). Each of these are operated by service providers and
generally have several distributed locations at which they
interface with the data networks. Requests from clients are
routed over the data network to the nearest (or most appro-
priate) point of entry into a particular service cloud, and
subsequently served by some host inside the cloud. This
high level description is depicted in Fig. 1, with the data
networks shown towards the bottom of the figure and the
service clouds near the top. Note that the framework de-
fines how data is routed to the border of the service clouds,
but not how it is handled (or transported) internally. Ser-
vice providers can use arbitrary mechanisms that best satisfy
their goals and purposes.

The logical decoupling between the data network do-
mains and the service networks allows the independent evo-
lution of each. This logical independence is an artifact of
completely separating the addressing, routing and forward-
ing mechanisms in the two realms. A service cloud could
implement each of these mechanisms as best suits its needs.
There are three elements that are key to this separation,
namely: a new naming and addressing scheme that is a sig-
nificant departure from the existing IP addressing scheme,
service gateways (SG), and service points-of-presence (S-
PoP).

2.1 Key Abstractions

The SOI architecture is built on top of the existing IP in-
frastructure, and provides a common platform for flexibly
deploying new Internet services and effectively supporting
their diverse requirements. The architecture is based on
three key abstractions, described below.

Service Clouds are collections of service entities (servers,
proxies, caches, etc.) that are deployed over the Internet



2294
IEICE TRANS. COMMUN., VOL.E89–B, NO.9 SEPTEMBER 2006

to collectively and collaboratively provide a set of applica-
tion/information services to users. Each of these clouds is a
“virtual service overlay network” that is commonly owned
and managed by a single provider or a consortium of appli-
cation service providers, and it relies on the underlying IP
data network domains for data delivery across the Internet†.
Each service cloud has one or more entities that interface
with the infrastructure; we refer to these as service points-
of-presence (S-PoPs). Objects enter or exit a service cloud
only via its S-PoPs.

Service-oriented addressing scheme: The central idea of
the SOI architecture is a new two-level addressing scheme
that provides location-independent identification of service
clouds and objects within these clouds. Each service cloud
is uniquely identified by a fixed-length service id (sid); and
an object within a service cloud is specified by a (generally
variable-length) object id (oid). The syntax and semantics
of sid are globally defined and centrally administered, just
like today’s IP addresses (or rather network prefixes). On
the other hand, the syntax and semantics of oid are defined
by individual service providers (the mapping to host is scope
limited to the service cloud), and thus are service-specific.

Service (routing/delivery) layer: Underlying the SOI
architecture is a new service layer abstraction that, logi-
cally, sits just above the IP network layer in the protocol
stack. Corresponding to the two-level 〈sid, oid〉 addressing
scheme, the service layer introduces two new network ele-
ments with distinct functions: service gateways (SGs) and
service points-of-presence (S-PoPs). SGs can be viewed as
extensions of the underlying network domains, and are typ-
ically deployed at the edge of a network domain. They are
responsible for routing and service delivery across network
domains, i.e., overlay forwarding is performed by SGs using
the sid in the address††. S-PoPs are the interface points of a
service cloud with the network domains, and are thus logi-
cally a part of the service cloud (and hence are oid-aware).
They are responsible for delivering objects within a service
cloud. SGs and S-PoPs work together to support flexible
end to end delivery.

Data destined for any particular service cloud must
necessarily transit at least one SG (and S-PoP). Note that
the former is owned and operated by individual network do-
mains. This provides a way for the network domain to ac-
curately identify and track traffic meant for the overlay net-
works.

3. SOI Architecture

In this section, we present the key components of the pro-
posed SOI architecture, describe basic operations and walk
through a typical transaction.

3.1 Addressing and Name Resolution

The name resolution stage returns return a two level
〈sid, oid〉 address. A key observation in the design is that

the two identifiers are resolved independently and at differ-
ent locations. Seen at a very high level, the sid mapping is
performed external to the service cloud, while the oid map-
ping is performed inside the cloud. The advantages of this
will become clear shortly.

Under the proposed SOI architecture, each applica-
tion/information service provider who wants to deploy ser-
vices over the Internet is assigned a single fixed-length
(32 bit) service id, which is administered by a central au-
thority. This is a departure from the IP addressing scheme,
where a “cloud” (network domain) is assigned a contigu-
ous range of addresses (address block or network prefix).
Each service cloud can be roughly thought of as corre-
sponding to an organization currently having a second tier
(e.g., yahoo.com, msn.com, real.com) or third tier (e.g.,
shop.msn.com, nu.ac.cn) domain name†††. Such domain
names will be retained in our SOI architecture as the names
of service clouds, and are referred to as service names. To
resolve the service name of a service cloud to its assigned
sid, we can reuse the current DNS infrastructure (extending
it so that names resolve to sid’s), or build a similar service
name resolution system. The specific details of the service
name resolution are out of the scope of this paper. It is im-
portant to note that caching the mappings locally requires
only a small amount of memory—the number of service
names is significantly smaller than the number of domain
names in the current DNS system, and moreover, service-
name-to-sid mappings are essentially static. Hence, service
name resolution can be done with very little overhead (on
the shared infrastructure).

In contrast to the sid space, the oid space is defined
by each individual service cloud, with its own syntax and
semantics. This gives each service cloud the most flexibil-
ity and efficiency for defining its own object naming and
addressing system. It also offloads many service-specific
functions (e.g., object resolution, internal routing, load bal-
ancing, etc.) to individual service clouds, which leads to a
socially optimal solution. Providers that want more compli-
cated mechanisms to perform the name resolution are free
to do so, but only within the cloud. In addition, hiding the
syntax and semantics of a service cloud’s oid space from
outsiders makes it more secure. This makes it very difficult
for an attacker to lanch a DoS attack targeting a particular
server, since the corresponding oid can be dynamically re-
mapped.

Service Layer: For convenience, we refer to a service-
layer protocol data unit as a service object. Figure 2 shows
an abstract representation of a service object header. The

†Note that the separation between data transport domains and
service clouds is purely logical. It is possible, though not required,
that the service cloud forwards data internally over the existing IP
infrastructure.
††Note that the IP address is still used to forward packets be-

tween neighboring SG’s.
†††This is not a strict requirement, and is just a suggestion that

reflects our belief that most current service providers fall into these
categories.



CHANDRASHEKAR et al.: TOWARDS A SERVICE ORIENTED INTERNET
2295

Fig. 2 Service object header format.

Fig. 3 Service layer and the SOI protocol stack.

header is partitioned into two logical sections, the sid part
and oid part. Associated with both destination sid (dst sid)
and source sid (src sid) is an additional 32-bit service mod-
ifier, which is defined by a service cloud to influence the
forwarding of service objects. The service modifier con-
tains two types of information: S-PoP attribute and service
attribute (see Fig. 5 for an example). The S-PoP attribute
describes the properties of S-PoPs, and in general contains
two sub-fields, an S-PoP level and an S-PoP id. For exam-
ple, using S-PoP attributes, a service cloud can organize its
S-PoPs in a certain hierarchy to best meet its needs†. The
service attributes are used to indicate a preference for differ-
ent service classes, next hops, etc. Multiple service attribute
sub-fields can be defined as appropriate. We illustrate this
with an example in Sect. 4.

When a service object is generated, both the sid and oid
parts of the header are filled appropriately by an application
program (e.g., a browser). Figure 3 shows the relative posi-
tion of the service layer in the protocol stack. Also shown
are the layers of the stack that are interpreted by the different
entities along the path. This should clarify that the service
layer lies above the IP layer, and is independent of it. The
service layer consists of two sub-layers: the common service
gateway layer where only sid’s dictate how objects are for-
warded among service clouds; and the service-specific de-
livery layer where oid’s are used in the forwarding decision
(inside a service cloud).

Service Gateway: The data plane function of an SG is to
forward a service object to an appropriate next-hop on the
path to the destined service cloud (either an adjacent S-PoP,
or another SG), using the dst sid (or perhaps both dst sid
and src sid) and associated service modifier(s). For this

purpose, each SG maintains a service routing table (similar
to an IP routing table), constructed by participating in the
service gateway routing protocol (SGRP), the control plane
function of an SG. The service routing table contains map-
pings from a dst sid (and, if specified, an associated service
modifier) to a next-hop SG/S-PoP (specified by IP address).
From operational stand point of view, we expect the SGs to
be deployed by the Autonomous Systems.

Service Point-of-Presence: An S-PoP plays two major
roles: 1) it cooperates with SGs to route and forward ser-
vice objects to/from the service cloud it proxies for; and 2)
it cooperates with other S-PoPs in the service cloud to route
and forward a service object within the service cloud. The
latter role is determined by the service-specific routing pro-
tocol and forwarding mechanisms employed by the service
cloud. The internal operation of the service cloud will not
be addressed here, but an example is discussed in Sect. 4.

Service Gateway Routing Protocol: This protocol is re-
sponsible for constructing the forwarding (or service rout-
ing) tables on all the Service Gateways. The protocol is sim-
ilar in scope to the Border Gateway Protocol [2] in the sense
that it distributes “reachability.” BGP distributes reachabil-
ity to end network domains identified by prefixes; in con-
trast, SGRP distributes reachability to service clouds, iden-
tified by service id’s. While we use BGP as a starting point
in the design of SGRP, we incorporate further design princi-
ples that help avoid some of the associated problems: slow
convergence, lack of support for traffic engineering, exces-
sive routing churn, scalability, etc. In the rest of this section,
we briefly describe the key aspects of SGRP.

At a very high level, SGRP involves three distinct oper-
ations: first, when a new S-PoP is deployed, it needs to reg-
ister with nearby SG(s); this inserts a direct entry in the SG’s
forwarding tables; second, the SG that receives the registra-
tion can now deliver packets meant for the particular service
cloud and this mapping—between the SG and the service id
corresponding to the newly deployed S-PoP—needs to be
propagated to all the other SG’s; and third, the SG’s ex-
change topology state messages to construct and maintain
a graph of SG’s over which SGRP messages are exchanged.
In the following, we discuss each of these distinct opera-
tions.

S-PoP registration and advertisement: When a new S-
PoP of a service cloud is deployed in the Internet, it must
announce its presence so that SG’s may begin to direct traffic
(specifically service pdu’s) to the said S-PoP. This is done by
the S-PoP registering itself with SGs that it is adjacent to††.
In the registration process, the S-PoP will tell the nearby

†This is but one possible interpretation. Since the SG does not
need to understand the exact semantics of the modifiers, the service
cloud can define them appropriately.
††This adjacency is logical and not physical; messages are ex-

changed over the IP network and might go over multiple router
hops. However, it is reasonable to expect that service providers
will deploy S-PoP’s near existing SG’s.



2296
IEICE TRANS. COMMUN., VOL.E89–B, NO.9 SEPTEMBER 2006

SGs about two things: the sid of the service cloud it is prox-
ying, and a set of supported service modifiers. The latter de-
scribe specific capabilities satisfied by the said S-PoP (dis-
tinct S-PoPs may support different capabilities for the same
service). For instance, consider the example of accessing
web content over a cellphone. Clearly, the content will have
to be customized to the (minimal) cellphone interface and
requires client specific behavior from the web server. Ser-
vice modifiers can be used to differentiate between S-PoP’s
that can serve content to cellphones, and those that cannot.
Then, requests originating from cellphones can be directed
to the appropriate servers. Thus, the S-PoP registration cre-
ates a mapping between the SG, the service id of the cloud
and the service modifiers. Service pdu’s will be forwarded
to the S-PoP, by the SG, only if the service modifiers match
the published capabilities.

Importantly, the service modifiers are opaque to the
SGs, i.e., SGs do not associate any semantic meaning with
the registered modifiers. They simply treat them as “pat-
terns,” or regular expressions, that are matched as a con-
dition to forward packets to a particular S-PoP. The single
exception to this case is the null service modifier: this par-
ticular expression matches everything, i.e., any traffic (des-
tined to the service cloud) can be forwarded to an S-PoP that
publishes a null service modifier. This “opaqueness” allows
service providers to associate a range of forwarding behav-
iors using distinct modifiers.

Service reachability propagation: After the initial regis-
tration, the SGs have a forwarding pointer to the local S-PoP.
This information is then disseminated to the other SGs in the
network using service reachability advertisements. SRA’s
are constructed based on the registration information from
the adjacent S-PoPs. Simply, an SRA specifies all the ser-
vice clouds that can be reached via a particular SG (which
originates the SRA). In other words, it contains an IP ad-
dress (for the SG) and a set of service id’s. SRAs are dis-
seminated over the “network” of SGs using a form of reli-
able flooding; each SRA received at an SG inserts a pointer
into the SG’s (service) forwarding table, corresponding to a
set of service ids being reachable through the neighbor the
SRA was received from. Importantly, an SG may receive the
SRA’s for a service id from multiple neighbors; this causes
multiple entries, perhaps supporting distinct service modi-
fiers, to be inserted into the SG’s forwarding table. An SG
forwards SRAs that it receives, perhaps after aggregating (or
even filtering) them. This form of information hiding is key
in reducing the number of updates to be sent: an SG with
multiple paths to reach a service cloud need not generate
updates for changes to few of them; it needs to do so only
when it knows of no other paths.

Importantly, we decouple reachability, as described by
particular SRAs, from topology. The former simply qual-
ifies a particular S-PoP (and the adjacent SG) to receive
traffic for a service id, while the latter is concerned with
the existence of a path to the SG in question. Reachabil-
ity and topology, which are conflated in the case of BGP,

change at very different time scales: topology changes are
likely to result from failures (and repairs) between ASes,
while reachability changes are due to S-PoP failures or ad-
ministrative changes. Recent studies of global BGP rout-
ing reveal that the large majority of updates correspond to
events of the latter class, while link failures between ASes
is a far rarer event. Significantly, as is also pointed out in
[3], decoupling these notions significantly decreases churn.
The implicit principle in SGRP is to aggressively distribute
reachability changes; service reachability messages dissem-
inated using a form of reliable flooding. Topology changes
are distributed more conservatively.

SG topology map construction: Messages and data objects
in the service layer, i.e., between SG’s, are forwarded over a
logical SG graph; logical because SGs bear IP addresses and
are organized into an overlay network on top of the IP net-
work. SG’s establish adjacencies by exchanging messages
with each other. Note that since these may be over multi-
ple IP hops, the necessary address information may have to
be distributed in other ways: either statically configured or
distributed using BGP announcements. However, once SGs
establish the necessary adjacencies, they exchange topology
state advertisements to construct and maintain the logical
SG graph. The connectivity information described by these
messages will include, in addition to the status of the adja-
cency, attributes describing dynamic properties such as de-
lay, effective bandwidth, etc. Importantly, and in contrast to
BGP, the protocol is soft-state; periodic messages update the
dynamic attributes of the adjacencies.

A very important consideration in designing the proto-
col are the existing commercial relationships between ASes.
A consequence of this is that an SG might have only an
approximate topology map. This may lead to inefficient
choices when the end SG, for a packet being forwarded, is
far away. However, this is less of a concern when S-PoP’s
are widely deployed and there is a good chance of a nearby
S-PoP being available to receive the packets.

4. Example

In this section we use an example, namely multimedia con-
tent distribution, to demonstrate the key features of our ar-
chitecture. This example is particularly relevant because the
service provider must support a range of service-types and
object instances to be delivered over the same infrastructure.
In addition, such a service would benefit from flexibility in
the SGs to forward traffic over a set of next-hops. The ser-
vice modifiers that we describe allow just such a capability;
next-hops may be associated with specific modifiers, or al-
ternatively, an SG may forward the same packet to multiple
nexthops (to support swarm style forwarding). In general,
the service provide may dictate specific forwarding behav-
ior (by controlling how service modifiers are announced by
S-PoPs).

Consider a service cloud that provides multimedia con-
tent delivery services. To support such an application effec-



CHANDRASHEKAR et al.: TOWARDS A SERVICE ORIENTED INTERNET
2297

Fig. 4 A three-level S-PoP hierarchy.

Fig. 5 Service modifier.

tively, the service cloud deploys a collection of S-PoPs orga-
nized in a 3-level hierarchy as depicted in Fig. 4. At the top
of the hierarchy (level 1) are central S-PoPs, which are the
front-ends to replicated central servers with a complete ob-
ject repository. The intermediate level (level 2) are regional
S-PoPs which are the front-ends to proxy servers that have
a partially replicated object repository. At the bottom level
(level 3) are local S-PoPs which are the front-ends for local
cache servers. The local cache servers are only deployed in-
side network domains with large user bases. Hence not all
level-2 S-PoPs have level-3 S-PoPs attached. The service
cloud uses a one-byte field to specify the S-PoP attribute
(see Fig. 5), of which a 2-bit sub-field indicates the S-PoP
level and a 6-bit sub-field indicates the S-PoP id within a
level. S-PoP level 0 and S-PoP id 0 are default values, which
are used to represent wild-card matching.

To efficiently deliver its content using the S-PoP hi-
erarchy, the service cloud defines a 2-bit service attribute
sub-field to specify the cacheability of its content: popu-
lar (i.e., highly cacheable), normal (cacheable, the default
value), rare (cacheable, but generally not cached), and dy-
namic (not cacheable). Popular content is preferably ser-
viced from a local cache via a level-3 S-PoP if there is one
close by, otherwise via a level-2 S-PoP. Normal content is
generally serviced from a proxy server via level-2 S-PoP,
while rare content from a central server via a level-1 S-PoP.
Request for dynamic content is preferably processed by a
proxy server via a level-2 S-PoP, which is responsible for
forming the dynamic content, retrieving appropriate content
from a central server if necessary. These guidelines for con-
tent delivery can be represented as a set of bit-pattern match-
ing rules using the S-PoP level and the cacheability service
attribute sub-field.

The S-PoPs register with the neighboring SGs of the
underlying network domains, and advertise their presence
and service capabilities (represented by a set of bit-patterns
for the service modifiers it can handle). SGs formulate
service reachability advertisements (SRAs) for the service
cloud and propagate them (perhaps after filtering or aggre-
gating. From SRAs that it receives, an SG builds entries in
its (service) routing table. It should be emphasized that SGs
do not need to understand the syntax and semantics of ser-
vice modifiers defined by individual service clouds. All that
is required is the ability to manipulate regular expressions
and perform table look-ups.

The cacheability service attribute of content can be em-
bedded in an HTML (or XML) page publicized by the ser-
vice cloud, and filled accordingly by a client program when
a request is generated. Upon receiving a request for a pop-
ular object of the service cloud, an SG will forward it to a
nearby level-3 S-PoP (a local cache), if one exists. On the
other hand, requests for other content will always be for-
warded to a level-2 S-PoP, or a level-1 S-PoP if there is one
close by. If a request for a popular object cannot be satisfied
by a local cache (i.e., a cache miss), the level-3 S-PoP will
automatically re-direct the request to a nearby level-2 S-PoP
by changing the value of the S-PoP level sub-field from 3 to
2, and forwarding it to a nearby SG. If a level-3 S-PoP fails,
a nearby SG, upon learning of the failure, will cease for-
warding requests to it, and instead will forward them to a
nearby level-2 S-PoP. In case of a level-2 S-PoP failure, an
SG can automatically forward requests to another level-2 or
level-1 S-POP. In addition, an overloaded level-2 S-PoP can
perform load-balancing by re-directing requests to a lightly-
loaded level 2 S-PoP by specifying its S-PoP id (instead of
the default value 0) in the S-PoP id sub-field.

5. Related Work

We introduce the abstraction of a service layer that takes
care of the service delivery from end to end. A somewhat
similar notion is described in [4] where the authors advo-
cate a “content layer” that forwards packets based on the
resource name (that will be carried in packets). Given that
names are generally unconstrained in length, this is some-
what unrealistic. There has been considerable research car-
ried out in the area of using overlay networks to realize ap-
plications that are otherwise hard to deploy natively; for in-
stance, multicast [5], [6], multimedia broadcast distribution
[7], resilient routing [8] and even content distribution. How-
ever, these suffer from scalability and performance issues.
Our architecture provides a way to address these shortcom-
ings by means of a underlying substrate that will allow these
applications to scale.

The idea of supporting QoS over the Internet by means
of overlays is discussed in [9], [10]. Such an idea fits very
well into our framework, and suggest possible ways of de-
ploying overlays that require QoS support such as multime-
dia delivery, VoIP etc.

Perhaps the idea that comes closest to ours is that of



2298
IEICE TRANS. COMMUN., VOL.E89–B, NO.9 SEPTEMBER 2006

i3 [11]. In this work, the overlay paradigm is taken fur-
ther to provide a common “indirection infrastructure” that is
interposed between the two parties in a transaction. This in-
direction decouples the sender and receiver—which enables
essential service primitives such as multicast, anycast, host
mobility etc. Our own work (in comparison) is broader in
scope and addresses a different set of problems.

Our work does not address the issue of how routing and
forwarding are performed inside individual service clouds.
In fact, this should be seen as a feature of our design: indi-
vidual clouds are free to design and deploy their own mech-
anisms internally, completely unfettered by how packets are
forwarded externally. We do note however, that there exist
several well studied methods that may be adopted for this
purpose [12]–[14].

6. Conclusion

In this paper, we highlighted the inadequacies of the cur-
rent Internet design to satisfy the requirements of emerging
Internet applications. The traditional way to satisfy these
requirements by using overlay networks. However, as dis-
cussed, overlay networks fail to address the design short-
comings of the Internet. While it is important for the future
evolution of the Internet to facilitate the deployment of these
applications, it is impractical to do away with the current
Internet design and start over. The SOI architecture that we
describe in this paper provides a compromise between these
two choices. It reuses the existing IP infrastructure, but at
the same time provides the required abstractions that allow
requirements such as availability, robustness, mobility and
quality of service to be supported. The framework enables
the easy deployment of new applications and services that
cannot be supported within the confines of the current Inter-
net design. A significant development since we embarked
upon this work is the maturity of the PlanetLab infrastruc-
ture, which is intended to be an open research platform for
deploying and testing internet-scale services [15]. At the
present time, we are investigating the possibility of deploy-
ing our framework on the PlanetLab network.

References

[1] A. Nakao, L. Peterson, and A. Bavier, “A routing underlay for over-
lay networks,” Proc. ACM SIGCOMM 2003, pp.11–18, ACM Press,
New York, NY, USA, 2003.

[2] Y. Rekhter and T. Li, “A Border Gateway Protocol 4 (BGP-4),” RFC
1771, March 1995.

[3] L. Subramanian, M. Caesar, C.T. Ee, M. Handley, M. Mao,
S. Shenker, and I. Stoica, “HLP: A next generation inter-domain
routing protocol,” Proc. ACM SIGCOMM 2005, pp.13–24, ACM
Press, New York, NY, USA, 2005.

[4] M. Gritter and D.R. Cheriton, “An architecture for content routing
support in the Internet,” Proc. 3rd USENIX Symposium on Internet
Technologies and Systems, pp.37–48, March 2001.

[5] Y.H. Chu, S.G. Rao, and H. Zhang, “A case for end system multi-
cast,” Proc. ACM SIGMETRICS 2000, pp.1–12, ACM Press, New
York, NY, USA, 2000.

[6] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable appli-
cation layer multicast,” Proc. ACM SIGCOMM 2002, pp.205–217,

ACM Press, New York, NY, USA, 2002.
[7] Y. Chawathe, Scattercast: An Architecture for Internet Broadcast

Distribution as an Infrastructure Service, Ph.D. Thesis, University
of California, Berkeley, 2000.

[8] D.G. Andersen, H. Balakrishnan, M.F. Kaashoek, and R. Morris,
“Resilient overlay networks,” SOSP, pp.131–145, Oct. 2001.

[9] Z. Duan, Z.L. Zhang, and Y.T. Hou, “Service overlay networks:
SLAs, QoS and bandwidth provisioning,” ICNP, pp.334–343, IEEE
Computer Society, 2002.

[10] L. Subramanian, I. Stoica, H. Balakrishnan, and R. Katz, “OverQoS:
Offering Internet QoS using overlays,” 1st Hot-Nets Workshop,
Princeton, NJ, Oct. 2002.

[11] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, “Internet
indirection infrastructure,” Proc. ACM SIGCOMM 2002, pp.73–86,
ACM Press, New York, NY, USA, 2002.

[12] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for Internet applica-
tions,” Proc. ACM SIGCOMM 2001, pp.149–160, ACM Press, New
York, NY, USA, 2001.

[13] S. Ratnaswamy, A Scalable Content-Addressable Network, Ph.D.
Thesis, University of California, Berkeley, Oct. 2002.

[14] B. Wong, A. Slivkins, and E.G. Sirer, “Meridian: A lightweight net-
work location service without virtual coordinates,” Proc. ACM SIG-
COMM 2005, pp.85–96, ACM Press, New York, NY, USA, 2005.

[15] “PlanetLab.” http://www.planet-lab.org/

Jaideep Chandrashekar received a B.E.
degree from Bangalore University, India, in
1997, and a Ph.D. from the University of Min-
nesota in December 2005. He is currently with
Intel Research in Santa Clara, CA. His research
interests include computer networks and dis-
tributed systems, especially Internet technolo-
gies, network routing and computer security. He
is a member of IEEE and ACM.

Zhi-Li Zhang received a B.S. degree
in computer science from Nanjing University,
China, in 1986 and his M.S. and Ph.D. de-
grees in computer science from the University
of Massachusetts in 1992 and 1997. In 1997 he
joined the Computer Science and Engineering
faculty at the University of Minnesota, where
he is currently an Associate Professor. His re-
search interests include computer communica-
tion and networks, especially the QoS issues in
high-speed networks, multimedia and real-time

systems, and modeling and performance evaluation of computer and com-
munication systems. He is co-chair of IEEE/IFIP International Workshop
on QoS 2004, and is co-chair of IEEE INFOCOM 2006 in Barcelona Spain.



CHANDRASHEKAR et al.: TOWARDS A SERVICE ORIENTED INTERNET
2299

Zhenhai Duan received the B.S. degree
from Shandong University, China, in 1994, the
M.S. degree from Beijing University, China, in
1997, and the Ph.D. degree from the Univer-
sity of Minnesota, in 2003, all in Computer Sci-
ence. He is currently an Assistant Professor in
the Computer Science Department at the Florida
State University. His research interests include
computer networks and multimedia communi-
cations, especially the scalable network resource
control and management in the Internet, Internet

routing protocols and service architectures, and networking security. He is
a co-recipient of the 2002 IEEE ICNP Best Paper Award.

Y. Thomas Hou obtained his B.E. degree
from the City College of New York in 1991,
the M.S. degree from Columbia University in
1993, and the Ph.D. degree from Polytechnic
University, Brooklyn, New York, in 1998, all
in Electrical Engineering. From 1997 to 2002,
He was a researcher at Fujitsu Laboratories of
America, IP Networking Research Department,
Sunnyvale, California. Since Fall 2002, he has
been an Assistant Professor at Virginia Tech, the
Bradley Department of Electrical and Computer

Engineering, Blacksburg, Virginia. His current research interests include
resource (spectrum) management and networking issues for SDR-enabled
wireless networks, optimization and algorithm design for wireless ad hoc
and sensor networks, and video communications over dynamic ad hoc net-
works. In recent past, he also had work on scalable architectures, protocols,
and implementations for differentiated services Internet, service overlay
networking, video streaming, and network bandwidth allocation policies
and distributed flow control algorithms. He has published over 100 journal
and conference papers in the above areas. Dr. Hou is a member of ACM
and a senior member of IEEE.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


