

Traffic Engineering for Provisioning Restorable Hose-Model VPNs

Yu-Liang Liu*, Yeali S. Sun* and Meng Chang Chen**
*Dept. of Information Management National Taiwan University, e-mail: {d8725001,sunny}@im.ntu.edu.tw

**Institute of Information Science, Academia Sinica, e-mail: mcc@iis.sinica.edu.tw

Abstract─Virtual Private Networks (VPNs) are overlay networks
established on top of a public network backbone with the goal of
providing a service comparable to Private Networks (PNs). The
recently proposed VPN hose-model provides customers with
flexible and convenient ways to specify their bandwidth
requirements. In order to meet specified bandwidth requirements,
the Network Service Provider (NSP) must reserve a sufficient
amount of bandwidth on the data transmission paths between
each endpoint pair of a VPN. In addition, reliability of a VPN
depends on the reliability of data transmission paths. Italiano et
al. proposed an algorithm that finds a set of backup paths for a
given VPN (VPN tree) under the single-link failure model [1].
When any link failure on the VPN tree is detected, a backup path
corresponding to the failed link can be activated to restore the
disconnected VPN tree into a new one, and hence can ensure
reliability of the given VPN. However, Italiano’s algorithm
cannot guarantee the specified bandwidth requirement of the
given VPN under the single-link failure model will be met. To
address this issue a new backup path set selection algorithm
called BANGUAD is proposed in this work. In addition, issues
about establishing multiple bandwidth-guaranteed hose-model
VPNs under the single-link failure model have not been
investigated. In this paper, we propose a bandwidth sharing
algorithm as well as three provisioning algorithms for
establishing multiple bandwidth-guaranteed hose-model VPNs
under the single-link failure model. Experimental simulations
that compare the performance of the proposed algorithms are
reported.

Keywords: Virtual Private Network, Hose model, Failure
Restoration, Traffic Engineering

1. Introduction

Traditionally, a private network is established by
grouping dedicated lines connecting several
geographically dispersed sites (endpoints). As the
number of endpoints is growing, connecting them with
dedicated lines is becoming increasingly expensive. As a
result, VPNs have emerged as replacements for PNs in
recent years. The VPN is an overlay network that is
established on top of a public packet switched network
backbone intended to provide a service comparable to a
PN. The two most important issues that must be
addressed for VPNs are data security and bandwidth
guarantees. The former is usually achieved by
cryptographic methods, while the latter is achieved by
reserving sufficient bandwidths on the backbone links.

The two most common VPN resource-provisioning
models are: (1) the customer-pipe model [2-4] and (2)
the hose model [3, 4]. In the customer-pipe model,
customers must have precise predictions about the
complete traffic requirements of each endpoint pair in a

VPN in advance. The NSP then finds a data transmission
path, pu,v, for traffic between each endpoint pair, (u,v), of
a VPN and allocate sufficient bandwidth for the path
according to the traffic requirements. However,
customers may be unwilling to or unable to know the
traffic requirements of each endpoint pair in a VPN. This
is especially true when there are a large number of
endpoints per VPN.

In the hose model, customers only need to specify
the ingress bandwidth requirement, b-(v), and egress
bandwidth requirement, b+(v), for each endpoint, v, of a
VPN. The value b-(v) is the maximum rate of traffic that
endpoint v receives from the network at any time, and
the value b+(v) is the maximum rate of traffic that
endpoint v sends into the network. We only consider
hose-model VPNs in our work as the hose-model appears
to provide customers with more flexibility and
convenience in specifying their bandwidth requirements.

It is important to consider two kinds of failures,
namely link failures and router failures. A common fault
model for link failures assumed in literature and justified
by network measurements [5, 6] is that at any given time
only one link in the network fails. In other words, in the
event of a link failure, no other link fails until the failed
link is restored; and the probability of two or more links
failing at the same time is very small. In our work, we
use the single-link failure model to devise several
bandwidth-guaranteed hose-model VPNs provisioning
algorithms. Moreover, we hereafter term the restorable
bandwidth-guaranteed hose-model VPNs under the
single-link failure model as restorable VPNs.

In order to meet the bandwidth requirement specified
by customers, the NSP needs to reserve in a restorable
VPN a sufficient amount of bandwidth on data
transmission paths (or paths, for short) between each
endpoint pair. We termed primary bandwidth as the
bandwidth needed on the paths under the non-failure
case. The additional bandwidth needed on the alternative
paths under the link failure case is called the protected
bandwidth. The restorable VPN provisioning algorithms
proposed in this paper can be implemented on an MPLS
network, as the path pinning capacity provided by MPLS
technology can be used to direct the routing of the paths
in a VPN [9, 10].

We organized the remainder of this paper into six
sections. Section 2 is a review of related works. Section
3 introduces the problem considered in this paper. In
Section 4, we propose a new backup path set selection

0-7803-9455-0/06/$20.00 (c) 2006 IEEE139

algorithm called BANGUAD to address the problem of
Italiano’s algorithm mentioned previously. Section 5
proposes a bandwidth sharing algorithm as well as three
restorable VPN provisioning algorithms. We also report
experimental simulations that compare the performance
of the proposed restorable VPN provisioning algorithms
and Section 6 concludes this paper.

2. Related Works

Duffield et al. first introduced the VPN hose-model
in [3, 4]. In their papers, they also proposed several
hose-model VPN provisioning algorithms under the
non-failure case. Kumar et al. argued that the
provisioning of hose-model VPN should be based on a
tree topology (hereafter called: VPN tree) and proposed
the tree routing algorithm [7]. Given the bandwidth
requirements of each endpoint in a VPN, the tree routing
algorithm tries to find the VPN tree which needs
minimum total bandwidth allocation on tree links
(hereafter called: bandwidth-optimization VPN tree). In
the case of symmetric bandwidth requirements (i.e., b+(v)
= b-(v) for all VPN endpoints v), the tree routing
algorithm is optimal and is guaranteed to find the
bandwidth-optimization VPN tree. However, In the case
of asymmetric bandwidth requirement, the problem of
finding the bandwidth-optimization VPN tree has proven
to be NP-hard, and the tree routing algorithm is a
10-approximation algorithm.

Jűttner et al. compared the bandwidth allocation
efficiency of the hose-model VPN with that of the
customer-pipe model VPN [8]. Gupta et al. investigated
the issues concerning MPLS labels design and routing
protocol on a VPN tree [10]. Italiano et al. proposed a
backup paths set selection algorithm for a VPN tree [1].
The goal of Italiano’s work was to find a set of backup
paths for the given VPN tree such that it could be
restored under any single-link failure. Italiano’s
algorithm tries to find the backup path set that needs the
minimum total protected bandwidth allocation. However,
this problem is NP-complete, and the Italiano’s
algorithm is a 16-approximation algorithm. Chou
proposed a multi-objective traffic-engineering
framework for off-line provisioning of multiple
customer-pipe model VPNs [11]. The goal of Chou’s
framework was to minimize the maximum link
utilization on the network backbone while minimizing
the total bandwidth allocation for establishing VPNs. In
our previous work, we pointed out that the hose-model
VPNs provisioning algorithms proposed in [3, 4, 7]
cannot achieve a satisfactory rejection ratio when
multiple hose-model VPNs are to be established on-line
on an MPLS network backbone. And hence a new
provisioning algorithm called the Modified Tree Routing

Algorithm (MTRA) was proposed to address this issue
[17].

3. Problem Formulation and Modeling

In this section, we formulate the problem considered
in this paper. The MPLS network backbone managed by
the NSP on which restorable VPNs are established is
modeled in subsection 3.1. The restorable VPN is
described in subsection 3.2. We model the VPN setup
requests describing the restorable VPNs requested by
customers in subsection 3.3. Finally, we describe the
main problem considered in this paper (called On-line
Restorable VPNs Establishment Problem (ORVEP)) in
subsection 3.4.

3.1 Network Backbone Modeling

The MPLS network backbone is modeled by an
undirected graph G=(N,L), where N and L are the set of
routers and the set of links, respectively. Let n and m
denote the cardinality of N and L and B be the set of
residual bandwidths on links of L. The amount of
residual bandwidth on link l (l∈L) is denoted by B(l).
Each endpoint ei in a VPN gains access to VPN service
by connecting to a specific router ri in N. We called
router ri the VPN access router of endpoint ei. In other
words, for each VPN endpoint, there is a corresponding
access router in N.

3.2 The Restorable VPN

Due to the excellent bandwidth allocation efficiency
of adopting tree topology in provisioning hose-model
VPN [8], we assume that the paths pu,v between each
endpoints pair (eu,ev) of a VPN follow a VPN tree in this
paper. Let vt and vt’ denote the VPN trees that connect
all the access routers used by the restorable VPN under
the non-failure and link failure cases, respectively. In
order to meet the specified bandwidth requirement under
the no-failure case, sufficient amount of primary
bandwidth allocation is needed on links of vt. In addition,
to ensure reliability of the paths in the VPN under the
single-link failure model, a set of backup paths,
BP={bp1,bp2,…bpk} corresponding to vt must be built.
When any faulty link, e, on vt is detected, a backup path,
bpe∈BP, that corresponds to e can be activated to
recover the disconnected VPN tree into a new VPN tree,
vt’ (i.e., vt’=vt-e+bpe). Then the new path between each
endpoints pair (eu,ev) of the VPN follow the path in the
new VPN tree vt’ (until e is repaired). However, in order
to guarantee that the specified bandwidth requirement
can also be met when any tree link failure occurs, the
NSP may needs to reserve a certain amount of additional
bandwidth on links of vt and on links of the backup

140

paths in BP. We term protected bandwidth as the
additional bandwidth needed in this case.

Fig. 1. An example of a restorable VPN

An illustration of a restorable VPN is shown in Fig.
1. The number besides endpoints e1, e2 and e3 represents
their bandwidth requirement. The thick dotted lines form
a VPN tree vt consisting of links l1 and l2. The thin
dotted lines form a backup path bp1, which is used to
recover any failure of tree links l1 and l2. In this example
the backup path set BP only consisting one backup path,
bp1. The two numbers in parenthesis besides the links of
vt and links of bp1 represent the primary bandwidth and
protected bandwidth needed on them. For example, the
primary bandwidth and protected bandwidth needed on
the tree link l1 are 4 and 2, respectively. Under the
non-failure case, the 4 units of primary bandwidth
allocation on l1 are enough to meet the specified
bandwidth requirement. However when the l2 fails, the
backup path bp1 is activated, and forms a new VPN tree
vt’ (i.e., vt’=vt-l2+bp1), which consisting of tree links l1,
l4, l5 and l8. The maximum traffic rate through l1 of vt’ is
6, and 2 units of protected bandwidth allocation is
needed. Given the bandwidth requirement of each
endpoint on a VPN tree, for the rule of determining the
maximum traffic rate through a tree link, please refer to
[7]. Note that the Italiano’s algorithm do not allocate
protected bandwidth on links of vt (l1 and l2 in this
example), and hence cannot guarantee to meet the
specified bandwidth requirement of the VPN

3.3 VPN Setup Requests Modeling

In this paper, we consider that the bandwidth
requirement of each endpoint ej is symmetric (i.e., b+(v)
= b-(v) for all VPN endpoints v), and use b(ej) to denote
the bandwidth requirement of ej. Each VPN setup
request describes a restorable VPN from the customer
for the NSP to establish, and let vri be the ith VPN setup
request. Each vri is represented by a n-tuple vector
(h1,h2,…,hn), where n is the cardinality of the set N. The
number of nonzero elements in vri represents the number
of endpoints contained in the corresponding restorable
VPN. The value of jth element, hj, of vri represents the
bandwidth requirement of endpoint ej. Maxr denotes the
maximum bandwidth guarantee provided by the NSP.

3.4 On-line Restorable VPNs Establishment Problem

The ORVEP defined in this paper is similar to the
work in [12-15] which mainly considers on-line
establishment of restorable bandwidth-guaranteed
point-to-point paths. However, in the context of VPN
provisioning, the basic unit of concern is a restorable
VPN consisting of numerous restorable point-to-point
paths (as opposed to one restorable point-to-point path)
that makes the problem more challenging.

In ORVEP, the NSP manages an MPLS network
backbone G (as described in section 3.1) on which
restorable VPNs are established. We also assume that a
link failure may occur on G at any given time. We
consider the situation where (a) VPN setup requests
arrive one-by-one independently, and (b) the NSP does
not have a priori knowledge about future VPN setup
requests. This knowledge includes the number of future
VPN setup requests, the number of endpoints contained
in each VPN setup request, and the bandwidth
requirement of each endpoint. In this situation, the NSP
must process each VPN setup request in an on-line
manner.

Upon receiving a VPN setup request vri, the NSP
triggers the restorable VPN provisioning algorithm to
establish a corresponding VPN. The restorable VPN
provisioning algorithm performs this task by first
choosing a VPN tree vt and a backup paths set BP. The
restorable VPN provisioning algorithm then allocates
bandwidth on links of vt and links of the backup paths in
BP (as described in section 3.2). If there is not enough
residual bandwidth on the link when the bandwidth is
being allocated, vri will be rejected.

In ORVEP, we use the amount of bandwidth
allocation and the rejection ratio as the performance
metrics to compare different VPN provisioning
algorithms. The optimization goal is to minimize the
amount of bandwidth allocation and the rejection ratio
for establishing on-line restorable VPNs. The rejection
ratio is defined as:

received requests of numbers total
rejected requests ofnumber ratio rejection =

Minimizing the amount of bandwidth allocation to
establish restorable VPNs maximizes the amount of
bandwidth left over for other QoS-guaranteed traffic to
coexist on the MPLS network backbone. Minimizing the
rejection ratio maximizes the number of requests
successfully established on the network backbone, and
hence maximizes the service revenue of the NSP

In the ORVEP, we assume that the NSP uses a
server-based strategy [16] for processing VPN setup
requests. In a server-based strategy, the restorable VPN
provisioning algorithm runs on a single entity called
VPN request server (VRS). The VRS also keeps the

B

D

C

E

FA

l1

l2

l3

l4

l5

l6

l7 l81

2 3

4

6 3

(4,2)

(3,3)

(0,4)

(0,4)

(0,4)

141

complete link state topology database and is responsible
for computing an explicit path for each endpoint pair of
a restorable VPN. The paths then can be setup using a
signaling protocol such as RSVP or CR-LDP. For
computing the explicit paths, the VRS needs to know the
current network topology and link residual bandwidth.
We assume that a link-state routing protocol exists for
information acquisition.

4. Bandwidth-Guaranteed Backup Paths Set
Algorithm

In this section, we propose a new backup path
section algorithm called BANwidth-GUAranteeD backup
paths Set Algorithm (BANGUAD). Before explaining the
algorithm in more detail, we need to define some
notation. Table 1 summarizes the notation used in the
algorithm. The pseudo code of BANGUAD is described
in Table 2.

Table1. The notation used in BANGUAD
Symbol Description

H=(N,L-L(vt)) A network graph obtained by removing links
on vt from G

N(vt) Routers set on the input VPN tree vt
L(vt) Links set on the input VPN tree vt

spu,v
A shortest path from router u to router v in the
graph H, where u,v∈N(vt)

L(BP)
Link set which comprise links used by bp1
∪bp2…∪bpk, where bpi is a backup path in
the output set BP

cbp(l) The vector which indicate the corresponding
backup path for the link l, where l∈L(vt)

COVER(p)
A subset of links in L(vt), where insert a path
p into vt will create a cycle containing all of
them

cover(p) {l∈COVER(p)∣cbp(l)= Ø}

spu,v
A shortest path from node u to node v in
graph H, where u and v are nodes in N(vt)

SP
A candidate backup path set which consisting
the shortest paths spu,v for each (u,v) pair,
where u and v are nodes in N(vt)

PB(l) The amount of primary bandwidth allocation
on link l for vri, where l∈L(vt)

pb(l)
The amount of protected bandwidth
allocation on link l for vri, where
l∈(L(vt)∪L(BP))

α(p)
Total additional amount of protected
bandwidth required on all link l (l∈
COVER(p) ∪p), if p is included into BP in
this iteration

In BANGUAD, the backup path set BP is first found
out (from line 6 to line 10), then the amount of protected
bandwidth allocation needed on links l (l∈L(vt)∪L(BP))
is computed (from line 12 to line 18). Initially, the set
BP, SP and the corresponding backup path for each tree
link are set to null value (Ø) in line 1 and line 2. Because
the links of all backup paths in BP must be link-disjoint
with those of vt (i.e., L(vt)∩L(BP)=Ø), the BANGUAD

search candidate backup paths on the network graph H.
The code from line 3 to line 5 compute a shortest path
spu,v for each tree router pair (u,v) and include them as
elements of the candidate backup path set SP. Note that
if there is no paths between the tree router pair (u,v), the
value of spu,v is set to null value.

Table2. The pseudo code of BANGUAD
Bandwidth-Guaranteed backup paths Set Algorithm
Input: 1. A VPN setup request vri, 2. a network graph
G=(N,L), 3. A VPN tree, vt that connects all VPN access
routers used in vri and 4. The amount of primary bandwidth
allocation PB(l) on links l∈L(vt) for vri.
Output: 1. A set of backup paths, BP={bp1,bp2,…bpk} for
vt such that vt can tolerate any single link failure, 2. A
vector which indicates the corresponding backup path for
the link l, where l∈L(vt)and 3. The protected bandwidth
allocation pb(l) on all links l∈L(vt) ∪L(BP) for vri.
Algorithm:
1. BP:= Ø; SP:= Ø;
2. For each link l∈L(vt) {cbp(l):= Ø;}
3. For each distinct node pair (u,v) (u,v∈N(vt))
4. { spu,v:=Compute_Shortest_Path(u,v);
5. if (spu,v≠Ø) SP:=SP ∪ spu,v; }
6. Repeat { p:=Select_Minimum_Cost_Path(SP);
7. For each l∈cover(p) { cbp(l):= p; }
8. BP:=BP∪ p; SP:=SP-p;
9. For each p∈SP {Update_cost(p);}
10. } Until (cbp(l)≠Ø, for all l∈L(vt));
11. For eack link l∈ L { pb(l):=0}
12. For each link e∈L(vt)
13. { vt’:=vt-e+cbp(e);
14. for each l∈L(vt’){
15. max_traffic(l):=Compute_Max_Traffic(vt’,vri);
16. if (max_traffic(l) > (PB(l)+pb(l)))
17. {pb(l):=max_traffic(l)-PB(l);} }
18. }
19. Output (BP);
20. For each l∈(L(vt) ∪L(BP)) {Output(pb(l));}

The code from line 6 to line 10 is a loop which picks
some paths from the candidate backup paths set SP to
form the output set BP. The loop iterates until all the
links on the input VPN tree find out their corresponding
backup path (i.e., cbp(l)≠Ø, for all l∈L(vt) as described
in line 10). The cost function associated to each path p in
the set SP is defined as:

)(cover
)(

)(
p

p
pCost

α
=

In the loop from line 6 to line 10, a minimum cost
path p in the set SP is first selected in line 6. Then p is
assigned as the corresponding backup path to all the tree
links in cover(p) in line 7. The path p is added to the set
BP and removed from the set SP in line 8. As the
assignment of the corresponding backup path to tree
links in cover(p) may changes the cost values associated
with some candidate backup paths in SP (i.e., the
denominator of the cost function associated with some
paths may change), the cost value associated with each
path in SP is updated accordingly in line 9.

The amount of protected bandwidth allocation on

142

link l, pb(l), is determined by the difference between the
maximum traffic through l under any possible tree link
failure and the amount of primary bandwidth allocation
on l. The code from line 12 to line 18 computes the pb(l)
value for all links l on (L(vt) ∪L(BP)). Initially, the
amount protected bandwidth allocation pb(l) on all links
l is set to zero in line 11. The for statement in line 12
considers the case of any tree link e (e∈L(vt)) fail. When
any tree link e fail, it’s corresponding backup path cbp(e)
is activated and form a new VPN tree vt’ in line 13.
Given the new VPN tree vt’ and a setup request vri, the
code in line 15 computes the maximum traffic rate
through l, where l are links on vt’. If the maximum
traffic rate through l exceeds the total allocated
bandwidth (i.e., max_traffic(l) > PB(l)+pb(l)), the
protected bandwidth allocation pb(l) is updated in line
17.

We use fig. 2 to explain the BANGUAD. The input
VPN setup request vr1=(1, 5, 3, 2, 0, 0) and the input
VPN tree is shown as the solid dotted lines. The input
VPN tree consist links l1, l2 and l7, with 1, 3 and 2 units
of primary bandwidth allocation, respectively. Initially,
the corresponding backup path of tree links l1, l2 and l7
are set to null value and the protected bandwidth
allocations on all links are set to 0. Before the first
execution of the code from line 6 to line 10, the
candidate backup paths set SP={spA,D, spC,D}. The
shortest path spA,D is composed of link l4 and the shortest
path spC,D are composed of l8 and l5. The cost value
associated to candidate backup path spA,D and spC,D are
2.5 and 5.5. And hence, after the first execution of the
code from line 6 to line 10, the spA,D is selected. Because
the cover(spA,D)={l1, l7}, so the corresponding backup
path for tree links l1 and l7 are set to spA,D.

In the second execution of the code from line 6 to
line 10, the spC,D is selected. Because the
cover(spC,D)={l2}, so the corresponding backup path for
tree links l2 is set to spC,D. The BANGUAD output the set
BP which consists of two backup paths spA,D, spC,D
shown as the thin dotted lines. After the execution of the
code from line 11 to line 20, the amount protected
bandwidth allocation on link l (l∈L(vt) ∪L(BP)) is
shown in the second number in the parenthesis.

Fig. 2. An illustration f the BANGUAD

5. Algorithms under ORVEP

In this section, we propose algorithms under ORVEP.
In subsection 5.1, we elaborate the concept of bandwidth
sharing between multiple restorable VPN. In subsection
5.2, we propose a bandwidth-sharing algorithm that can
be subsumed in restorable VPN provisioning algorithms
to improve their performance. In subsection 5.3, we
introduce three restorable VPN provisioning algorithms.
In subsection 5.4, we present experimental simulations
that compare the performance of the three provisioning
algorithms.

5.1 Bandwidth Sharing in Restorable VPNs

When establishing a restorable
bandwidth-guaranteed point-to-point path under the
single-link failure model, both an active path and an
alternative link-disjoint path are needed. Two restorable
bandwidth-guaranteed point-to-point paths cannot share
their allocated bandwidth on links of alternative paths if
their active paths are not link-disjoint [12]. However, in
the case of VPN provisioning under the single-link
failure model, two restorable VPNs whose VPN trees are
not link-disjoint may have potential in sharing their
protected bandwidth allocation. We use an example to
elaborate our argument.

When the NSP (or VRS) receive two VPN setup
requests vr1=(4,6,2,0,0,0) and vr2=(0,2,3,0,0,4). In the
non-sharing case, after establishing the two restorable
VPNs, the sketch of G is shown in fig. 3. The endpoint
ei,j represents the jth endpoint of the VPN, vri. Thick
dotted lines and thick dashed lines depict the VPN trees
corresponding to vr1 and vr2; thin dotted lines and thin
dashed lines depict the backup paths corresponding to
vr1 and vr2, respectively. The numbers inside the
parenthesis are the amount of primary bandwidth and
protected bandwidth allocated on the links for vr1 and
vr2. Note that the two VPNs overlap on l2 and l5.

Fig. 3. The sketch of G after establishing two restorable VPNs

If the provisioning algorithm does not consider the
sharing of bandwidth allocation among VPNs, the
bandwidth on the links may be over-allocated. For

B

D

C

E

FA

l1

l2

l3

l4

l5

l6

l7 l81

2 3

1

5 3

(1,2)

(3,0)

4

2

(2,3) (0,3)

(0,3)

(0,2)

B

D

C

E

FA

l1

l2

l3

l4

l5

l6

l7 l8e1,14

6 2

(4,2)

(2,4)

(0,4)

(0,4)

(0,4)

e1,2 e1,3e2,2 e2,3

e1,6

2

4

3

(2,1)

(4,0)

(0,2)

(0,4)

(0,4)

143

example, totally 9 and 8 units of bandwidth allocation
are needed on l2 and l5, respectively to accommodate the
two restorable VPNs in the non-sharing case (i.e., a total
of 4 units of primary bandwidth and 5 units of protected
bandwidth on l2, and a total of 8 units of protected
bandwidth on l5). In this example, if the restorable VPN
provisioning algorithm considers sharing bandwidth
allocation among VPNs (after admitting and allocating
bandwidth to the restorable VPN corresponding to vr1),
then there is no need for any additional protected
bandwidth allocation on l2 and l5 when admitting the
restorable VPN corresponding to vr2. In subsection 5.2,
we will show that if the bandwidth-sharing algorithm is
subsumed to the restorable VPN provisioning algorithm,
totally only 8 and 4 units of bandwidth allocation is
enough on l2 and l5, respectively, to accommodate both
the two restorable VPNs.

5.2 Bandwidth Sharing Algorithm for Restorable VPNs

To implement the bandwidth-sharing algorithm, the
VRS must keep the amount of primary bandwidth and
protected bandwidth that has been allocated, denoted by
PBG(l) and pbG(l), respectively, for each link l on G. In
addition, a traffic transfer matrix for G, denoted by
TTM(G) is also required. The value of TTMi,j(G) keeps
the maximum amount of VPN traffic going through link
li when link lj fail.

When a VPN setup request vri is received, VRS
computes the VPN flow transfer matrix VFM(vri)
associated with it. The value of VFMi,j(vri) keeps the
maximum amount of traffic in the VPN of vri going
through link li when the tree link lj fails. Note that given
the VPN tree vt and the backup path set BP for vri, the
VFM(vri) cam be computed easily. Let m be the
cardinality of the set L, then both VFM(vri) and TTM(G)
are m by m matrix. The bandwidth-sharing algorithm for
restorable VPNs is described in table 3.

For ease of explanation, we assume that vri is always
admitted. The amount of primary bandwidth allocation
after admitting the vri is updated in line 1. Then The
VPN flow transfer matrix associated with vri is
computed in line 2. The traffic transfer matrix for G is
updated from line 3 to line 5. The ith element of array
Max_row_traffic keeps the maximum amount of traffic
passing through link i under the single link failure case.
In each iteration of the code from line 6 to line 12 the
value of Max_row_traffic[li] is first computed, then the
value of pbG(li) for link li can be determined. The rule for
determining the value of pbG(li) is that if the amount of
bandwidth that has been allocated on link i (i.e., PBG(i)+
pbG(i)) is less than the value of Max_row_traffic[i], then
the value of pbG(i) is updated to the value of
(Max_row_traffic[i]-PBG(i)).

Table 3. The bandwidth-sharing algorithm for restorable VPNs
Bandwidth Sharing Algorithm for Restorable VPNs
Input: 1. The amount of primary bandwidth that has been
allocated, denoted by PBG(l), and the amount of protected
bandwidth that has been allocated, denoted by pbG(l), for
each link l on G, 2. The traffic transfer matrix TTM(G), 3. A
VPN setup request vrk, 4. The VPN tree vt and the backup
path set BP for vri and 5 The primary bandwidth allocation
PB(l) on the link l of vt for vrk.
Output: The amount of primary bandwidth that has been
allocated, denoted by PBG(l) and the amount of protected
bandwidth that has been allocated, denoted by pbG(l) on link l
(l∈L) after admitting the request vrk.
Algorithm:
1. for (each l∈L(vt)) {PBG(l):= PBG(l)+PB(l);}
2. VFM(vri):=Compute_VFM(vri,vt,BP);
3. for (i=1 to m) {
4. for (j=1 to m)
5. {TTMi,j(G):= TTMi,j(G)+ VFMi,j(vri);} }
6. for (i=1 to m) {
7. Max_row_traffic[li]:=0;
8. for (j=1 to m) {
9. if (TTMi,j(G)>Max_row_traffic[li])
10. { Max_row_traffic[li]:= TTMi,j(G);} }
11. if (Max_row_traffic[li]> (PBG(li)+ pbG(li)))
12. { pbG(li):= Max_row_traffic[li]-PBG(li);} }

We use the example in section 5.1 to illustrate the
bandwidth-sharing algorithm we proposed. After
processing vr1=(4,6,2,0,0,0) and the execution of the
code from line 1 to line 10 for vr2=(0,2,3,0,0,4), the
amount of primary bandwidth that has been allocated on
links of L and the traffic transfer matrix for G (after the
execution of the code from line 1 to line 13) are:

00000024
00000420
00000420
00000444
00000024
00000030
00000306
00000060

)(,

40
00
00
40
40
04
44
24

)()(

8

7

6

5

4

3

2

1

































=GTTM

l
l
l
l
l
l
l
l

lpblPB iGiG

Note that from the above TTM(G), we can obtain
Max_row_traffic[l2]=6 and Max_row_traffic[l5]=4. After
the execution of the code line 11 and line 12, there are
no need for additional protected bandwidth allocation on
links l2 and l5 (e.g., Max_row_traffic[li]<=(PBG(li)+
pbG(li), for l2 and l5).

[]

[]

4
4
4
4
4
3
6
6

__

8

7

6

5

4

3

2

1

trafficrowMax

l
l
l
l
l
l
l
l

144

5.3 The Proposed Restorable VPN Provisioning
Algorithms

A restorable VPN provisioning algorithm may
contain the following three main components: (1) VPN
provisioning algorithm for the non-failure case, (2)
backup path set selection algorithm, and (3)
resource-sharing mechanism. With the trade-off between
the implementation complexity and performance benefit
in mind, the NSP may design restorable VPN
provisioning algorithms with different flavors by
adopting various approaches for the three components.
In this section, we proposed three provisioning
algorithms for establishing on-line of restorable VPNs
under ORVEP.

Algorithm A: Optimal-Tree without bandwidth
sharing
– Find a VPN tree vt by using tree routing algorithm

[7].
– Find the corresponding backup path set for vt by

using BANGUAD.
– Disable the bandwidth-sharing algorithm introduced

in section 5.2.
Algorithm B: Optimal-Tree with bandwidth sharing
– Same as Algorithm A, except the enabling of the

bandwidth sharing-algorithm introduced in section
5.2.

Algorithm C: Enumerate-tree with bandwidth
sharing
– For each node v on G, find a VPN tree vtv by using

breadth first search algorithm [17].
– For each VPN tree vtv, find its corresponding backup

path set BPv by using BANGUAD.
– Select the combination of VPN tree and backup path

set with minimum additional bandwidth allocation.
– Enable the bandwidth sharing algorithm introduced in

section 5.2.

5.4 Experimental Simulations

To evaluate and compare the performance of the
restorable VPN provisioning algorithms proposed in
section 5.3, we have conducted two simulations. Due to
extensive adaptation of the KL topology as the MPLS
network backbone in the literature about MPLS traffic
engineering [12, 14, 17], we also adopt it as G in both
simulations. Note that the KL topology is a network
graph consisting of 15 routers and 28 links.

Simulation 1: The bandwidth allocation efficiency in
the three restorable VPN provisioning algorithms

The parameter configuration of Simulation 1 is
shown in Table 4. In this simulation, we consider the
case where the MPLS network backbone G has a

sufficient amount of residual bandwidth to accommodate
all the restorable VPNs (i.e., all VPN setup requests
received are accepted). Let K denote the total number of
requests received and p denote the number of endpoints
in each restorable VPN. We use the total amount of
bandwidth allocation for processing K restorable VPNs
as the performance metric to compare different VPN
provisioning algorithms.

Table 4. Parameter configuration of Simulation 1
B(li) p Maxr K
∞ 5 25~150 step 25 100

The simulation results are shown in fig. 4. The x-axis
represents the value of Maxr, and the y-axis represents
the amount of bandwidth allocation in the restorable
VPN provisioning algorithms. The value of Maxr varies
from 25 to 150 with a step of 25. We conducted 10 runs
for each value of Maxr, and took the average amount of
bandwidth allocation in these 10 runs. As expected, the
average amount of bandwidth allocation increases as the
value of Maxr increases in all three algorithms. In all the
Maxr values considered in this simulation, the difference
of the average amount of bandwidth allocation between
Algorithm A and Algorithm B range from 50.25% to
51.69%. This means that the inclusion of the
bandwidth-sharing algorithm into the VPN provisioning
algorithms can reduce about half of the total bandwidth
allocation in the provisioning algorithms. On the other
hand, in all the Maxr values considered in this paper, the
difference of the average amount of bandwidth
allocation between Algorithm B and Algorithm C range
from 8.17% to 11.20%. The bandwidth saving of
Algorithm C over Algorithm B is caused by selection of
a good combination of VPN tree and backup path set for
all VPN setup requests.

Fig. 4. Comparison of the amount of bandwidth allocation in
the three provisioning algorithms

0

20000

40000

60000

80000

100000

120000

140000

25 50 75 100 125 150
Maxr

T
he

 A
m

ou
nt

 o
f

B
an

dw
id

th
 A

llo
ca

tio
n

Algorithm A Algorithm B AlgorithmC

Simulation 2: The rejection ratios achieved in the
three provisioning algorithms

The parameter configuration of Simulation 2 is
shown in Table 5. In this simulation, we consider the
case where the MPLS network backbone G may not
have sufficient amount of residual bandwidth to

145

accommodate some VPNs (i.e., some VPN setup request
received may be rejected). We use the rejection ratio for
processing K VPN setup requests as the performance
metric to compare restorable VPN provisioning
algorithms.

Table 5. Parameter configuration of Simulation 2
B(li) p Maxr K

Light links=3,000 units
Dark links=12,000 units 5 25~150

step 25 100

The simulation results are shown in fig. 5. The x-axis
represents the value of Maxr, and the y-axis represents
the rejection ratios in the three restorable VPN
provisioning algorithms. The value of Maxr varies from
25 to 150 with a step of 25. We conducted 10 runs for
each value of Maxr, and took the average rejection ratios
in these 10 runs. As expected, the average rejection
ratios raise as the value of Maxr increases in all three
algorithms. The average rejection ratio achieved by
Algorithm C is much less than the other two
provisioning algorithms in almost all the Maxr values
considered in this simulation (except for the light load
case, when the value of Maxr is 25, the average rejection
ratios is 0% in all the three algorithms). On the other
hand, the difference of the rejection ratios achieved by
Algorithm A and Algorithm B is notable, meaning that
the inclusion of the bandwidth sharing algorithm into the
restorable VPN provisioning algorithms is very effective
in reducing the rejection ratio.

Fig. 5. The comparison of rejection ratios achieved in the three
VPN provisioning algorithms

0

10

20

30

40

50

60

70

25 50 75 100 125
Maxr

R
ej

ec
ti

on
 r

at
io

 (
%

)

Algorithm A Algorithm B Algorithm C

6. Conclusions

Previous literature about restoration issue in
hose-model VPN focus on finding a backup path set for
a given VPN tree such that the VPN can be restored
under the single-link failure model [1]. However, the
backup path selection algorithm proposed in these
literatures can’t guarantee to meet the specified
bandwidth requirements under single-link failure model.
To address this issue we proposed a new backup path

selection algorithm for a VPN tree called BANGUAD. To
our knowledge until now, issues about establishing
multiple bandwidth-guaranteed hose-model VPNs on a
MPLS network backbone under the single-link failure
model have not been investigated. In this paper, we
proposed a bandwidth sharing algorithm as well as three
restorable VPN provisioning algorithms for on-line
establishment of multiple bandwidth-guaranteed
hose-model VPNs.

References
[1] G. Italiano, R. Rastogi and B. Yener, Restoration Algorithms for

Virtual Private Networks in the Hose Model, in: Proc. of IEEE
INFOCOM, 2002.

[2] B.S. Davie, Y. Rekhter, MPLS Technology and Applications,
Morgan Kaufmann, San Francisco, CA, 2000.

[3] N. G. Duffield, P. Goyal and A. Greenberg, A Flexible Model for
Resource Management in Virtual Private Networks, in: Proc. of
ACM SIGCOMM, 1999.

[4] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K.
Ramakrishnan and J. E. V. D. Merwe, Resource Management
with Hoses: Point-to-Cloud Services for Virtual Private Networks,
IEEE/ACM Transactions on Networking 10(5) (2002) 679-692.

[5] T.H. Wu, Fiber Network Service Survivability, Artech House,
Norwood, MA, 1992.

[6] D. Zhou, S. Subramaniam, Survivability in optical networks,
IEEE Network 14 (6) (2000) 16–23.

[7] A. Kumar, R. Rastogi, A. Silberschatz and B. Yener, Algorithms
for Provisioning Virtual Private Networks in the Hose Model,
IEEE/ACM Transactions on Networking 10(4) (2002) 565-578.

[8] A. Jűttner, I. Szabơ and Á Szentesi, On Bandwidth Efficiency of
the Hose Resource Management Model in Virtual Private
Networks, in: Proc. of IEEE INFOCOM, 2003.

[9] D. O. Awduche, j. Malcom, J. Agobua, M. O’Dell and J.
Mcmanus, Requirement for Traffic Engineering over MPLS,
IETF RFC 2702, September 1999.

[10] A. Gupta, A. Kumar and R. Rastogi, Exploring the Trade-off
between Label Size and Stack Depth in MPLS Routing, in: Proc.
of IEEE INFOCOM, 2003.

[11] C. T. Chou, Traffic Engineering for MPLS-based Virtual Private
Networks, Computer Networks 44(3) (2004) 319–333.

[12] M. Kodialam and T. T. Lakshman, Dynamic Routing of
Bandwidth Guaranteed Tunnels with Restoration, in: Proc. of
IEEE INFOCOM, 2000.

[13] M. Kodialam and T. T. Lakshman, Dynamic Routing of Locally
Restorable Bandwidth Guaranteed Tunnels using Aggregated
Link Usage Information, in: Proc. of IEEE INFOCOM, 2001.

[14] S. Raza, F. Aslam and Z. A. Uzmi, Online Routing of Bandwidth
Guaranteed Paths with Local Restoration using Optimized
Aggregate Usage Information in: Proc. of IEEE International
Conference on Communications, 2005.

[15] L. E. Li, M. M. Buddhikot, C. Chekuri and K. Guo, Routing
Bandwidth Guaranteed Paths with Local Restoration in Label
Switched Networks in: Proc. of IEEE International Conference
on Network Protocols, 2002.

[16] G. Apostolopoulos, R. Guérin, S. Kamat, S. K. Tripathi,
Server-Based QoS Routing, in: Proc. of IEEE GLOBECOM,
1999.

[17] Y. L. Liu, Y. S. Sun, M. C. Chen, MTRA: An On-Line
Hose-Model VPN Provisioning Algorithm, Springer Journal on
Telecommunication Systems, to appear. Available online:
http://www.iis.sinica.edu.tw/LIB/TechReport/tr2004/tr04020.pdf.

146

