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SUMMARY We study the problem of optimizing admission
control policies in mobile multimedia cellular networks when pre-
dictive information regarding movement is available and we eva-
luate the gains that can be achieved by making such predictive
information available to the admission controller. We consider a
general class of prediction agents which forecast the number of
future handovers and we evaluate the impact on performance of
aspects like: whether the prediction refers to incoming and/or
outgoing handovers, inaccurate predictions, the anticipation of
the prediction and the way that predictions referred to different
service classes are aggregated. For the optimization process we
propose a novel Reinforcement Learning approach based on the
concept of afterstates. The proposed approach, when compa-
red with conventional Reinforcement Learning, yields better solu-
tions and with higher precision. Besides it tackles more efficiently
the curse of dimensionality inherent to multimedia scenarios.

Numerical results show that the performance gains measu-
red are higher when more specific information is provided about
the handover time instants, i.e. when the anticipation time is
deterministic instead of stochastic. It is also shown that the uti-
lization of the network is maintained at very high values, even
when the highest improvements are observed. We also compare
an optimal policy obtained deploying our approach with a pre-
viously proposed heuristic prediction scheme, showing that plenty
of room for technological innovation exists.
key words: cellular mobile multimedia networks, admission

control, optimization, predictive information

1. Introduction

Session Admission Control (SAC) is a key traffic ma-
nagement mechanism in mobile multimedia cellular ne-
tworks to provide QoS guarantees. Terminal mobility
makes it very difficult to guarantee that the resources
available at the time of session setup will be available
in the cells visited during the session lifetime, unless a
SAC policy is exerted. The design of the SAC system
must take into account not only packet level issues (like
delay, jitter or losses) but also session level issues (like
blocking probabilities of both session setup and hando-
ver requests). This paper explores the second type of
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issues from a novel optimization approach that exploits
the availability of movement prediction information. To
the best of our knowledge, applying optimization tech-
niques to this type of problem has not been sufficiently
explored. The results provided define theoretical limits
for the gains that can be expected if handover predic-
tion is used, which could not be established by deplo-
ying heuristic SAC approaches.

In systems that do not have predictive informa-
tion available, both heuristic and optimization approa-
ches have been proposed to improve the performance
of the SAC at the session level. Optimization approa-
ches not using predictive information have been studied
in [1]–[4]. In systems that have predictive information
available, most of the proposed approaches to improve
performance are heuristic, see for example [5], [6] and
references therein.

Our work has been motivated in part by the study
in [5]. Briefly, the authors propose a sophisticated mo-
vement prediction system and a SAC scheme that ta-
king advantage of movement prediction information is
able to improve system performance. One of the novel-
ties of the proposal is that the SAC scheme takes into
consideration not only incoming handovers to a cell but
also the outgoing ones. The authors justify it by ar-
guing that considering only the incoming ones would
led to reserve more resources than required, given that
during the time elapsed since the incoming handover
is predicted and resources are reserved until it effecti-
vely occurs, outgoing handovers might have provided
additional free resources, making the reservation unne-
cessary.

In this paper we explore a novel Reinforcement
Learning (RL) optimization technique based on afters-
tates, which was suggested in [7]. RL is a simulation-
based optimization technique in which an agent learns
an optimal policy by interacting with an environment
which rewards the agent for each executed action. In
afterstates RL, decisions are taken based on the resul-
ting state after the action is performed rather than on
the current state at which the decision is taken. We
show that, compared to conventional RL, afterstates
RL achieves better solutions and does it with higher
precision. Additionally, the afterstates RL is better sui-
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ted to multiservice scenarios as it gives rise to a lower
cardinality state space than conventional RL. In [8] the
performance of an exact optimization approach based
on dynamic programming was compared with the per-
formance of the conventional and afterstates reinforce-
ment learning approaches in a single service scenario.
The conclusion was that the performance of SAC poli-
cies obtained by the afterstates approach was as good
as those obtained by the exact approach.

We consider a general multiservice scenario with
available movement predictive information that feeds
the SAC, and carry out a numerical evaluation to asses
the impact of using afterstates RL on the one hand, and
several aspects regarding the nature of the predictive
information on the other. In an earlier version of the
prediction scheme we were providing the optimization
process only with state information of the neighbou-
ring cells but without any predictive information. We
obtained that the gain was not significant, possibly be-
cause the information was not sufficiently specific. The
authors in [9] reached the same conclusion but using
a genetic algorithm to find near-optimal policies. The
predictive movement information considered is charac-
terized by: its degree of certainty, whether it refers to
incoming and/or outgoing handovers, the time frame
at which it is forecasted to become effective, and the
way that predictions related to different services are
aggregated.

The contributions of this paper are three-fold: con-
sidering the use of movement predictive information in
the SAC from an optimization perspective, evaluating
the effect of the characteristics of that predictive in-
formation on the SAC performance and exploring the
application of an afterstates RL technique to the SAC
problem. Besides, we compare an optimal policy obtai-
ned deploying our approach with a previously proposed
heuristic prediction scheme. The big performance dif-
ference between both approaches shows that innovative
solutions for the design of SAC systems that make use
of predictive movement information are still possible.

In Section 2 we describe the models of the system
and of the different types of predictive information con-
sidered. The optimization framework and a description
of the developed afterstates RL approach is presented in
Section 3. A numerical study is provided in Section 4,
which compares the RL approach based on afterstates
with the conventional RL one and quantifies the im-
pact on system performance of the different types of
predictions explored. In Section 4 we also compare our
proposed optimization approach to an heuristic one for
the design of SAC policies. Finally, a summary of the
paper and some concluding remarks are given in Sec-
tion 5.

2. Model Description and Prediction System

We consider a single cell system and its neighbourhood,

(a) Basic operation of the IPA

a bU
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(b) Basic parame-
ters of the classifier

Fig. 1 IPA and classifier models.

where the cell has a total of C resource units and the
neighbourhood Cp resource units, being the physical
meaning of a unit of resources dependent on the speci-
fic technological implementation of the radio interface.
A total of N different services are offered by the sys-
tem. For each service new and handover session arrivals
are distinguished so that there are N services and 2N
arrival types.

For the sake of mathematical tractability we make
the common assumptions of Poisson arrival processes
and exponentially distributed random variables for cell
residence time and session duration. The arrival rate
for new (handover) sessions of service i is λnc

i (λhc
i )

and a request of service i consumes bi resource units,
bi ∈ N. For a packet based air interface, bi represents
the effective bandwidth of the session [10], [11]. For
service i, the session duration and cell residence rates
are µs

i and µr
i respectively. The resource holding time in

a cell for service i is also exponentially distributed with
rate µi = µs

i + µr
i and the mean number of handovers

per session is Nh
i = µr

i /µs
i . Without loss of generality,

we will assume that only one session is active per mobile
terminal (MT).

Given that the focus of our study was not the des-
ign of the prediction agent (PA), we used a model of it
instead.

2.1 Prediction Agent for Incoming Handovers

An active MT entering the cell neighbourhood is la-
beled by the prediction agent for incoming handovers
(IPA) as “probably producing a handover” (H) or the
opposite (NH), according to some of its characteris-
tics (position, trajectory, velocity, historic profile,...)
and/or some other information (road map, hour of the
day,...). After an exponentially distributed time, the
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actual destiny of the MT becomes definitive and either
a handover into the cell occurs or not (for instance be-
cause the session ends or the MT moves to another cell)
as shown in Fig. 1(a). The SAC system is aware of the
number of MTs labeled as H at any time.

The model of the classifier is shown in Fig. 1(b)
where the square (with a surface equal to one) repre-
sents the population of active MTs to be classified. The
shaded area represents the fraction of MTs (SH) that
will ultimately move into the cell, while the white area
represents the rest of active MTs. Notice that part of
the MTs that will move into the cell can finish their
active sessions before doing so. The classifier sets a
threshold (represented by a vertical dashed line) to dis-
criminate between those MTs that will likely produce
a handover and those that will not. The fraction of
MTs falling on the left side of the threshold (ŜH) are
labeled as H and those on the right side as NH. There
exists an uncertainty zone, of width U , which accounts
for classification errors: the white area on the left of
the threshold (Ŝe

H) and the shaded area on the right of

the threshold (Ŝe
NH). The parameter x represents the

relative position of the classifier threshold within the
uncertainty zone. Although for simplicity we use a li-
near model for the uncertainty zone it would be rather
straightforward to consider a different model.

As shown in Fig. 1(a), the model of the IPA is
characterized by three parameters: the average sojourn
time of the MT in the predicted stage (µp

i )
−1, the pro-

bability p of producing a handover if labeled as H and
the probability q of producing a handover if labeled as
NH. Note that 1− p and q model the false-positive and
non-detection probabilities respectively and in general
q 6= 1 − p. It can be shown that

1 − p =
Ŝe

H

ŜH

=
x2

(U(2SH − U + 2x))
(1)

q =
Ŝe

NH

(1 − ŜH)
=

(U − x)
2

(U(2 − 2SH + U − 2x))
(2)

2.2 Prediction Agent for Outgoing Handovers

The model of the prediction agent for outgoing hando-
vers (OPA) is shown in Fig. 2. The OPA labels active
sessions in the cell as H if they will produce a handover,
i.e. they will abandon the cell before their ongoing ses-
sion finishes, or as NH otherwise. The classification is
performed for both handover sessions that enter the cell
and new sessions that initiate in the cell, and are ca-
rried out by a classifier which model is the same as the
one used in the IPA. The time elapsed since the session
is labeled until the actual destiny of the MT becomes
definitive is the cell residence time that, as defined, is
exponentially distributed with rate µr

i . The fraction of
sessions that effectively execute an outgoing handover
is given by Sout

H = µr
i /(µs

i +µr
i ). The OPA model is cha-

racterized by only two parameters 1 − p and q, which

Fig. 2 Basic operation of the OPA.

meaning is the same as in the IPA model. Note that
1 − p and q can be related to the classifier parameters
by the expressions (1) and (2), changing SH by Sout

H .

2.3 Stochastic and Deterministic Time Prediction

In the prediction agents described in Sections 2.1
and 2.2, the amount of time elapsed since an active
mobile terminal (MT) is deemed as ”probably produ-
cing a handover” until the handover actually occurs is
not predicted by the PA and we model it by an ex-
ponential random variable. This type of prediction is
called stochastic prediction.

However, we can include into the PA a more precise
knowledge of the future handover time instants for eva-
luating its impact on performance. Intuitively, it seems
obvious that handovers taking place in a near future
would be more relevant for the SAC process than those
occurring in an undetermined far future. This predic-
tion is called deterministic prediction. More precisely,
in deterministic prediction both the IPA and OPA ope-
rate as before but they label the sessions T time units
before the destination of the MT is definitive, i.e. now
the IPA (OPA) informs of the number of incoming (out-
going) sessions that are finishing or producing a han-
dover in less than T time units. A similar approach
is used in [5], where authors predict the incoming and
outgoing handovers that will take place in a time win-
dow of fixed size.

3. Optimization by Reinforcement Learning

The information provided by the IPA and/or the OPA
and the state of the cell (number of occupied resources)
are used to find the optimal admission policy and its
performance. We formulate the optimization problem
as an infinite-horizon finite-state Semi-Markov Deci-

sion Process (SMDP) under the average cost criterion.
SMDPs are a special kind of Markov decision processes

(MDPs) appropriate for modeling continuous-time sys-
tems in which the time between decision epochs is not
constant. Formally, a MDP can be defined as a tuple
{S,A,P , C}, where S is a finite set of states, A is a fi-
nite set of actions, P is a state transition function and
C is a cost function. The agent can control the state of
the system by choosing actions a from A, influencing in
this way the state transitions. The transition function
P : S ×A → S specifies the effect of taking an action
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at a given state.
The agent knows the state of the system s at any

time and it chooses actions based only on the current
state. We consider deterministic stationary Markovian
policies, π : S → A, which defines the next action of
the agent based only on the current state x, i.e. an
agent adopting this policy performs action π(s) in state
s. For the problems we consider, optimal stationary
Markovian policies always exist.

We assume a bounded, integer-valued cost function
C : S → N, and denote by c(x, a) the finite cost for
executing action a in state x. We define the total cost
accumulated in the interval [0, t] as

wπ(x0, t) =

t
∑

m=0

c
(

xm, π(xm)
)

If the environment is stochastic then wπ(x0, t) is a ran-
dom variable. Under the average cost criterion we seek
to minimize the average expected cost rate over time t,
as t → ∞. When the system starts at state x and fo-
llows policy π, the average expected cost rate is denoted
by γπ(x) and is defined as

γπ(x) = lim
t→∞

1

t
E [wπ(x, t)]

In a system like ours, it is not difficult to see that
for every deterministic stationary policy the embedded
Markov chain has a unichain transition probability ma-
trix, and therefore the average expected cost rate does
not vary with the initial state [12]. We call it the ”cost
rate” of the policy π, denote it by γπ and consider the
problem of finding the policy π∗ that minimizes γπ,
which we name the optimal policy.

It can be shown that for our systems the cost struc-
ture is chosen so that the average expected cost rate
represents a weighted sum of the loss rates

γπ =

N
∑

i=1

(ωn
i Pn

i λn
i + ωh

i P h
i λh

i )

where ωn
i (ωh

i ) is the relative weight associated to the
blocking of a new (handover) request and Pn

i (P h
i )

is the blocking probability of new (handover) requests,
both of service i. In general, ωn

i < ωh
i since the loss of

a handover request is less desirable than the loss of a
new session setup request.

Decision epochs are those time instants in which
we must select an action from the set of possible ac-
tions A := {0 = reject, 1 = admit}. Given that no
actions are taken at session departures, then only the
arrival events are relevant to the optimization process.
We select one of the 2N arrival types as the highest
priority one, being its requests always admitted while
free resources are available, and therefore no decisions
are taken for them. The cost structure is defined as
follows. At any decision epoch, the cost incurred by

x ...x’ y

Immediate
reward

accumulated
reward

......

learning

decision epochm decision epochm+1

afterstate

immediate
reward

(a) Conventional RL.

x ...x’ y

decision epochm decision epochm+1

......

learning

afterstate

accumulated
reward

y’

afterstate

immediate
reward

(b) Afterstates RL.

Fig. 3 RL approach.

accepting any arrival type is zero and by rejecting a
new (handover) request of service i is ωn

i (ωh
i ). With

this framework, further accrual of cost occurs when the
system has to reject requests of the highest priority
arrival type between two decision epochs.

The Bellman optimality recurrence equations for a
SMDP under the average cost criterion when learning
is done at each decision epoch can be written as

h∗(x)=min
a∈Ax

{w(x, a)−γ∗τ(x, a)+
∑

y∈S

pxy(a) min
a′∈Ay

h∗(y, a′)}

where h∗(x, a) is the average expected relative cost of
taking the optimal action a in state x and then conti-
nuing indefinitely by choosing actions optimally, γ∗ is
the average expected cost rate of the optimal policy,
w(x, a) is the average cost of taking action a in state
x, τ(x, a) is the average sojourn time in state x under
action a (i.e. the average time between decision epo-
chs) and pxy(a) is the probability of moving from state
x to state y under action a = π(x).

3.1 Afterstates Reinforcement Learning

Intuitively, in systems as the one being considered, af-
terstates RL is based on the idea that what is relevant
in the RL approach is the state reached immediately
after the action is taken. More specifically, all states at
decision epochs in which the immediate actions taken
drive the system to the same afterstate, would accu-
mulate the same future cost if the same future actions
are taken. The difference between conventional RL and
afterstates RL is shown in Fig. 3.

Being x0 the number of resource units occupied
in the cell under study and xin (xout) the number of
resources occupied by sessions labeled as H by the IPA
(OPA), the state spaces for the different scenarios are

S := {x = (x0, xin) : x0 ≤ C; xin ≤ Cp}
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S := {x = (x0, xout) : xout ≤ x0 ≤ C}

S := {x = (x0, xin, xout) : xout ≤ x0 ≤ C; xin ≤ Cp}

for the scenario that only considers the incoming han-
dovers, for the scenario that only considers the outgoing
handovers and when both incoming and outgoing pre-
diction schemes are performed, respectively. In mul-
timedia mobile cellular networks, the introduction of
afterstates into the admission control optimization let
us to reduce the cardinality of the state space, in com-
parison to the conventional RL approach [13]. For this
last approach and for the incoming prediction, the state
space was defined by S := {x = (x0, xin, k) : x0 ≤
C; xin ≤ Cp; 1 ≤ k ≤ (2N − 1)}. As it can be seen,
there exists an additional coordinate (k) related to the
type of arrival, that can take 2N − 1 different values.
In the RL afterstates approach, as we learn over the
state reached immediately after the action is taken,
the arrival type is not needed in the learning process,
as it is already included in the afterstate. Therefore,
the afterstates approach is independent on the num-
ber of services involved. This characteristic is specially
important in systems with a high number of services,
where RL based on afterstates tackles more efficiently
the curse of dimensionality. Besides, as any RL optimi-
zation method, offers the important advantage of being
a model-free method, i.e. transition probabilities and
average costs are not needed in advance.

We deploy a modified version of the SMART algo-
rithm [14] which follows an afterstates RL approach
using a temporal difference method (TD(0)). The
pseudo code of the proposed algorithm is shown in
Fig. 4.

4. Numerical Study

We assume a circular-shaped cell of radio r and a holed-
disk-shaped neighbourhood with inner (outer) radio
1.0r (1.5r). The ratio of arrival rates of new sessions to
the cell neighbourhood (ng) and to the cell (nc) is made
equal to the ratio of their surfaces, λng

i = 1.25λnc
i . The

ratio of handover arrival rates to the cell neighbour-
hood from the outside of the system (ho) and from the
cell (hc) is made equal to the ratio of their perimeters,
λho

i = 1.5λhc
i . Since the system is chosen to be in sta-

tistical equilibrium, the rate at which handover sessions
enters the cell is equal to the rate at which handover
sessions exits the cell (being both λhc

i ), having

λhc
i = µr

i /(µr
i + µs

i )
[

(1 − Pn
i )λnc

i + (1 − P h
i )λhc

i

]

Substituting P h
i by P h

i = (µs
i /µr

i ) · [P ft
i /(1 − P ft

i )],

where P ft
i is the probability of forced termination of

a successfully initiated session, and after some algebra
we get

λhc
i = (1 − Pn

i )(1 − P ft
i )Nh

i λnc
i (3)

Note that in our numerical experiments the values of

SMART with afterstates

1: Initialize h(x),∀x ∈ S , arbitrarily (usually zeros)
2: Initialize γ arbitrarily (usually zeros)
3: Initialize N(x) = 0, WT = 0 and TT = 0
4: Repeat forever:

We denote by a the action taken in the current state
y, by y

′

reject (y′

accept) the afterstate when the reject
(accept) action is taken and by ωreject the immediate
cost when the request is rejected.

5: Take action a:
6: Exploration: random action
7: Greedy : action selected from

if
�
ωreject+h(y′

reject)
�
< h(y′

accept) then
a = reject

else
a = accept

8: α = 1/(1 + N(x′))
being α de learning rate, x

′ the previous afterstate
and N(x′) the number of times the afterstate x

′ has
been updated:

9: h(x′)← (1− α)h(x′)+
+α

�
wc(x

′, y) + w(y, a) + h(y′)− γτ
�

N(x′)← N(x′) + 1
being wc(x

′, y) the accrued cost when the system
evolves from x

′ to y, w(y, a) the immediate cost of ta-
king action a in state y and τ the time elapsed between
decision epochs m and m + 1 (see Fig. 3(b)).

10: if a is greedy :
11: WT ←WT + wc(x

′, y) + w(y, a)
12: TT ← TT + τ
13: γ ←WT /TT

14: x
′
← y

′

Fig. 4 SMART algorithm with afterstates.

the arrival rates are chosen to achieve realistic opera-
ting values for Pn

i (≈ 10−2) and P ft
i (≈ 10−3). For such

values, we approximate (3) as λhc
i ≈ 0.989Nh

i λnc
i .

With regard to the RL algorithm, at the mth deci-
sion epoch an exploratory action is taken with probabi-
lity pm, which is decayed to zero by using the following
rule pm = p0/(1 + um), where um = m2/(ϕ + m). A
fixed value has been used for p0 = 0.2 and varying va-
lues for ϕ depending on the size of the state space. The
exploration of the state space is a common RL techni-
que used to avoid being trapped at local minima. Due
to the simulation-based nature of RL, each point in the
figures represents the average of 10 different simulation
runs initialized with different seeds.

Except in Section 4.3 and Section 4.4, where a
higher number of services or only one is considered res-
pectively, the scenario used in the numerical experi-
ments is as follows. The number of services is N = 2,
having the second service the highest priority. The
rest of the parameters are: C = 10 and Cp = 60 re-
source units, Nh

i = µr
i /µs

i = 1, µr
i /µp

i = 0.5, SH = 0.4,
x = U/2 and b1 = 1 and b2 = 2 resource units. We
also set µ1 = µs

1 + µr
1 = 1 and µ2 = µs

2 + µr
2 = 3. The
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arrival rates of new sessions to the cell are λnc
1 = 0.8λT ,

λnc
2 = 0.2λT , where λT = 2. The relative weights asso-

ciated to the blocking of a new (handover) request are
ωn

1 = 1, ωn
2 = 4, ωh

1 = 20 and ωh
2 = 80. In this scenario

we have used ϕ = 1012 when studying both incoming
and outgoing prediction, and ϕ = 1011 in the rest of
the cases.

4.1 Learning Techniques

In this section we evaluate the performance of the af-
terstates RL approach with regard to the conventional
RL. The advantage of using afterstates RL is two-fold:
on the one hand, in Fig. 5(a) we can see the higher
performance of the policies obtained when using afters-
tates in identical scenarios for different values of the
PA uncertainty (U), obtaining a gain around 10%. In
addition to the higher performance, in Fig. 5(b) it can
also be observed that the relative width of the 95%
confidence intervals is smaller when we use afterstates.
As observed, the solutions obtained when deploying af-
terstates RL are better (γπ is higher) and more precise
(the relative width of the confidence interval is sma-
ller). Therefore, in the rest of the paper the afterstates
approach is used.

4.2 Type of Predictive Information

4.2.1 Stochastic Time Prediction

When introducing prediction, we evaluated the perfor-
mance gain by the ratio γπ

wp/γπ
p , where γπ

p (γπ
wp) is the

average expected cost rate of the optimal policy in a
system with (without) prediction. Figure 6 shows the
variation of the gain for different values of the uncer-
tainty U when deploying 1) the IPA, 2) the OPA and
3) both the IPA and the OPA. As observed, using inco-
ming handover prediction induces a gain and that gain
decreases as the prediction uncertainty (U) increases.
From Fig. 6 it is clear that the knowledge of the num-
ber of resources that will become available is not rele-
vant for the determination of optimum SAC policies,
being even independent of the degree of uncertainty.
Without loss of generality, for a single service scenario
this counter-intuitive phenomenon could be explained
as follows.

Lemma 1: Let X and Y be two independent and ex-
ponentially distributed rv with means 1/µx and 1/µy,
and f(X,Y )(x, y) its joint pdf, where f(X,Y )(x, y) =
fX(x)fY (y). Then the pdf of X conditioned on X < Y ,
is given by

fX(x|X < Y ) =

∫ ∞

x
f(X,Y )(x, y)dy

∫ ∞

0

∫ ∞

x
f(X,Y )(x, y)dydx

=

=
fX(x)

∫ ∞

x
fY (y)dy

∫ ∞

0

∫ ∞

x
fX(x)fY (y)dydx

= (µx + µy)e−(µx+µy)x
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Fig. 5 Comparison of RL techniques in two service scenario.
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Fig. 6 Performance gain in stochastic handover prediction.

Now consider a perfect OPA, i.e. one with p = 1
and q = 0. Those sessions tagged as H will release
the resources because they leave the cell —since we
know this will happen before the session finishes— and
hence, applying the result set in Lemma 1, the holding
time of resources is exponentially distributed with mean
1/(µr + µs). Conversely, those sessions tagged as NH
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Fig. 7 Performance gain in deterministic handover prediction
with U=0.2.

will release the resources because their sessions finish
—since we know this will happen before the terminal
leaves the cell— and hence the holding time of resour-
ces is exponentially distributed with mean 1/(µr +µs).
Note that as the holding time of resources for H and NH
sessions are identically distributed, having an imperfect
OPA will not make any difference. On the other hand,
if no out prediction is considered, an active session will
release the resources because the session finishes or the
terminal leaves the cell, whichever happens first, and
therefore the holding time of resources is also exponen-
tially distributed with mean 1/(µr + µs).

Therefore, if both the cell residence time and
the session holding time are exponentially distributed,
knowing whether a session will produce an outgoing
handover or not does not provide, in theory, any help-
ful information to the SAC process. Additionally, the
performance of the SAC should not be affected by the
precision of the OPA.

4.2.2 Deterministic Time Prediction

Figure 7 shows the variation of the gain obtained using
deterministic time prediction, for different values of T
and U = 0.2. As observed, there exists an optimum
value for T , which is close to the mean time between
session arrivals, although it might depend on other sys-
tem parameters as well. As T goes beyond its opti-
mum value, the gain decreases, probably because the
temporal information becomes less significant for the
SAC decision process. As expected, when T → ∞ the
gain is identical to the one in the stochastic prediction
case, because the labeling of sessions occur at the same
time instants, i.e. when handover sessions enter the cell
neighbourhood or the cell and when new sessions are
initiated. When T is lower than its optimum value the
gain also decreases, probably because the system has
not enough time to react. When T = 0 the gain is
null because there is no prediction at all. For values of
T close to its optimum, the gain is higher when using
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Fig. 8 Utilization gain when using deterministic prediction
with U=0.

incoming and outgoing prediction together than when
using only incoming handover prediction, and it is sig-
nificantly higher than when stochastic time prediction
is used.

Finally it is worth noting that the main cha-
llenge in the design of efficient bandwidth reserva-
tion techniques for mobile cellular networks is to ba-
lance two conflicting requirements: reserving enough
resources to achieve a low forced termination proba-
bility and keeping the resource utilization high by
not blocking too many new setup requests. Figure 8
shows the ratio of the system resources utilization
when not using prediction and when using predic-
tion (utilizationwp/utilizationp). As the highest perfor-
mance gain is obtained for U = 0, it could be expected
to obtain also the highest utilization losses, but Fig. 8
shows that utilization is not reduced, what justifies the
efficiency of our optimization approach.

4.2.3 Weighted prediction

Up to this point the information provided by the PA
only anticipates the amount of resources required by
the forecasted handovers but does not provide any in-
formation about their different priorities, which might
be relevant to the decision process. This fact motiva-
tes us to study a scenario including weights dependent
on the priority of the expected handovers. Taking the
incoming prediction as a reference, now the state space
would be defined by:

S := {x = (x0, x
w
in) : x0 ≤ C; xw

in ≤ κCp}

where κ = ωh
H/ωh

L, being H (L) the highest (lowest)
priority service and xω

in denotes the weighted number
of forecasted handovers. In the scenario under study
κ = ωh

2 /ωh
1 = 4 and xω

in = xin
1 + κxin

2 Fig. 9 shows
that substantially higher gains can be obtained at the
expense of larger state spaces.
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Fig. 9 Performance gain using weighted prediction and deplo-
ying input prediction.

4.3 Service Heterogeneity

Here we consider a scenario with a higher number of ser-
vices and with a higher asymmetry among them. This
setting in which high priority services demand more
resources and represent a low part of the traffic aggre-
gate, is appropriate for describing commercial multi-
media wireless networks [10]. On the other hand, the
experiments carried out in this section confirmed that
the afterstates RL approach can handle scenarios with
more services at no extra computational cost.

The parameters used for such a scenario have been:
N = 4 (being i = 4 the highest priority service),
C = 20 and Cp = 120 resource units, Nh

i = µr
i /µs

i = 1,
µr

i /µp
i = 0.5, µi = µs

i + µr
i = 1, SH = 0.4, x = U/2

and bi = {1, 2, 4, 6} resource units per session. The

arrival rates of new sessions to the cell are λnc
i = f̂iλT ,

where λT = 2.8975 and f̂i can be obtained normalizing
fi = φi−1, for φ = 0.2. The relative weights associa-
ted to the blocking of a new (handover) request are
ωn

i = {1, 4, 15, 60} (ωn
i = {20, 80, 300, 1200}). In this

scenario we have used ϕ = 1012 in all the studied ca-
ses. Figure 10 shows the gain that is obtained in this
scenario.

4.4 Comparative Evaluation

The performance of the SAC policy obtained by the
RL optimization approach is compared to the perfor-
mance of one of the predictive SAC schemes proposed
in [15]. Although the predictive scheme proposed in [15]
is applied in a scenario with two services, it is not a pro-
per multiservice environment, as it does not distinguish
between services neither in the admission process nor
in the performance parameters. For that reason, the
comparison with our approach (which can be applied
to both single and multiservice scenarios) is done in a
single service scenario.
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Fig. 10 Performance gain when using deterministic handover
prediction in four services scenario.

Among the schemes proposed in [15] we choose the
scheme AC1 instead of AC2 or AC3 because the same
evaluation scenario deployed so far can be used to eva-
luate AC1, making the comparison more fair. Besides,
the performance of AC1, AC2 and AC3 are quite simi-
lar for real operating conditions. Moreover, the perfor-
mance of the three schemes was evaluated in [5] and
the authors concluded that AC1 performs better.

The schemes proposed in [15] estimate the num-
ber of resource units that must be reserved in each cell
for handovers occurring within a future time window of
Test. Let us denote by C0 the cell under study and by
Ci its neighbouring cells. The number of resource units
to be reserved in C0 for handovers arriving from neigh-
bouring cell Ci is Bi

r,0 =
∑

j∈Ci b(Ci,j)ph(Ci,j → 0),

where b(Ci,j) is the number of resource units required
by the jth session in the ith cell and ph(Ci,j → 0) is
the estimated probability that session Ci,j is handed
over to cell 0 within Test time units. The total amount
of resource units that would be required to reserve in
C0 are Br,0 =

∑

i∈A0
Bi

r,0, where A0 is the set of in-
dices of cell 0’s neighbouring cells. Note that Br,0 is a
target, not the actual bandwidth reserved, since a cell
may not have enough free resource units at the time
the reservation is required.

In the evaluation scenario of our analysis we
have the cell under study (C0) and its neighbour-
hood (Cg), therefore we estimate Br,0 as Br,0 =
∑

j∈Cg b(Cg,j)ph(Cg,j → 0), where ph(Cg,j → 0) is the
estimated probability that session Cg,j is handed over
to cell 0 within Test time units.

The authors of [15] propose to estimate ph(Ci,j →
0) by maintaining a data base that records historical
movement patterns of users. Besides, each base station
keeps track of each active mobile in its cell via the mo-
biles’ extant sojourn time. The extant sojourn time of
connection Ci,j , Text−soj(Ci,j), is the time elapsed since
the active mobile with connection Ci,j entered the cell
Ci.
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In the scenario scenario of our analysis, the proba-
bility ph(Cg,j → 0) can be determined by:

ph(Cg,j → 0) = P (Cg,j → 0)·

P (t̂r ≤ Test + Text−soj |t̂r > Text−soj)

where t̂r is the residence time in the neighbourhood for
those sessions that will execute a handover. The fac-
tor P (Cg,j → 0) represents the probability that those
sessions in the neighbourhood that will execute a han-
dover end up in C0, which is equal to the parameter
SH of the IPA model described in Section 2.1. The ot-
her factor represents the probability that a session that
will execute a handover and which residence time in
the neighbourhood is already longer than Text−soj , will
issue the handover request in less than Test time units
from the current instant. To determine this second fac-
tor we recall the result of Lemma 1, which justifies that
the distribution of the residence time in the neighbour-
hood for those sessions that will execute a handover
t̂r is also exponentially distributed with rate µp + µs.
Therefore, given the memoryless property of the expo-
nential distribution it follows that

P (t̂r ≤ Test + Text−soj |t̂r > Text−soj) =

P (t̂r ≤ Test) = 1 − e−(µs+µp)Test

As the number of historical records (Nquad) in the
data base proposed in [15] grows, the sample value for
ph(Ci,j → 0), which is used in [15], will tend to its
corresponding population value, i.e. the true probabi-
lity value. In our comparative evaluation we consider
that Nquad → ∞ and therefore the movement estima-
tion done in [15] is computed by

ph(Cg,j → 0) = SH

(

1 − e−(µs+µp)Test
)

Thus, the performance of the AC1 scheme that we ob-
tain should be considered as an upper-bound of that
obtained by the implementation deployed in [15].

The values of Test for each cell are dynamically ad-
justed based on the measured forced termination ratio
among a number of handovers recently observed, so as
to meet an objective for the forced termination pro-
bability. When a new session arrives to C0, the AC1
scheme proposes to perform the following simple test:
if

∑

j∈C0
b(C0,j) + bnew ≤ C −Br,0 then it is admitted,

otherwise it is rejected, where bnew is the number of
resource units required by the new session.

Figure 11 compares the performance of the AC1
scheme with the performance of different policies ob-
tained by the RL approach in a single service scenario
with the following parameters: C = 10 and Cp = 60 re-
source units, Nh

i = µr
1/µs

1 = 1, µr
1/µp

1 = 0.5, λn
1 = 3.5,

µ1 = µs
1 + µr

1 = 1, SH = 0.4 and x = U/2. For the op-
timization procedure using RL we have used a relative
weight associated to the blocking of a new request of
value ωn

1 = 1 and a value of ϕ = 1011 for the explora-
tion phase. The value of ωh

1 is conveniently changed in
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Fig. 11 Comparison of prediction schemes.
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Fig. 12 Comparison of utilization with different prediction
schemes.

order to obtain different values in the curves of Fig. 11.
We also include the performance of a static policy that
in this case is a single fractional guard channel policy.
Although it might be surprising that a static policy per-
forms better than the AC1 scheme, it should be pointed
out that for the determination of the optimum number
of guard channels it is required to know traffic parame-
ters like arrival rates and mean channel holding time,
which are not required by the AC1 scheme. It is clear
that the performance of policies obtained by the RL
approach outperform the AC1 scheme. In Fig. 12 it
is also shown that the utilization of the system is also
higher with the scheme that deploys predictive informa-
tion and uses RL for computing the optimal admission
control policy.

5. Conclusions

In this paper we evaluate the performance gain that can
be expected when the SAC optimization process is pro-
vided with predictive information related to incoming,
outgoing and incoming and outgoing handovers toget-
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her, in a multiservice mobile cellular network scenario.
The prediction information is provided by two types of
prediction agents that label active mobile terminals in
the cell or its neighbourhood which will probably exe-
cute a handover. The prediction agents predict the fu-
ture time instants at which handovers will occur either
stochastically or deterministically.

The optimization problem is formulated as a semi-
Markov decision process, using Reinforcement Learning
as solving methodology, having developed an aftersta-
tes based approach. We have shown that the developed
approximation based on afterstates offers better solu-
tions with higher precision than those results obtained
without afterstates. Moreover, this approach is able to
optimize admission control policies for multimedia sce-
narios regardless of the number of services being cursed
in the network.

For the system model deployed, numerical results
show that the information related to incoming hando-
vers is more relevant than the one related to outgoing
handovers. Additional performance gains can be obtai-
ned when more specific information is provided about
the handover time instants, i.e. when their predic-
tion is deterministic instead of stochastic. We also get
higher performance gains when there is a distinction
among the priority of the different handovers that are
forecasted. Finally, we have compared our prediction
scheme with the one proposed in [15], and the results
show that our proposed methodology clearly outper-
forms that scheme in terms of blocking probabilities
and utilization.

In a future work we will study the impact that a
non-exponential resource holding time has on the per-
formance of systems which deploy predictive informa-
tion in the SAC process. As shown, when the resource
holding time is exponential, deploying the OPA does
not improve performance.
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