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Abstract─Virtual Private Networks (VPNs) are overlay networks 
established on top of a public network backbone with the goal of 
providing a service comparable to Private Networks (PNs). The 
recently proposed VPN hose-model provides customers with 
flexible and convenient ways to specify their bandwidth 
requirements. In order to meet specified bandwidth requirements, 
the Network Service Provider (NSP) must reserve a sufficient 
amount of bandwidth on the data transmission paths between 
each endpoint pair of a VPN. In addition, reliability of a VPN 
depends on the reliability of data transmission paths. Italiano et 
al. proposed an algorithm that finds a set of backup paths for a 
given VPN (VPN tree) under the single-link failure model [1]. 
When any link failure on the VPN tree is detected, a backup path 
corresponding to the failed link can be activated to restore the 
disconnected VPN tree into a new one, and hence can ensure 
reliability of the given VPN. However, Italiano’s algorithm 
cannot guarantee the specified bandwidth requirement of the 
given VPN under the single-link failure model will be met. To 
address this issue a new backup path set selection algorithm 
called BANGUAD is proposed in this work. In addition, issues 
about establishing multiple bandwidth-guaranteed hose-model 
VPNs under the single-link failure model have not been 
investigated. In this paper, we propose a bandwidth sharing 
algorithm as well as three provisioning algorithms for 
establishing multiple bandwidth-guaranteed hose-model VPNs 
under the single-link failure model. Experimental simulations 
that compare the performance of the proposed algorithms are 
reported. 
 
Keywords: Virtual Private Network, Hose model, Failure 
Restoration, Traffic Engineering 

1. Introduction 

Traditionally, a private network is established by 
grouping dedicated lines connecting several 
geographically dispersed sites (endpoints). As the 
number of endpoints is growing, connecting them with 
dedicated lines is becoming increasingly expensive. As a 
result, VPNs have emerged as replacements for PNs in 
recent years. The VPN is an overlay network that is 
established on top of a public packet switched network 
backbone intended to provide a service comparable to a 
PN. The two most important issues that must be 
addressed for VPNs are data security and bandwidth 
guarantees. The former is usually achieved by 
cryptographic methods, while the latter is achieved by 
reserving sufficient bandwidths on the backbone links. 

The two most common VPN resource-provisioning 
models are: (1) the customer-pipe model [2-4] and (2) 
the hose model [3, 4]. In the customer-pipe model, 
customers must have precise predictions about the 
complete traffic requirements of each endpoint pair in a 

VPN in advance. The NSP then finds a data transmission 
path, pu,v, for traffic between each endpoint pair, (u,v), of 
a VPN and allocate sufficient bandwidth for the path 
according to the traffic requirements. However, 
customers may be unwilling to or unable to know the 
traffic requirements of each endpoint pair in a VPN. This 
is especially true when there are a large number of 
endpoints per VPN. 

In the hose model, customers only need to specify 
the ingress bandwidth requirement, b-(v), and egress 
bandwidth requirement, b+(v), for each endpoint, v, of a 
VPN. The value b-(v) is the maximum rate of traffic that 
endpoint v receives from the network at any time, and 
the value b+(v) is the maximum rate of traffic that 
endpoint v sends into the network. We only consider 
hose-model VPNs in our work as the hose-model appears 
to provide customers with more flexibility and 
convenience in specifying their bandwidth requirements. 

It is important to consider two kinds of failures, 
namely link failures and router failures. A common fault 
model for link failures assumed in literature and justified 
by network measurements [5, 6] is that at any given time 
only one link in the network fails. In other words, in the 
event of a link failure, no other link fails until the failed 
link is restored; and the probability of two or more links 
failing at the same time is very small. In our work, we 
use the single-link failure model to devise several 
bandwidth-guaranteed hose-model VPNs provisioning 
algorithms. Moreover, we hereafter term the restorable 
bandwidth-guaranteed hose-model VPNs under the 
single-link failure model as restorable VPNs. 

In order to meet the bandwidth requirement specified 
by customers, the NSP needs to reserve in a restorable 
VPN a sufficient amount of bandwidth on data 
transmission paths (or paths, for short) between each 
endpoint pair. We termed primary bandwidth as the 
bandwidth needed on the paths under the non-failure 
case. The additional bandwidth needed on the alternative 
paths under the link failure case is called the protected 
bandwidth. The restorable VPN provisioning algorithms 
proposed in this paper can be implemented on an MPLS 
network, as the path pinning capacity provided by MPLS 
technology can be used to direct the routing of the paths 
in a VPN [9, 10]. 

We organized the remainder of this paper into six 
sections. Section 2 is a review of related works. Section 
3 introduces the problem considered in this paper. In 
Section 4, we propose a new backup path set selection 
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algorithm called BANGUAD to address the problem of 
Italiano’s algorithm mentioned previously. Section 5 
proposes a bandwidth sharing algorithm as well as three 
restorable VPN provisioning algorithms. We also report 
experimental simulations that compare the performance 
of the proposed restorable VPN provisioning algorithms 
and Section 6 concludes this paper. 

2. Related Works 

Duffield et al. first introduced the VPN hose-model 
in [3, 4]. In their papers, they also proposed several 
hose-model VPN provisioning algorithms under the 
non-failure case. Kumar et al. argued that the 
provisioning of hose-model VPN should be based on a 
tree topology (hereafter called: VPN tree) and proposed 
the tree routing algorithm [7]. Given the bandwidth 
requirements of each endpoint in a VPN, the tree routing 
algorithm tries to find the VPN tree which needs 
minimum total bandwidth allocation on tree links 
(hereafter called: bandwidth-optimization VPN tree). In 
the case of symmetric bandwidth requirements (i.e., b+(v) 
= b-(v) for all VPN endpoints v), the tree routing 
algorithm is optimal and is guaranteed to find the 
bandwidth-optimization VPN tree. However, In the case 
of asymmetric bandwidth requirement, the problem of 
finding the bandwidth-optimization VPN tree has proven 
to be NP-hard, and the tree routing algorithm is a 
10-approximation algorithm.  

Jűttner et al. compared the bandwidth allocation 
efficiency of the hose-model VPN with that of the 
customer-pipe model VPN [8]. Gupta et al. investigated 
the issues concerning MPLS labels design and routing 
protocol on a VPN tree [10]. Italiano et al. proposed a 
backup paths set selection algorithm for a VPN tree [1]. 
The goal of Italiano’s work was to find a set of backup 
paths for the given VPN tree such that it could be 
restored under any single-link failure. Italiano’s 
algorithm tries to find the backup path set that needs the 
minimum total protected bandwidth allocation. However, 
this problem is NP-complete, and the Italiano’s 
algorithm is a 16-approximation algorithm. Chou 
proposed a multi-objective traffic-engineering 
framework for off-line provisioning of multiple 
customer-pipe model VPNs [11]. The goal of Chou’s 
framework was to minimize the maximum link 
utilization on the network backbone while minimizing 
the total bandwidth allocation for establishing VPNs. In 
our previous work, we pointed out that the hose-model 
VPNs provisioning algorithms proposed in [3, 4, 7] 
cannot achieve a satisfactory rejection ratio when 
multiple hose-model VPNs are to be established on-line 
on an MPLS network backbone. And hence a new 
provisioning algorithm called the Modified Tree Routing 

Algorithm (MTRA) was proposed to address this issue 
[17].  

3. Problem Formulation and Modeling 

In this section, we formulate the problem considered 
in this paper. The MPLS network backbone managed by 
the NSP on which restorable VPNs are established is 
modeled in subsection 3.1. The restorable VPN is 
described in subsection 3.2. We model the VPN setup 
requests describing the restorable VPNs requested by 
customers in subsection 3.3. Finally, we describe the 
main problem considered in this paper (called On-line 
Restorable VPNs Establishment Problem (ORVEP)) in 
subsection 3.4. 

3.1 Network Backbone Modeling 

The MPLS network backbone is modeled by an 
undirected graph G=(N,L), where N and L are the set of 
routers and the set of links, respectively. Let n and m 
denote the cardinality of N and L and B be the set of 
residual bandwidths on links of L. The amount of 
residual bandwidth on link l (l∈L) is denoted by B(l). 
Each endpoint ei in a VPN gains access to VPN service 
by connecting to a specific router ri in N. We called 
router ri the VPN access router of endpoint ei. In other 
words, for each VPN endpoint, there is a corresponding 
access router in N. 

3.2 The Restorable VPN 

Due to the excellent bandwidth allocation efficiency 
of adopting tree topology in provisioning hose-model 
VPN [8], we assume that the paths pu,v between each 
endpoints pair (eu,ev) of a VPN follow a VPN tree in this 
paper. Let vt and vt’ denote the VPN trees that connect 
all the access routers used by the restorable VPN under 
the non-failure and link failure cases, respectively. In 
order to meet the specified bandwidth requirement under 
the no-failure case, sufficient amount of primary 
bandwidth allocation is needed on links of vt. In addition, 
to ensure reliability of the paths in the VPN under the 
single-link failure model, a set of backup paths, 
BP={bp1,bp2,…bpk} corresponding to vt must be built. 
When any faulty link, e, on vt is detected, a backup path, 
bpe∈BP, that corresponds to e can be activated to 
recover the disconnected VPN tree into a new VPN tree, 
vt’ (i.e., vt’=vt-e+bpe). Then the new path between each 
endpoints pair (eu,ev) of the VPN follow the path in the 
new VPN tree vt’ (until e is repaired). However, in order 
to guarantee that the specified bandwidth requirement 
can also be met when any tree link failure occurs, the 
NSP may needs to reserve a certain amount of additional 
bandwidth on links of vt and on links of the backup 
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paths in BP. We term protected bandwidth as the 
additional bandwidth needed in this case.  

 
 
 
 
 
 
 
 
 
 

Fig. 1. An example of a restorable VPN 

An illustration of a restorable VPN is shown in Fig. 
1. The number besides endpoints e1, e2 and e3 represents 
their bandwidth requirement. The thick dotted lines form 
a VPN tree vt consisting of links l1 and l2. The thin 
dotted lines form a backup path bp1, which is used to 
recover any failure of tree links l1 and l2. In this example 
the backup path set BP only consisting one backup path, 
bp1. The two numbers in parenthesis besides the links of 
vt and links of bp1 represent the primary bandwidth and 
protected bandwidth needed on them. For example, the 
primary bandwidth and protected bandwidth needed on 
the tree link l1 are 4 and 2, respectively. Under the 
non-failure case, the 4 units of primary bandwidth 
allocation on l1 are enough to meet the specified 
bandwidth requirement. However when the l2 fails, the 
backup path bp1 is activated, and forms a new VPN tree 
vt’ (i.e., vt’=vt-l2+bp1), which consisting of tree links l1, 
l4, l5 and l8. The maximum traffic rate through l1 of vt’ is 
6, and 2 units of protected bandwidth allocation is 
needed. Given the bandwidth requirement of each 
endpoint on a VPN tree, for the rule of determining the 
maximum traffic rate through a tree link, please refer to 
[7]. Note that the Italiano’s algorithm do not allocate 
protected bandwidth on links of vt (l1 and l2 in this 
example), and hence cannot guarantee to meet the 
specified bandwidth requirement of the VPN 

3.3 VPN Setup Requests Modeling 

In this paper, we consider that the bandwidth 
requirement of each endpoint ej is symmetric (i.e., b+(v) 
= b-(v) for all VPN endpoints v), and use b(ej) to denote 
the bandwidth requirement of ej. Each VPN setup 
request describes a restorable VPN from the customer 
for the NSP to establish, and let vri be the ith VPN setup 
request. Each vri is represented by a n-tuple vector 
(h1,h2,…,hn), where n is the cardinality of the set N. The 
number of nonzero elements in vri represents the number 
of endpoints contained in the corresponding restorable 
VPN. The value of jth element, hj, of vri represents the 
bandwidth requirement of endpoint ej. Maxr denotes the 
maximum bandwidth guarantee provided by the NSP. 

3.4 On-line Restorable VPNs Establishment Problem 

The ORVEP defined in this paper is similar to the 
work in [12-15] which mainly considers on-line 
establishment of restorable bandwidth-guaranteed 
point-to-point paths. However, in the context of VPN 
provisioning, the basic unit of concern is a restorable 
VPN consisting of numerous restorable point-to-point 
paths (as opposed to one restorable point-to-point path) 
that makes the problem more challenging.  

In ORVEP, the NSP manages an MPLS network 
backbone G (as described in section 3.1) on which 
restorable VPNs are established. We also assume that a 
link failure may occur on G at any given time. We 
consider the situation where (a) VPN setup requests 
arrive one-by-one independently, and (b) the NSP does 
not have a priori knowledge about future VPN setup 
requests. This knowledge includes the number of future 
VPN setup requests, the number of endpoints contained 
in each VPN setup request, and the bandwidth 
requirement of each endpoint. In this situation, the NSP 
must process each VPN setup request in an on-line 
manner. 

Upon receiving a VPN setup request vri, the NSP 
triggers the restorable VPN provisioning algorithm to 
establish a corresponding VPN. The restorable VPN 
provisioning algorithm performs this task by first 
choosing a VPN tree vt and a backup paths set BP. The 
restorable VPN provisioning algorithm then allocates 
bandwidth on links of vt and links of the backup paths in 
BP (as described in section 3.2). If there is not enough 
residual bandwidth on the link when the bandwidth is 
being allocated, vri will be rejected.  

In ORVEP, we use the amount of bandwidth 
allocation and the rejection ratio as the performance 
metrics to compare different VPN provisioning 
algorithms. The optimization goal is to minimize the 
amount of bandwidth allocation and the rejection ratio 
for establishing on-line restorable VPNs. The rejection 
ratio is defined as:  

received requests of numbers total
rejected requests ofnumber   ratio rejection =  

Minimizing the amount of bandwidth allocation to 
establish restorable VPNs maximizes the amount of 
bandwidth left over for other QoS-guaranteed traffic to 
coexist on the MPLS network backbone. Minimizing the 
rejection ratio maximizes the number of requests 
successfully established on the network backbone, and 
hence maximizes the service revenue of the NSP  

In the ORVEP, we assume that the NSP uses a 
server-based strategy [16] for processing VPN setup 
requests. In a server-based strategy, the restorable VPN 
provisioning algorithm runs on a single entity called 
VPN request server (VRS). The VRS also keeps the 
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complete link state topology database and is responsible 
for computing an explicit path for each endpoint pair of 
a restorable VPN. The paths then can be setup using a 
signaling protocol such as RSVP or CR-LDP. For 
computing the explicit paths, the VRS needs to know the 
current network topology and link residual bandwidth. 
We assume that a link-state routing protocol exists for 
information acquisition. 

4. Bandwidth-Guaranteed Backup Paths Set 
Algorithm 

In this section, we propose a new backup path 
section algorithm called BANwidth-GUAranteeD backup 
paths Set Algorithm (BANGUAD). Before explaining the 
algorithm in more detail, we need to define some 
notation. Table 1 summarizes the notation used in the 
algorithm. The pseudo code of BANGUAD is described 
in Table 2. 

Table1. The notation used in BANGUAD 
Symbol Description 

H=(N,L-L(vt)) A network graph obtained by removing links 
on vt from G 

N(vt) Routers set on the input VPN tree vt 
L(vt) Links set on the input VPN tree vt 

spu,v 
A shortest path from router u to router v in the 
graph H, where u,v∈N(vt) 

L(BP) 
Link set which comprise links used by bp1 
∪bp2…∪bpk, where bpi is a backup path in 
the output set BP 

cbp(l) The vector which indicate the corresponding 
backup path for the link l, where l∈L(vt) 

COVER(p) 
A subset of links in L(vt), where insert a path 
p into vt will create a cycle containing all of 
them 

cover(p) {l∈COVER(p)∣cbp(l)= Ø} 

spu,v 
A shortest path from node u to node v in 
graph H, where u and v are nodes in N(vt) 

SP 
A candidate backup path set which consisting 
the shortest paths spu,v for each (u,v) pair, 
where u and v are nodes in N(vt) 

PB(l) The amount of primary bandwidth allocation 
on link l for vri, where l∈L(vt) 

pb(l) 
The amount of protected bandwidth 
allocation on link l for vri, where 
l∈(L(vt)∪L(BP)) 

α(p) 
Total additional amount of protected 
bandwidth required on all link l (l∈ 
COVER(p) ∪p), if p is included into BP in 
this iteration 

In BANGUAD, the backup path set BP is first found 
out (from line 6 to line 10), then the amount of protected 
bandwidth allocation needed on links l (l∈L(vt)∪L(BP)) 
is computed (from line 12 to line 18). Initially, the set 
BP, SP and the corresponding backup path for each tree 
link are set to null value (Ø) in line 1 and line 2. Because 
the links of all backup paths in BP must be link-disjoint 
with those of vt (i.e., L(vt)∩L(BP)=Ø), the BANGUAD 

search candidate backup paths on the network graph H. 
The code from line 3 to line 5 compute a shortest path 
spu,v for each tree router pair (u,v) and include them as 
elements of the candidate backup path set SP. Note that 
if there is no paths between the tree router pair (u,v), the 
value of spu,v is set to null value.  

Table2. The pseudo code of BANGUAD 
Bandwidth-Guaranteed backup paths Set Algorithm 
Input: 1. A VPN setup request vri, 2. a network graph 
G=(N,L), 3. A VPN tree, vt that connects all VPN access 
routers used in vri and 4. The amount of primary bandwidth 
allocation PB(l) on links l∈L(vt) for vri. 
Output: 1. A set of backup paths, BP={bp1,bp2,…bpk} for 
vt such that vt can tolerate any single link failure, 2. A 
vector which indicates the corresponding backup path for 
the link l, where l∈L(vt)and 3. The protected bandwidth 
allocation pb(l) on all links l∈L(vt) ∪L(BP) for vri. 
Algorithm: 
1. BP:= Ø; SP:= Ø; 
2. For each link l∈L(vt) {cbp(l):= Ø;} 
3. For each distinct node pair (u,v) (u,v∈N(vt)) 
4. { spu,v:=Compute_Shortest_Path(u,v); 
5.   if (spu,v≠Ø) SP:=SP ∪ spu,v; } 
6. Repeat { p:=Select_Minimum_Cost_Path(SP); 
7.   For each l∈cover(p) { cbp(l):= p; } 
8.   BP:=BP∪ p; SP:=SP-p; 
9.   For each p∈SP {Update_cost(p);}  
10. } Until (cbp(l)≠Ø, for all l∈L(vt) ); 
11. For eack link l∈ L { pb(l):=0} 
12. For each link e∈L(vt)  
13. { vt’:=vt-e+cbp(e); 
14.  for each l∈L(vt’){ 
15.  max_traffic(l):=Compute_Max_Traffic(vt’,vri); 
16.  if (max_traffic(l) > (PB(l)+pb(l)) ) 
17.    {pb(l):=max_traffic(l)-PB(l);} } 
18. }  
19. Output (BP);  
20. For each l∈(L(vt) ∪L(BP)) {Output(pb(l));} 

The code from line 6 to line 10 is a loop which picks 
some paths from the candidate backup paths set SP to 
form the output set BP. The loop iterates until all the 
links on the input VPN tree find out their corresponding 
backup path (i.e., cbp(l)≠Ø, for all l∈L(vt) as described 
in line 10). The cost function associated to each path p in 
the set SP is defined as: 

)(cover
)(

)(
p

p
pCost

α
=

 

In the loop from line 6 to line 10, a minimum cost 
path p in the set SP is first selected in line 6. Then p is 
assigned as the corresponding backup path to all the tree 
links in cover(p) in line 7. The path p is added to the set 
BP and removed from the set SP in line 8. As the 
assignment of the corresponding backup path to tree 
links in cover(p) may changes the cost values associated 
with some candidate backup paths in SP (i.e., the 
denominator of the cost function associated with some 
paths may change), the cost value associated with each 
path in SP is updated accordingly in line 9. 

The amount of protected bandwidth allocation on 
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link l, pb(l), is determined by the difference between the 
maximum traffic through l under any possible tree link 
failure and the amount of primary bandwidth allocation 
on l. The code from line 12 to line 18 computes the pb(l) 
value for all links l on (L(vt) ∪L(BP)). Initially, the 
amount protected bandwidth allocation pb(l) on all links 
l is set to zero in line 11. The for statement in line 12 
considers the case of any tree link e (e∈L(vt)) fail. When 
any tree link e fail, it’s corresponding backup path cbp(e) 
is activated and form a new VPN tree vt’ in line 13. 
Given the new VPN tree vt’ and a setup request vri, the 
code in line 15 computes the maximum traffic rate 
through l, where l are links on vt’. If the maximum 
traffic rate through l exceeds the total allocated 
bandwidth (i.e., max_traffic(l) > PB(l)+pb(l) ), the 
protected bandwidth allocation pb(l) is updated in line 
17. 

We use fig. 2 to explain the BANGUAD. The input 
VPN setup request vr1=(1, 5, 3, 2, 0, 0) and the input 
VPN tree is shown as the solid dotted lines. The input 
VPN tree consist links l1, l2 and l7, with 1, 3 and 2 units 
of primary bandwidth allocation, respectively. Initially, 
the corresponding backup path of tree links l1, l2 and l7 
are set to null value and the protected bandwidth 
allocations on all links are set to 0. Before the first 
execution of the code from line 6 to line 10, the 
candidate backup paths set SP={spA,D, spC,D}. The 
shortest path spA,D is composed of link l4 and the shortest 
path spC,D are composed of l8 and l5. The cost value 
associated to candidate backup path spA,D and spC,D are 
2.5 and 5.5. And hence, after the first execution of the 
code from line 6 to line 10, the spA,D is selected. Because 
the cover(spA,D)={l1, l7}, so the corresponding backup 
path for tree links l1 and l7 are set to spA,D.  

In the second execution of the code from line 6 to 
line 10, the spC,D is selected. Because the 
cover(spC,D)={l2}, so the corresponding backup path for 
tree links l2 is set to spC,D. The BANGUAD output the set 
BP which consists of two backup paths spA,D, spC,D 
shown as the thin dotted lines. After the execution of the 
code from line 11 to line 20, the amount protected 
bandwidth allocation on link l (l∈L(vt) ∪L(BP) ) is 
shown in the second number in the parenthesis. 

 
 

 
 
 
 
 
 
 
 
 

Fig. 2. An illustration f the BANGUAD 

5. Algorithms under ORVEP 

In this section, we propose algorithms under ORVEP. 
In subsection 5.1, we elaborate the concept of bandwidth 
sharing between multiple restorable VPN. In subsection 
5.2, we propose a bandwidth-sharing algorithm that can 
be subsumed in restorable VPN provisioning algorithms 
to improve their performance. In subsection 5.3, we 
introduce three restorable VPN provisioning algorithms. 
In subsection 5.4, we present experimental simulations 
that compare the performance of the three provisioning 
algorithms. 

5.1 Bandwidth Sharing in Restorable VPNs 

When establishing a restorable 
bandwidth-guaranteed point-to-point path under the 
single-link failure model, both an active path and an 
alternative link-disjoint path are needed. Two restorable 
bandwidth-guaranteed point-to-point paths cannot share 
their allocated bandwidth on links of alternative paths if 
their active paths are not link-disjoint [12]. However, in 
the case of VPN provisioning under the single-link 
failure model, two restorable VPNs whose VPN trees are 
not link-disjoint may have potential in sharing their 
protected bandwidth allocation. We use an example to 
elaborate our argument. 

When the NSP (or VRS) receive two VPN setup 
requests vr1=(4,6,2,0,0,0) and vr2=(0,2,3,0,0,4). In the 
non-sharing case, after establishing the two restorable 
VPNs, the sketch of G is shown in fig. 3. The endpoint 
ei,j represents the jth endpoint of the VPN, vri. Thick 
dotted lines and thick dashed lines depict the VPN trees 
corresponding to vr1 and vr2; thin dotted lines and thin 
dashed lines depict the backup paths corresponding to 
vr1 and vr2, respectively. The numbers inside the 
parenthesis are the amount of primary bandwidth and 
protected bandwidth allocated on the links for vr1 and 
vr2. Note that the two VPNs overlap on l2 and l5. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. The sketch of G after establishing two restorable VPNs 

If the provisioning algorithm does not consider the 
sharing of bandwidth allocation among VPNs, the 
bandwidth on the links may be over-allocated. For 
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example, totally 9 and 8 units of bandwidth allocation 
are needed on l2 and l5, respectively to accommodate the 
two restorable VPNs in the non-sharing case (i.e., a total 
of 4 units of primary bandwidth and 5 units of protected 
bandwidth on l2, and a total of 8 units of protected 
bandwidth on l5). In this example, if the restorable VPN 
provisioning algorithm considers sharing bandwidth 
allocation among VPNs (after admitting and allocating 
bandwidth to the restorable VPN corresponding to vr1), 
then there is no need for any additional protected 
bandwidth allocation on l2 and l5 when admitting the 
restorable VPN corresponding to vr2. In subsection 5.2, 
we will show that if the bandwidth-sharing algorithm is 
subsumed to the restorable VPN provisioning algorithm, 
totally only 8 and 4 units of bandwidth allocation is 
enough on l2 and l5, respectively, to accommodate both 
the two restorable VPNs. 

5.2 Bandwidth Sharing Algorithm for Restorable VPNs 

To implement the bandwidth-sharing algorithm, the 
VRS must keep the amount of primary bandwidth and 
protected bandwidth that has been allocated, denoted by 
PBG(l) and pbG(l), respectively, for each link l on G. In 
addition, a traffic transfer matrix for G, denoted by 
TTM(G) is also required. The value of TTMi,j(G) keeps 
the maximum amount of VPN traffic going through link 
li when link lj fail.  

When a VPN setup request vri is received, VRS 
computes the VPN flow transfer matrix VFM(vri) 
associated with it. The value of VFMi,j(vri) keeps the 
maximum amount of traffic in the VPN of vri going 
through link li when the tree link lj fails. Note that given 
the VPN tree vt and the backup path set BP for vri, the 
VFM(vri) cam be computed easily. Let m be the 
cardinality of the set L, then both VFM(vri) and TTM(G) 
are m by m matrix. The bandwidth-sharing algorithm for 
restorable VPNs is described in table 3. 

For ease of explanation, we assume that vri is always 
admitted. The amount of primary bandwidth allocation 
after admitting the vri is updated in line 1. Then The 
VPN flow transfer matrix associated with vri is 
computed in line 2. The traffic transfer matrix for G is 
updated from line 3 to line 5. The ith element of array 
Max_row_traffic keeps the maximum amount of traffic 
passing through link i under the single link failure case. 
In each iteration of the code from line 6 to line 12 the 
value of Max_row_traffic[li] is first computed, then the 
value of pbG(li) for link li can be determined. The rule for 
determining the value of pbG(li) is that if the amount of 
bandwidth that has been allocated on link i (i.e., PBG(i)+ 
pbG(i)) is less than the value of Max_row_traffic[i], then 
the value of pbG(i) is updated to the value of 
(Max_row_traffic[i]-PBG(i)). 

 

Table 3. The bandwidth-sharing algorithm for restorable VPNs 
Bandwidth Sharing Algorithm for Restorable VPNs 
Input: 1. The amount of primary bandwidth that has been 
allocated, denoted by PBG(l), and the amount of protected 
bandwidth that has been allocated, denoted by pbG(l), for 
each link l on G, 2. The traffic transfer matrix TTM(G), 3. A 
VPN setup request vrk, 4. The VPN tree vt and the backup 
path set BP for vri and 5 The primary bandwidth allocation 
PB(l) on the link l of vt for vrk. 
Output: The amount of primary bandwidth that has been 
allocated, denoted by PBG(l) and the amount of protected 
bandwidth that has been allocated, denoted by pbG(l) on link l 
(l∈L) after admitting the request vrk. 
Algorithm: 
1. for (each l∈L(vt)) {PBG(l):= PBG(l)+PB(l);} 
2. VFM(vri):=Compute_VFM(vri,vt,BP); 
3. for (i=1 to m) { 
4.  for (j=1 to m) 
5.   {TTMi,j(G):= TTMi,j(G)+ VFMi,j(vri);} } 
6. for (i=1 to m) { 
7.  Max_row_traffic[li]:=0; 
8.  for (j=1 to m) { 
9.   if (TTMi,j(G)>Max_row_traffic[li]) 
10.   { Max_row_traffic[li]:= TTMi,j(G);} } 
11.  if ( Max_row_traffic[li]> (PBG(li)+ pbG(li)) ) 
12.   { pbG(li):= Max_row_traffic[li]-PBG(li);} } 

We use the example in section 5.1 to illustrate the 
bandwidth-sharing algorithm we proposed. After 
processing vr1=(4,6,2,0,0,0) and the execution of the 
code from line 1 to line 10 for vr2=(0,2,3,0,0,4), the 
amount of primary bandwidth that has been allocated on 
links of L and the traffic transfer matrix for G (after the 
execution of the code from line 1 to line 13) are: 
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Note that from the above TTM(G), we can obtain 
Max_row_traffic[l2]=6 and Max_row_traffic[l5]=4. After 
the execution of the code line 11 and line 12, there are 
no need for additional protected bandwidth allocation on 
links l2 and l5 (e.g., Max_row_traffic[li]<=(PBG(li)+ 
pbG(li), for l2 and l5). 
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5.3 The Proposed Restorable VPN Provisioning 
Algorithms 

A restorable VPN provisioning algorithm may 
contain the following three main components: (1) VPN 
provisioning algorithm for the non-failure case, (2) 
backup path set selection algorithm, and (3) 
resource-sharing mechanism. With the trade-off between 
the implementation complexity and performance benefit 
in mind, the NSP may design restorable VPN 
provisioning algorithms with different flavors by 
adopting various approaches for the three components. 
In this section, we proposed three provisioning 
algorithms for establishing on-line of restorable VPNs 
under ORVEP.  

Algorithm A: Optimal-Tree without bandwidth 
sharing 
– Find a VPN tree vt by using tree routing algorithm 

[7]. 
– Find the corresponding backup path set for vt by 

using BANGUAD. 
– Disable the bandwidth-sharing algorithm introduced 

in section 5.2. 
Algorithm B: Optimal-Tree with bandwidth sharing 
– Same as Algorithm A, except the enabling of the 

bandwidth sharing-algorithm introduced in section 
5.2. 

Algorithm C: Enumerate-tree with bandwidth 
sharing 
– For each node v on G, find a VPN tree vtv by using 

breadth first search algorithm [17]. 
– For each VPN tree vtv, find its corresponding backup 

path set BPv by using BANGUAD. 
– Select the combination of VPN tree and backup path 

set with minimum additional bandwidth allocation. 
– Enable the bandwidth sharing algorithm introduced in 

section 5.2. 

5.4 Experimental Simulations 

To evaluate and compare the performance of the 
restorable VPN provisioning algorithms proposed in 
section 5.3, we have conducted two simulations. Due to 
extensive adaptation of the KL topology as the MPLS 
network backbone in the literature about MPLS traffic 
engineering [12, 14, 17], we also adopt it as G in both 
simulations. Note that the KL topology is a network 
graph consisting of 15 routers and 28 links. 

Simulation 1: The bandwidth allocation efficiency in 
the three restorable VPN provisioning algorithms 

The parameter configuration of Simulation 1 is 
shown in Table 4. In this simulation, we consider the 
case where the MPLS network backbone G has a 

sufficient amount of residual bandwidth to accommodate 
all the restorable VPNs (i.e., all VPN setup requests 
received are accepted). Let K denote the total number of 
requests received and p denote the number of endpoints 
in each restorable VPN. We use the total amount of 
bandwidth allocation for processing K restorable VPNs 
as the performance metric to compare different VPN 
provisioning algorithms. 

Table 4. Parameter configuration of Simulation 1 
B(li) p Maxr K 
∞ 5 25~150 step 25 100 

The simulation results are shown in fig. 4. The x-axis 
represents the value of Maxr, and the y-axis represents 
the amount of bandwidth allocation in the restorable 
VPN provisioning algorithms. The value of Maxr varies 
from 25 to 150 with a step of 25. We conducted 10 runs 
for each value of Maxr, and took the average amount of 
bandwidth allocation in these 10 runs. As expected, the 
average amount of bandwidth allocation increases as the 
value of Maxr increases in all three algorithms. In all the 
Maxr values considered in this simulation, the difference 
of the average amount of bandwidth allocation between 
Algorithm A and Algorithm B range from 50.25% to 
51.69%. This means that the inclusion of the 
bandwidth-sharing algorithm into the VPN provisioning 
algorithms can reduce about half of the total bandwidth 
allocation in the provisioning algorithms. On the other 
hand, in all the Maxr values considered in this paper, the 
difference of the average amount of bandwidth 
allocation between Algorithm B and Algorithm C range 
from 8.17% to 11.20%. The bandwidth saving of 
Algorithm C over Algorithm B is caused by selection of 
a good combination of VPN tree and backup path set for 
all VPN setup requests. 

Fig. 4. Comparison of the amount of bandwidth allocation in 
the three provisioning algorithms 
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Simulation 2: The rejection ratios achieved in the 
three provisioning algorithms 

The parameter configuration of Simulation 2 is 
shown in Table 5. In this simulation, we consider the 
case where the MPLS network backbone G may not 
have sufficient amount of residual bandwidth to 
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accommodate some VPNs (i.e., some VPN setup request 
received may be rejected). We use the rejection ratio for 
processing K VPN setup requests as the performance 
metric to compare restorable VPN provisioning 
algorithms. 

Table 5. Parameter configuration of Simulation 2 
B(li) p Maxr K 

Light links=3,000 units 
Dark links=12,000 units 5 25~150 

step 25 100 

The simulation results are shown in fig. 5. The x-axis 
represents the value of Maxr, and the y-axis represents 
the rejection ratios in the three restorable VPN 
provisioning algorithms. The value of Maxr varies from 
25 to 150 with a step of 25. We conducted 10 runs for 
each value of Maxr, and took the average rejection ratios 
in these 10 runs. As expected, the average rejection 
ratios raise as the value of Maxr increases in all three 
algorithms. The average rejection ratio achieved by 
Algorithm C is much less than the other two 
provisioning algorithms in almost all the Maxr values 
considered in this simulation (except for the light load 
case, when the value of Maxr is 25, the average rejection 
ratios is 0% in all the three algorithms). On the other 
hand, the difference of the rejection ratios achieved by 
Algorithm A and Algorithm B is notable, meaning that 
the inclusion of the bandwidth sharing algorithm into the 
restorable VPN provisioning algorithms is very effective 
in reducing the rejection ratio. 

Fig. 5. The comparison of rejection ratios achieved in the three 
VPN provisioning algorithms  
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6. Conclusions  

Previous literature about restoration issue in 
hose-model VPN focus on finding a backup path set for 
a given VPN tree such that the VPN can be restored 
under the single-link failure model [1]. However, the 
backup path selection algorithm proposed in these 
literatures can’t guarantee to meet the specified 
bandwidth requirements under single-link failure model. 
To address this issue we proposed a new backup path 

selection algorithm for a VPN tree called BANGUAD. To 
our knowledge until now, issues about establishing 
multiple bandwidth-guaranteed hose-model VPNs on a 
MPLS network backbone under the single-link failure 
model have not been investigated. In this paper, we 
proposed a bandwidth sharing algorithm as well as three 
restorable VPN provisioning algorithms for on-line 
establishment of multiple bandwidth-guaranteed 
hose-model VPNs. 
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