3810

IEICE TRANS. COMMUN., VOL.E91-B, NO.12 DECEMBER 2008

| INVITED PAPER Special Section on Peer to Peer Networking Technology |

A Remedy for Network Operators against Increasing P2P Traffic:
Enabling Packet Cache for P2P Applications

Akihiro NAKAO" ¥, Kengo SASAKI™, and Shu YAMAMOTO'®, Members

SUMMARY We observe that P2P traffic has peculiar characteristics as
opposed to the other type of traffic such as web browsing and file transfer.
Since they exploit swarm effect— a multitude of end points downloading
the same content piece by piece nearly at the same time, thus, increasing
the effectiveness of caching—the same pieces of data end up traversing
the network over and over again within mostly a short time window. In the
light of this observation, we propose a network layer packet-level caching
for reducing the volume of emerging P2P traffic, transparently to the P2P
applications — without affecting operations of the P2P applications at all —
rather than banning it, restricting it, or modifying P2P systems themselves.
Unlike the other caching techniques, we aim to provide as generic a caching
mechanism as possible at network layer — without knowing much detail of
P2P application protocols —to extend applicability to arbitrary P2P pro-
tocols. Our preliminary evaluation shows that our approach is expected to
reduce a significant amount of P2P traffic transparently to P2P applications.
key words: P2P, overlay networks, packet cache, P4P, future Internet

1. Introduction

Recent Internet tomography has revealed that peer-to-peer
(P2P) traffic has become dominant in volume over HTTP
traffic, which used to represent the majority of the entire
traffic exchanged on the Internet [1], [2]. The prevalence of
P2P traffic indicates that users on the Internet have found
advantages over the traditional communication in innova-
tive data transmission where end points directly exchange
data making use of traffic dispersion—dividing data into
small pieces and transmitting them over multiple (disjoint)
paths constructed by indirection (relaying at intermediaries)
at participating peers — and also caching along such paths
rather than traditional, single-path, server-client type of data
exchange. P2P file sharing applications such as BitTorrent
[3] exploit this direct data exchange, traffic dispersion, and
caching to achieve efficient large-file transfer. It is also
worth noting that the other work such as [4], [5] has reported
to have achieved even better performance than BitTorrent in
sharing large files through similar caching and traffic dis-
persion observed in P2P applications. Since recent statistics
shows that a majority of P2P traffic carries large contents
such as video, it makes sense for users to utilize the direct,
dispersed, and cached data transmission.

Manuscript received September 7, 2008.
Manuscript revised September 17, 2008.
"The authors are with the University of Tokyo, Tokyo, 113-
0033 Japan.

""The authors are with NICT, Koganei-shi, 184-8795 Japan.
a) E-mail: nakao@iii.u-tokyo.ac.jp
b) E-mail: qq086407 @iii.u-tokyo.ac.jp
¢) E-mail: shu@nict.go.jp

DOI: 10.1093/ietcom/e91-b.12.3810

However, dispersion and caching are made possible by
indirection at peers. That is, ISPs that have customers run-
ning P2P file-sharing applications may be carrying traffic for
those who belong to the other ISPs and therein running the
same applications, since the applications may automatically
reroute pieces of data being indirected at their customers.
Accordingly, ISPs are not necessarily serving their own cus-
tomers alone any more, but are subject to extra cost incurred
by customers of the other ISPs [6]-[8].

Several ISPs regard this extra cost of carrying traffic
for the other ISPs’ customers as a significant problem and it
has come to our attention whether ISPs should take actions
specifically on P2P traffic [9],[10]. The actions recently
taken by ISPs to mitigate P2P traffic range from banning
P2P traffic completely or restricting it [11] to control peer-
ing of P2P applications by a new protocol looking at the
underlying Internet topology, e.g., restricting peers to only
connect to the others inside the same ISP or those topolog-
ically nearby such as in P4P [12]-[14]. However, recent
articles have reported that “network neutrality” problem has
been raised and discussed — there exists a general consen-
sus that deeply examining packet contents and restricting
packet forwarding according to the contents is largely con-
sidered problematic in public services and that ISPs should
refrain from banning a particular traffic [15], [16].

On the other hand, the solution such as P4P approach
appears to be appealing [12]-[14]. P4P claims to be able to
confine P2P traffic effectively to a network domain, achiev-
ing 45% improvement in completion time of P2P transmis-
sions, while improving the link utilization of P2P traffic at
backbone links of major ISPs by 50% to 70% [14]. The test
conducted in P4P signifies a turning point in the history of
P2P technology and it turns out the problem is not P2P tech-
nology itself but is how we deploy it. However, such solu-
tion is still under active research and yet not known to be
a viable solution to the problem. For instance, even though
P4P offers a method to restrict selection of peers within a
certain vicinity in the Internet, such enforcement may not
be realistic in practice, since we may not be able to restrict
any communication patterns under “network neutrality” as
long as the communication is achievable through overlay
networks, let alone P2P. In addition, PAP approach may de-
prive P2P applications of the advantage of traffic dispersion.

In this paper, we take a different approach to tackle
this problem than the above existing proposals. We observe
that P2P traffic has peculiar characteristics as opposed to the
other type of traffic such as web browsing and file transfer.

Copyright © 2008 The Institute of Electronics, Information and Communication Engineers

NAKAO et al.: A REMEDY FOR NETWORK OPERATORS AGAINST INCREASING P2P TRAFFIC: ENABLING PACKET CACHE FOR P2P APPLICATIONS

Since they exploit swarm effect— a multitude of end points
downloading the same content piece by piece nearly at the
same time, thus, increasing the effectiveness of caching—
the same pieces of data end up traversing the network over
and over again within mostly a short time window. Although
this characteristics causes apparently inefficient redundant
data transmission, it means, on the other hand, that if we
cache the packet-level data at network layer, we should be
able to greatly benefit from high hit-ratio of the cache. In
the light of this observation, we propose a network layer
packet-level caching for reducing the volume of emerging
P2P traffic by compressing it transparently to the P2P appli-
cations — without affecting operations of the P2P applica-
tions at all — rather than banning or restricting it. Although
there have been a few proposals to cache P2P traffic [17]-
[19], the criticism is that these caches must be designed to
speak specific protocols, thus limiting their generality and
applicability to closed protocols. Our approach is different
in that we aim to provide as generic a caching mechanism
as possible at network layer — without knowing much de-
tail of P2P application protocols —to extend applicability
to arbitrary P2P protocols.

2. Design

This section describes design decisions we have made to en-
able packet-base caching for P2P applications.

Figure 1 depicts the design of our proposed scheme for
reducing the volume of P2P traffic. There exists a cloud
of target transit networks between ISPs where end systems
exchange P2P application packets and where our system is
supposed to reduce the P2P traffic. Since a P2P applica-
tion often exploits swarm effect where a multitude of peers
download the same content nearly at the same time or within
a short time window to accelerate the data transmission, we
expect that these P2P application packets get largely dupli-
cated and the packets carrying the same data repeatedly tra-
verse the cloud of transit networks in a fairly short period of
time.

Therefore, we place a set of intelligent routers so that
we can compress the traffic at an ingress router to the cloud
and decompress it at an egress router on a packet basis so
that we can significantly reduce the traffic traversing the
cloud of the transit networks. If we can drastically reduce
the size of the packets by compression, especially to much
less than the maximum transmission unit (MTU), we may
also be able to decrease the number of the packets by con-
solidating multiple small packets.

There are various scenarios possible as to where this
scheme can apply. For instance, two ISPs peering each other
could cooperatively install routers with this cache capability
to reduce the P2P traffic between them. An ISP might pay its
neighboring ISPs for installing such routers on behalf of it-
self. For another example, an ISP could install these routers
within its domain to reduce its local traffic.

As Fig. 1 shows, there could be multiple ingress and
egress routers that can perform compression and/or decom-

3811

pression. However, for the sake of simplicity, we focus on a
pair of ingress and egress routers for the rest of this paper.

In order to achieve the goal of reducing P2P traffic, we
have made the following design decisions.

Compression and Caching

Although naive compression on a packet basis reduces the
size of the packet, we can gain more benefit if we use
caching as well as compression at the same time. At the
egress of the transit networks, we cache P2P traffic on a
packet basis with a hash of the packet payload as a key
and the packet payload as a value. At the ingress to the
transit networks, we calculate a hash value of the payload
of each packet, and send only a hash value if we already
have a cached entry for its corresponding packet content at
the egress. Through this method, we can implicitly com-
press the packet effectively without any explicit compres-
sion, since a hash value is usually small compared with a
data given. The only caveat is that we need a coordina-
tion between the ingress and the egress routers as shown in
Fig. 1.

Transparency to P2P Applications

We decide to achieve two kinds of transparency to P2P
applications. First, our compression and caching scheme
needs to be transparent to end-to-end communications, since
introduction of intermediate agents may affect the original
P2P applications’ behaviors. In addition, such intermedi-
aries may invite a security concern such as unnecessarily
creating a target for various attacks on end-systems such as
DDoS attack. Second, our system needs to be independent
of P2P application protocols. Our designed scheme must be
applicable to a wide range of P2P applications. Application-
layer proxy-cache [19] often supports only a limited number
of P2P applications, since it must deal with application pro-
tocols to interact with peers. Our approach requires a mini-
mal assumption that a P2P application packet usually has a
specific leading byte-sequence for a piece of data carried in
a packet. We call such byte-sequence Prefix. As far as we
detect Prefix, we can maximize the effectiveness of com-
pression and caching by aligning caching units with Prefix.

Deep Packet Inspection and Signature Detection

We must be able to deep-inspect packets traversing the
routers to distinguish compressible P2P packets from the
others. Just as in the other P2P traffic analyzer, our sys-
tem can perform deep packet inspection (DPI) to identify
and locate Prefix. For instance, BitTorrent uses a specific
Prefix right before data pieces in a packet payload. After
locating a Prefix, we apply generic hashing and caching de-
scribed in the previous paragraphs above, expecting that the
subsequent bytes right after the Prefix should appear repeat-
edly in a multitude of flows, thus, give us an opportunity to
perform effective caching on a packet basis. In other words,

3812

TCP/IP
header

ISP Network

[Datan | |

IEICE TRANS. COMMUN., VOL.E91-B, NO.12 DECEMBER 2008

Replication

19Packet | DataA [|
Hash A

2 Packet|_Data A [1—] teplaced w
a¢packet [Datan | | —>]

Index[Dist. NW| Data

Transit Networks

ISP Network

Restored to Data A
via hash-data
conversion table

—
Hash A

Fig.1 Design overview.

we should be able to apply the same technique to arbitrary
P2P applications as long as they use specific leading byte-
sequence. We assume most P2P applications have such Pre-
fix’s to denote data (piece). Note that although, in this pa-
per, we mainly discuss our method with this assumption for
Prefix, as long as we can detect the beginning of each data
piece, our proposal is applicable as discussed in Sect. 3. As
an aside, we could actually propose as a standard that P2P
applications should be equipped with a specific Prefix in a
packet to facilitate caching, but this is left for our future re-
search.

3. Architecture

This section describes the detailed architecture of our pro-
posed prototype system that enables packet-base caching for
P2P applications.

3.1 Overview

Our prototype system consists of a set of ingress and egress
routers at the edge of the target transit networks and cache
storage attached to routers as shown in Fig.2. As briefly
described in Sect.2 and Fig. 1, a packet gets cached at the
egress router. Everytime a packet gets cached, a cache en-
try maps a hash value of the payload as a key to the pay-
load itself as a value. Also, the egress router reports on this
cache entry (send the hash value) to the ingress router so
that everytime it sees a packet containing the content that
has the same hash value traversing, it replaces the payload
content with its hash value, thus, compresses the packet to
smaller size. For this reason, the ingress router also has
a cache. When the egress router receives this compressed
packet, it will locate the hash value in the packet, retrieve
the original content, and replace the hash with the content.
As Fig. 2 shows, the roles of ingress and egress routers are

interchangeable according to the direction of packet flows,
thus, they are depicted symmetrically except that packets
get compressed at the ingress router and reconstructed at the
egress router in practice.

3.2 Packet Layout

This section describes the layout of a compressed packet in
detail. The layout of the original (uncompressed) packet and
that of the compressed packet are shown in Fig. 3 (in case
for the packet with Prefix) and Fig. 4 (in case for the packet
without Prefix), respectively. In this example, we divide the
payload of a packet into 128-byte long chunks and com-
press each chunk into a 16 byte (128-bit) MD5 hash value
for the simplicity’s sake, but obviously these values could
be changed to arbitrary ones to achieve various flavors of
compressions and hashing schemes.

When an ingress router discovers the packet with a spe-
cific Prefix in its payload through DPI, it records the flow (5-
tuple) and the pointer to the Prefix in TCP sequence number
space as soft-state. Since we know the byte-offset of the
Prefix from the beginning of the payload whose TCP se-
quence number is recorded in the TCP header, we can easily
figure what TCP sequence number the Prefix corresponds
to by adding the byte-offset to the TCP sequence number in
the TCP header. Starting from this Prefix, the router divides
the payload into 128-byte chunks and attempts to compress
them into their hash values if the ingress router knows that
the egress router already has inserted the cache entries for
the hash values. Since the ingress router records the flow
and the Prefix pointer in the TCP sequence number space, it
can continue this 128-byte aligned compression across mul-
tiple packets by comparing TCP sequence numbers and the
Prefix pointer. When it observes a new Prefix for a particu-
lar flow, it just updates the Prefix pointer to the new value.

As Figs. 3 and 4 show, the compressed packet has the

NAKAO et al.: A REMEDY FOR NETWORK OPERATORS AGAINST INCREASING P2P TRAFFIC: ENABLING PACKET CACHE FOR P2P APPLICATIONS

Ingress Router

Packet Control
Flow Table

3813

Egress Router

Packet Control Flow Table

__>|

BitTorrent peers

4
BitTorrent peers |
> Packet Packet Packet 1
Capturing Filtering || Forwarding
Transmissionf Control /

4

<]
Cache Compression /
Reconstruction

Packet Processing

A

Cache Manager

Communication between Cache Managers

(Packet Packet Packet 1
Capturing Filtering || Forwarding

Transmission| Control /
— 1 /

Reference Hash Value
o Gache N
Pt <:| Table
Cache

Compression /

A

Reconstruction

Cache Manager
3

Packet Processing

Fig.2 Architecture overview.

TCP 128 128 .| 128 128 | 128
Header Xll byte I k:vytelx2 Prefix byte I byte| byte X3‘
ce X1|16|---|16|X2 Prefix 16|---|16|16|X3Parameters
Header
Bitmap
size of X1|size of X3|0-> 128byte|size of X2
1->16 byte

2byte 2byte 2byte 2byte

Fig.3 Packet layout with Prefix (Leading byte-sequence ahead of data
piece).

TCP 128 128 | 128
’Header X1 byte "t byte| byte X3
TCP
Header X1|16|--"16|16|X3Parameters

. . Bitmap
size of X1|size of X3|o-> 128byte
1->16 byte

2byte 2byte 2byte

Fig.4 Packet layout without Prefix (Leading byte-sequence ahead of
data piece).

field called Parameters at the end that contains Bitmap flag
(2 bytes) indicating which 128-byte chunks have been com-
pressed, i.e., replaced with their 16-byte hash values'.

For example, a bit 1 means compressed while a bit O
means uncompressed. The Parameters field also contains
X1, X», and X3 (2 bytes each) that denote the offset bytes
at the beginning, right before the Prefix, and at the end of
the packet (before Parameters), respectively. These off-
set bytes are to enable caching of the content in 128-byte
chunks that are precisely aligned with 128-byte boundaries,
since usually a packet has a variable length due to TCP con-
gestion control and flow control so the beginning of the pay-
load and the end of it may not necessarily be aligned with
the 128-byte boundaries. If the beginning of the payload is

not aligned with the 128-byte boundaries from Prefix, the
first X;(< 128) bytes are not compressed. Similarly, if the
end of the payload is not aligned, the last X3(< 128) bytes
are not compressed. If the payload contains the Prefix, the
same offset strategy applies to the last X,(< 128) bytes be-
fore the Prefix are preserved '". Note that X, will not appear
in the packet without Prefix in its payload. Note that letting
X;(1) (i = 1,2, 3) be the offset in the 7-th packet, we have the
following equation to quickly figure out X; (¢+ 1) from X;3(z).

X (t+ 1)+ X3(r) = 128 (1)

Thanks to the adjustment through these offset bytes
Xi(t) (i = 1,2,3), all the 128-byte chunks are divided pre-
cisely aligned with the 128-byte boundaries starting from
the last observed Prefix. This means a content is always di-
vided into the same set of 128-byte chunks, no matter how
a content is divided into packets, or no matter which flow
these packets are conveyed through. Because of the align-
ment mechanism achieved through these offset bytes X;(r)
(i = 1,2,3), we can effectively cache the content piece by
piece across multiple flows as long as they convey the same
content.

3.3 Router Composition in Click Model

Both ingress and egress routers are supposed to perform
compression and decompression of the packets. Although
these processes are not tied to a particular implementation,
in this section, we attempt to describe our proposed archi-
tecture by showing the compression and decompression pro-
cess by using Click [20] element diagrams.

In our prototype, the bitmap has only two bytes that are
enough to cover MTU of 2048 bytes (= 16 x 128 bytes). How-
ever, we are not tied to these specific numbers of bytes allocated in
Parameters, data piece size, compression schemes, etc.

f"Note that the current prototype only deals with up to one Pre-
fix in each packet for the sake of simplicity, but we can easily ex-
tend it to support multiple ones.

3814

Strip(14)
CheckIPHeader
[0]
NCEI

[0]
SetIPChecksum

[1]

recv_inc_ack
(1
[2]

recv_dec_ack

recv_inc_ack::Socket(TCP, 0.0.0.0, 50000);
recv_dec_ack::Socket(TCP, 0.0.0.0, 50001);
NCEI::NetCacheElement(INGRESS);
ipclass::IPClassfier(tcp, -);
encap::EtherEncap(0x0800, src_eth, dst_eth),

ToDevice(dev)

Fig.5 Structure of ingress router in the Click model.

Click [20] is an open-source extensible router imple-
mentation developed to facilitate experiments with a new
routing protocol and with innovative packet processing at
routers. In the Click model, a router is composed of multiple
modules called elements chained together to achieve packet
processing and routing. Each element implements a sim-
ple function such as stripping off an Ethernet header from a
packet given, packet queuing, packet scheduling, etc. Many
useful elements are already built-in and thus just combin-
ing them and configuring them with parameters allow us to
build a complex piece of router software. If we would like
to implement a new element, it is fairly easy to do so, and
after adding a new element, we can chain it together with
the existing elements.

For example, for our purpose, we add a new Click ele-
ment called NetCacheElement that compresses and decom-
presses packets if they are inserted into the packet process-
ing path. In describing our proposed architecture, we ex-
plain how this NetCacheElement works to compress and
decompress P2P packets as in the Click model.

3.3.1 INGRESS

The structure of an ingress router in the Click model that
compresses P2P packets is depicted in Fig.5. This section
describes how a packet gets processed along the chain of the
elements including our new element NetCacheElement.
First, after a packet is received through the FromDe-
vice(dev) element, where dev is a network device that the
packets get captured from, its Ethernet header gets stripped
by the Strip(14) element. After the packet has its integrity
checked as an IP packet by the ChecklPHeader() element,
the packet gets compressed through the NetCacheEle-
ment(INGRESS) element. Here, the parameter INGRESS
passed to the NetCacheElement denotes that this element
works as compressor at an ingress router. In our current
prototype architecture, this compression is simply done by
calculating MD5 hash values of 128-byte chunks in the pay-
load of the packet. After this compression is performed, the

IEICE TRANS. COMMUN., VOL.E91-B, NO.12 DECEMBER 2008

[0]
NCEE

[0]
SetlPChecksum

[1]

send_inc_ack

send_inc_ack::Socket(TCP, sender ip, 50000);
send_dec_ack::Socket(TCP, sender ip, 50001);
NCEE::NetCacheElement(EGRESS);
ipclass::IPClassfier(tcp, -);
encap::EtherEncap(0x0800, src_eth, dst_eth),

ToDevice(dev)

Fig.6 Structure of egress router in the Click model.

compressed packet gets through SetlPChecksum() to have
its checksum corrected and through encap() to attach its
Ethernet header back, and finally gets forwarded to ToDe-
vice(dev) to be pushed on the wire.

NetCacheElement(INGRESS) will not compress all
the received packets. As Fig.5 shows, only the 128-
byte blocks that have the hash values reported from the
recv_inc_ack element will be converted into the hash values.
Note that NetCacheElement(INGRESS) has two incoming
ports, in addition to one outgoing port [0], where a port rep-
resents an entrance or an exit for packets in general. Ports
[1] and [2] are used for receiving signals from an egress
router in this scenario. This recv_inc_ack element receives
a signal (a set of hash values) from the egress router and
feeds the signal to NetCacheElement(INGRESS) through
the port [1] so that it may only convert 128-byte chunks of
data that correspond to the hash values received from the
egress router.

On the other hand, the recv_dec_ack element receives
a signal (a set of hash values) from the egress router and
feeds the signal to NetCacheElement(INGRESS) through
the port [2] so that it may stop converting 128-byte chunks
of data that correspond to the hash values received from the
egress router. This element and the signaling is necessary
since when the egress router decides to evict some of the
cache entries, it needs to notify of the ingress router to stop
compressing packets so that it may not fail to reconstruct the
original content from the hash values.

3.3.2 EGRESS

The structure of an egress router is shown in Fig.6. Just
as in the case with the ingress router, after a packet is re-
ceived through the FromDevice(dev) element with some de-
vice dev, its Ethernet header gets stripped by the Strip(14)
element. After the packet has its integrity checked as an IP
packet by the ChecklPHeader() element, the packet gets de-
compressed through the NetCacheElement(EGRESS) ele-
ment. After this decompression is done, the reconstructed

NAKAO et al.: A REMEDY FOR NETWORK OPERATORS AGAINST INCREASING P2P TRAFFIC: ENABLING PACKET CACHE FOR P2P APPLICATIONS

(original) packet goes to SetlPChecksum() element to have
its checksum corrected and through encap() to attach its
Ethernet header back, and finally gets forwarded to ToDe-
vice(dev).

However, NetCacheElement(EGRESS) may receive
uncompressed packets or partially compressed packets
where only a few 128 byte blocks in their payloads are com-
pressed. In this case, NetCacheElement(EGRESS) gen-
erates a 16-bit hash value for each 128-byte uncompressed
block and stores a mapping between the hash value and
the uncompressed block. Then it sends the hash value to
send_inc_ack element. Now send.inc_ack packages mul-
tiple such hash values into a signal and send it to the
ingress router so its recv_inc_ack may receive the signal and
start compressing the blocks corresponding to the hash val-
ues. When the cache storage of the egress router needs
to evict some cache entries, their hash values get sent to
send_dec_ack. Then send_dec_ack packages these hash
values into a signal and send it to the ingress router so its
recv_dec_ack may receive the signal and stop compressing
the blocks corresponding to the hash values.

3.4 Compression and Caching Process

As described in Sect. 3.3, both ingress and egress routers
are constructed using NetCacheElement element in the
Click model. This element takes one argument to de-
note if it works for the ingress router (NetCacheEle-
ment(INGRESS)) or for the egress one (NetCacheEle-
ment(EGRESS)). This section explains the detail of this el-
ement and how it operates.

3.4.1 NetCacheElement(INGRESS)

Figure 7 shows the flowchart of internal operations of
NetCacheElement(INGRESS), the building block of the
ingress router as depicted in Fig. 5.

NetCacheElement(INGRESS) (NCEI in short here-
after) has three input ports and one output port. It captures
P2P traffic from the port [0] and performs compression and
caching of the traffic, while it also communicates with its
counter-part egress router using the ports [1] and [2]. Note
that Deep Packet Inspection (DPI) and signature detection
for specific P2P traffic before the P2P traffic gets captured
into the port [0] are omitted here, since this stage is consid-
ered rather straightforward and often discussed elsewhere.

When a P2P flow gets captured at the port [0], NCEI
first checks if the flow has been observed before or not. If
NCEI detects a new flow, it registers a soft-state flow entry
that retains a pointer to Prefix in its TCP sequence num-
ber space. If NCEI observes the existing flow, it updates
the pointer to the last observed Prefix. The flow entry gets
evicted if either a preset timer expires or NCEI| sees TCP
FIN and RST.

When NCEI receives a packet with Prefix, it calcu-
lates X;, X,, and X3; otherwise X; and X3. After remov-
ing these offset bytes Xi(i = 1,2, 3) and Prefix, the packet

3815

NO P2P Traffic?
(from Port 0)

ES

YES N
Include Prefix?

Calculate X1, X2, X3 Calculate X1, X2

!

l Divide payload(excluding X1, X2, X3) into 128byte chunks ‘

H

l Get segment of payload

Compressible?

Write "0" to Bitmap l Compress (128byte -> 16byte) ‘

l Write "1" to Bitmap ‘
I

YES

Any segment left?

l Add Parameters to packet and send to portO ‘

l

| Divide packet into 16byte chunks |
Get segment of packet ‘
YES
Is segment
from portl?
Register segment Remove segment
to authorization list from authorization list

YES
Any segment left?

NO

NO

Fig.7 Flow of operations at ingress router.

payload gets divided into 128-byte blocks. Then NCEI
judges whether each 128-byte block can be compressed, i.e.,
replaced with its 16-byte hash value or not, according to
16-byte hash values notified by the egress router through
recv_inc_ack and recv_dec_ack elements. If the 16-byte
hash value of a 128-byte block matches one of the hash val-
ues received through recv_inc_ack element, NCEI replaces
the 128-byte block with its 16-byte hash value; if it matches
one of the hash values through recv_dec_ack element, NCEI
will not compress the block. After iterating this process
through the packet payload, depending on which 128-byte
blocks have been compressed, NCEI composes a bitmap,
Bitmap where 1 is set for a compressed block and O for an
uncompressed one and attaches it to Parameters bytes at
the end of the packet.

3816

YES

Include NO
Prefix?

Get X1, X2 and X3 Get X1 and X2
from Parameters from Parameters

[I
¥

’ Get Bitmap from Parameters ‘
¥
Divide payload (excluding X1, X2, X3 and
Parameter) according to Bitmap
¥
’ Get segment of payload F—

0 Is segment YES
16byte?

’ Generate hash value ‘ Retrieve 128byte

data block

Register "hash-data" corresponding to
mapping to cache 16byte hash value

'
NO
generated?
NO

N

YES

Collect hash values
and send to portl

Is cache full? NO
or TTL of any entry expired2
YES

’ Some entries get evicted from cache
¥
’ Collect hash values and send to port2

¥
Remove Parameter and send packet to portO

Fig.8 Flow of operations at egress router.

Communication with the counter-part egress router is
rather simple. NCEI just receives a series of 16-byte hash
values from the port [1] or the port [2]. The port [1] connects
to recv_inc_ack and the port [2] to recv_decc_ack as shown
in Fig.5. Depending on from which ports NCEI receives
a series of 16-byte hash values, it registers the hash values
as compressible ones (if from the port [1]) and unregisters
them as incompressible ones (if from the port [2]).

3.4.2 NetCacheElement(EGRESS)

Figure 8 shows the flowchart of internal operation of Net-
CacheElement(EGRESS), the building block of the ingress
router as depicted in Fig. 6.

NetCacheElement(EGRESS) (NCEE in short here-
after) has one input port [0] and three output ports [0], [1]
and [2]. When NCEE receives a packet with Prefix from the
port [0], it calculates X, X5, and X3 just in the same way as
in NCEI; otherwise X; and X3. After removing these offset
bytes X;(i = 1,2, 3), Prefix and Parameters, the packet pay-
load gets divided into 128-byte and 16-byte blocks accord-

IEICE TRANS. COMMUN., VOL.E91-B, NO.12 DECEMBER 2008

ing to the bitmap, Bitmap. Then NCEE generates a 16-byte
hash value for each 128-byte block and registers the map-
ping between the 16-byte hash value and the 128-byte data
in its cache. For each 16-byte block in the packet payload,
NCEE looks up in the cache to retrieve the corresponding
128-byte data that has been registered previously.

In the course of the process above, if any new hash val-
ues are generated, they are collected and sent to the port [1]
so that they may be conveyed to the ingress router through
send.inc_ack element. If the cache gets filled and NCEE
needs to evict some of the cache entries, NCEE collects the
hash values evicted from the cache and send to the port [2]
so that these hash values may be notified to the ingress router
through send_dec_ack element.

4. Evaluation

This section presents preliminary evaluation of our proposed
scheme. We conduct two kinds of evaluations here. One is
the evaluation of a Click implementation of our architecture
on Emulab [21] and the other is the application of our algo-
rithm to the real packet trace.

4.1 Preliminary Evaluation on Emulab

We have implemented NetCacheElement in Click and run
ingress and egress routers on Emulab. Emulab is a net-
work testbed where we can reserve a set of PC servers
and run arbitrary operating systems (OSes) connected in
whatever configuration we link via VLAN. On Emulab,
we use four PC servers of identical hardware specification
and connect them in serial via 100Mbps Ethernet. The
configuration of these four PC servers is BitTorrentPeer-
NetCachelngress-NetCacheEgress-BitTorrentPeer where
BitTorrentPeer sends P2P packets to the other one over
NetCachelngress/-Egress. The packets are transmitted
from a BitTorrentPeer, compressed at NetCachelngress,
then decompressed at NetCacheEgress, and finally reach
the other BitTorrentPeer. This process is completely trans-
parent to BitTorrentPeers. We use MD5 for the hash func-
tion as described before.

Figure 9 compares the traffic observed before Net-
Cachelngress and that observed between NetCachelngress
and NetCacheEgress when we transfer The same file™ up
to three times between BitTorrentPeers. At the first time,
since NetCacheEgress has an empty cache, nothing is com-
pressed so the traffic amount stays the same. However, at
the second time and the third, since NetCacheEgress has
populated its cache at the first time, packets are accordingly
compressed and the traffic is significantly reduced to 29% at
the second time and to 26% at the third time. The number of
the cache entries after the third transmission is 1226 in this
experiment.

The compression gets improved at the third time com-
pared to the second time, since the cache gets gradually

"The file contains 180 KB of zipped web content including
html, jpg, gif, and various scripts.

NAKAO et al.: A REMEDY FOR NETWORK OPERATORS AGAINST INCREASING P2P TRAFFIC: ENABLING PACKET CACHE FOR P2P APPLICATIONS

originél packet C—1
compressed packet i

200000 -

150000

100000

Total Traffic (bytes)

50000 -

the second time the third time

Round

the first time

Fig.9 Comparison between the traffic observed before NetCachelngress
and that observed between NetCachelngress and NetCacheEgress.

warmed up (populated). The reason is, as described at the
end of this section in detail, with a small probability, Prefix
may span across a packet boundary, and 128-byte bound-
aries may be calculated based on a wrong (the previously
observed) Prefix, thus, wrongly aligned data chunks may be
compressed into wrong hash values, so the cache gets con-
taminated with wrong hash values at first. However, since
packet boundaries are random, the same Prefix may not span
across a packet boundary at later times on different flows,
so the cache gradually gets populated with the correct hash
values when the same contents are repeatedly sent at dif-
ferent times over different flows’. Note that for each round
of experiments, the total traffic generated is not the same,
since BitTorrentPeers exchange control messages of which
amount varies according to the situation.

Figure 10 compares the packet size observed be-
fore NetCachelngress and that observed between Net-
Cachelngress and NetCacheEgress at the second time.
The horizontal axis shows the number of packets forwarded
and the vertical axis represents the packet size. The packet
size before NetCachelngress is shown as “original packet”
and that between NetCachelngress and NetCacheEgress
is shown as “compressed packet.” Most packets are sup-
pressed to 20-30% in bytes compared to the original size.
We also observe that some packets are not compressed at all
even in the second time.

Figure 11 shows cumulative distribution of compres-
sion ratio of packet size at the second time. More than 95%
of the packets are suppressed below 35% in bytes compared
to the original size.

Figure 10 shows that two packets are not compressed at
all. There are two possible reasons why this occurs. One is
that Prefix spans across a packet boundary with a marginal
probability. In this case, with the current scheme, packets
may get divided using a wrong pointer to Prefix (the pre-
viously observed Prefix) at egress and the hash values ob-
served at ingress at the second time would not match any
of these hash values generated at the egress if the Prefix
in question observed at ingress does not span across packet

3817
original packet
original packe
1600 - compressed packet ---veee 7
IRl : B

1400 F i <
1200 «
[%]
2
& 1000 - 1
(o]
N
@ 800 | B
T
X
& 600 |
o

0
0 20 40 60 80 100 120 140
Packet Number

Fig.10 Comparison between the traffic observed before NetCachelngress

and that observed between NetCachelngress and NetCacheEgress (the
second round).

09 4

0.7 | B

06 4

05 | B

04 B

03 4

Cumulative Distribution of Packets

02 | B

01 g
CDF ——
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Compression Ratio (%)

Fig.11 Cumulative distribution of the traffic compression ratio (the
second round).

boundary at the second time.

The other possible reason is that notification of cache-
able hash values from the egress to the ingress arrive later
than compression attempts occur at the ingress. As Fig.9
shows, the reason why the third time compresses better than
the second time is exactly due to this reason.

In this preliminary study, hash collision has not been
considered yet. However, we can easily incorporate the hash
collision checking by adding a finger print of each packet
and verify it after reconstructing the packet to be the same
finger print, etc. The other considerations such as retrans-
mission triggered by hash collision and cache eviction strat-
egy are the topics for our future work.

"This artifact can be easily resolved by taking care of Prefix
spanning across a packet boundary, but, the system becomes more
complex than the current one. In this paper, it is left for future
work.

3818

BitTorrent Peers
(Requested Nodes)

g X

S
19

Core Networks

SE— -

ISP Network
(International)

BitTorrent Peers
(Requested Nodes)

ISP Network
(domestic)

Regional s A
Network." _&

Regional
Network

Access Networks
j ---------- j BitTorrent Peers

Fig.12 Configuration of packet capturing at a border gateway router.

30

Cache Hit Ratio (%)

. . . .
0 50 100 150 200 250 300
Elapsed Time (min)

Fig.13 Cumulative cache hit ratio during each 5-hour (300-minute) pe-
riod starting from every hour between 15:00 and 4:00 on the following day.

4.2 Preliminary Evaluation Using Packet Trace

As shown in Fig. 12, we have captured packets at a transit
router of an ISP for the duration of 18 hours starting from
15:00 on the 18th of June in 2008 till 9:00 on the following
day. Note that P2P traffic such as BitTorrent usually domi-
nates during these hours every day.

During this 18-hour period, we have captured about 1.7
TB traffic data and among them we have observed about
25% of BitTorrent traffic in volume on average. We divide
this 18-hour observation period into 5-hour time slots and
run our caching algorithm ignoring notification delay be-
tween ingress and egress. That is, we divide each packet
payload into 128-byte blocks starting from Prefix pointers
and generate MD5 hash values. Then we simply account for
duplicate hash values for the subsequent packets. As long
as subsequent duplicate hash values are observed no matter
how much later, we regard this event as a cache hit; other-
wise a cache miss.

Figure 13 shows cumulative cache hit ratio during each
5-hour time slot starting from every hour between 15:00 and
4:00 on the following day. Figure 14 averages all the 14

IEICE TRANS. COMMUN., VOL.E91-B, NO.12 DECEMBER 2008

25

20

Cache Hit Ratio (%)

))) average (w/devia‘tion) ——
0 50 100 150 200 250 300
Elapsed Time (min)

Fig.14 Cumulative cache hit ratio averaged at every minute in the
elapsed time for each 5-hour (300-minute) period.

curves shown in Fig. 13 at every minute in the elapsed time
for 5 hours. Error bars shown with the average curve in
Fig. 14 represent the standard deviation.

As we can see from these graphs, the averaged cumu-
lative cache hit ratio slowly increases over time and reaches
22.5+2.5% after the elapsed time of 5 hours. Although not
shown here for the sake of brevity, after the elapsed time
of 9.5 hours, the cumulative cache hit ratio reaches close
to 30%. The result of our preliminary study indicates that
our algorithm is expected to reduce the BitTorrent traffic
by about 20-30% depending on how much cache space we
could afford.

5. Related Work

There have been a number of studies on application layer
cache for eliminating redundant traffic across the network
[19], [22]-[24]. Web proxy caches deployed within ISP lo-
calizes Web response traffic and effectively eliminates re-
dundant data transmissions among ISP networks. For ex-
ample, pCache [19], an application layer proxy cache for
P2P traffic, reduces redundant P2P traffic.

The application layer approach, however, requires
caching semantics to interact with clients using a specific
protocol. Application layer caching approach eliminates ap-
plication objects, but it cannot eliminate redundant data in
packet or byte granularity. Another disadvantage is that col-
location of application cache in ISP is often regulated with
privacy, copyright, etc. It could also be a target of DDoS
attacks, then it would not work any more.

The packet-level caching schemes [25], [26] are uni-
versal schemes for eliminating redundant traffic that can
work on a protocol independent architecture. It is a generic
scheme that can be applied to any redundant packet context.
Thus it can eliminate more redundant traffic in packet or
byte granularity rather than in application-layer object gran-
ularity. The packet level cache can effectively eliminate high
level of repetition in P2P packets.

The packet cache is implemented using a shared cache

NAKAO et al.: A REMEDY FOR NETWORK OPERATORS AGAINST INCREASING P2P TRAFFIC: ENABLING PACKET CACHE FOR P2P APPLICATIONS

architecture, where each packet gets its payload cached with
its hash value in a device collocated at a border gateway
router in a network domain. The cache device can detect a
fraction of payload data identical to the previously observed
one. In the shared cache architecture, only the pointers are
passed in place of duplicate bytes between the two cache
devices placed at different network domains, while end users
behind caches exchange the original packets. This concept
has been studied to eliminate redundancy in any kind of data
packets.

The prior work [25], [26] leverages a Rabin fingerprint
algorithm for finding repetitive content. The fingerprint al-
gorithm allows faster computation than MD5 hash calcula-
tion, but the footprints consume a large amount of memory.
To reduce the memory size, it is required to sample a subset
of fingerprints per packet or to interleave fingerprint gener-
ation [26]. The fingerprint algorithm, which is effective for
packets repeated in short time interval, will not be applica-
ble to P2P traffic. The P2P traffic has a long tail distribution
in the repetition interval. The cached data has to stay for
a long time to improve the cache hit ratio according to our
preliminary observation of P2P traffic. In our approach, in-
stead of inspecting all the packets, we enforce redundancy
elimination specifically for P2P traffic. Our novel packet
cache architecture that detects Prefix indicating the begin-
ning of a data piece and enables caching piece by piece al-
lows us to eliminate a large volume of redundant traffic gen-
erated by P2P overlays. In addition, while the existing work
on packet caches has not discussed the data synchroniza-
tion mechanism between far-end pairs of caches, our packet
caching architecture aims to reduce traffic between ingress
and egress routers located possibly at a distance thus ad-
dresses the importance of the synchronization between the
far-end caches.

6. Future Work

We plan to extend our work in several directions. First,
we would like to evaluate the effectiveness of our proposal
by extending our prototype implementation and investigat-
ing more traffic data than we have examined. Second, we
are currently devising more space-saving caching scheme to
make our system more effective and efficient. Third, an-
other extension of our system is to support a multiple sets
of ingress and egress routers. Especially, we would like
to investigate more on the communication between multi-
ple caches installed on those routers and report its perfor-
mance evaluation. Fourth, we intend to apply this scheme
to the other P2P application than BitTorrent to evaluate the
effectiveness, with or without specific Prefix bytes. There
are a couple of interesting P2P systems that employ end-
to-end encryption. Although the report [2] shows that such
encrypted traffic is unpopular (less than 20%), we plan to
devise a way to deal with such applications as well. Finally,
we may actually be able to set a standard that P2P applica-
tions should install a specific Prefix in a packet to facilitate
caching demonstrated in our proposed system.

3819

7. Conclusions

The traffic characteristics of the Internet has greatly changed
from a web-centric pattern to P2P-dominant one. ISPs and
network operators are facing a dilemma that they would re-
duce P2P bandwidth that serves not their own customers but
those of others, while they would like to keep their pipes
full.

In order to resolve the dilemma of ISPs and network
operators, we propose a network layer packet-level caching
for reducing the volume of emerging P2P traffic, transpar-
ently to the P2P applications — without affecting operations
of the P2P applications at all —rather than banning it, re-
stricting it or modifying P2P systems themselves. Since P2P
traffic has peculiar characteristics swarm effect— a multi-
tude of end points downloading the same content at the
same time, caching the packet-level data at the network
layer could enable a great hit-ratio of the cache. Although
there have been different caching methods proposed, our ap-
proach is different in that we aim to provide as generic a
caching mechanism as possible at the network layer to ex-
tend applicability to arbitrary P2P protocols.

We have done two kinds of preliminary evaluations.
First, we have built a prototype of our proposed scheme in
Click on Emulab and show that with our prototype system,
more than 95% of the packets are suppressed below 35% in
bytes compared to the original size. Second, we have taken
packet trace at a transit router of an ISP for the duration
of 18 hours and exercise our algorithm on the packet trace.
The averaged cumulative cache hit ratio of our system have
reached 22.5+2.5% after the elapsed time of 300 minutes,
and close to 30% after the elapsed time of 9.5 hours. These
results show that our algorithm is expected to reduce the P2P
traffic with a specific Prefix significantly by about 20-30%
depending on the cache space.

Acknowledgment

The authors would like to thank Tomohiko Ogishi, Yuichiro
Hei, Kiyohide Nakauchi and Megumi Shibuya for insightful
discussions for this research.

References

[1] A. Parker, “The true picture of peer-to-peer filesharing,” July 2004.
http://www.cachelogic.com

[2] “iPoque: Internet study 2007,” Aug. 2007. http://www.ipoque.com

[3] “BitTorrent.” http://www.bittorrent.com/

[4] K.Parkand V.S. Pai, “Deploying large file transfer on an HTTP con-
tent distribution network,” Proc. First Workshop on Real, Large Dis-
tributed Systems (WORLDS 2004), San Francisco, CA, Dec. 2004.

[5] K. Park and V.S. Pai, “Scale and performance in the CoBlitz large-
file distribution service,” Proc. Third Symposium on Networked
Systems Design and Implementation (NSDI 2006), San Jose, CA,
May 2006.

[6] S. Seetharaman and M. Ammar, “Characterizing and mitigating
inter-domain policy violations in overlay routes,” ICNP’06: Proc.
2006 IEEE International Conference on Network Protocols, pp.259—
268, IEEE Computer Society, Washington, DC, USA, 2006.

3820

(71
(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]
(23]
[24]
[25]

[26]

S. Guha, N. Daswani, and R. Jain, “An experimental study of the
skype peer-to-peer VoIP system,” Proc. IPTPS 2006, 2006.
H.X.Y.R. Yang, “A measurement-based study of the skype peer-to-
peer VoIP system,” Proc. IPTPS 2007, 2007.

T. Karagiannis, P. Rodriguez, and K. Papagiannaki, “Should Inter-
net service providers fear peer-assisted content distribution?,” Proc.
Internet Measurement Conference (IMC’05), Oct. 2005.

K.P. Gummadi, R.J. Dunn, S. Saroiu, S.D. Gribble, H.M. Levy, and
J. Zahorjan, “Measurement, modeling, and analysis of a peer-to-peer
file-sharing workload,” Proc. 19th ACM Symposium on Operating
Systems Principles (SOSP-19), Oct. 2003.

“Cisco. network-based application recognition (NBAR).” http://
www.cisco.com/en/US/docs/ios/qos/configuration/guide/clsfy _traffic
_nbar.html

H. Xie, A. Krishnamurthy, Y.R. Yang, and A. Silberschatz, “Explicit
communications for cooperative control between P2P and network
providers.” http://www.dcia.info/activities/#P4P

H. Xie, Y.R. Yang, A. Krishnamurthy, Y. Liu, and A. Silberschatz,
“P4P: Provider portal for applications,” Proc. ACM SIGCOMM’08
Conference, pp.351-362, Aug. 2008.

H. Xie, A. Krishnamurthy, A. Silberschatz, and Y.R. Yang, “P4P:
Eplicit communications for cooperative control between P2P and
network providers,” May 2007. PAPWG Whitepaper.

“The Washington post news,” Sept. 2008. http://www.
washingtonpost.com/wp-dyn/content/article/2008/09/04/
AR2008090402280.html

“CBC news,” May 2008. http://www.cbc.ca/technology/story/2008/
05/12/tech-bell.html

A. Wierzbicki, N. Leibowitz, M. Ripeanu, and R. Wozniak, “Cache
replacement policies revisited: The case of P2P traffic,” Proc. GP2P,
2004.

G. Shen, Y. Wang, Y. Xiong, B.Y. Zhao, and Z.L. Zhang, “HPTP:
Relieving the tension between ISPs and P2P,” Proc. IPTPS 2007,
2007.

M. Hefeeda, C.H. Hsu, and K. Mokhtarianz, “pCache: A proxy
cache for peer-to-peer traffic,” Proc. ACM SIGCOMM’08 Confer-
ence, p.539, Aug. 2008.

R. Morris, E. Kohler, J. Jannotti, and M.F. Kaashoek, “The Click
modular router,” ACM Trans. Comput. Syst. (TOCS), vol.18, no.3,
pp-263-297, Aug. 2000.

“Emulab.” http://www.emulab.net/

“Velocix(formerly CacheLogic).” http://www.velocix.com/
“PeerApp.” http://www.peerapp.com/

“Oversi.” http://www.oversi.com/

N.T. Spring and D. Wetherall, “A protocol-independent tech-
nique for eliminating redundant network traffic,” Proc. ACM SIG-
COMM’00 Conference, Sept. 2000.

A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker, “Packet
caches on routers: The implications of universal redundant traffic
elimination,” Proc. ACM SIGCOMM’08 Conference, pp.219-230,
Aug. 2008.

IEICE TRANS. COMMUN., VOL.E91-B, NO.12 DECEMBER 2008

-~
e

Y

&Y
,a’/
|
‘l \

Akihiro Nakao received B.S. (1991) in
Physics, M.E. (1994) in Information Engineer-
ing from the University of Tokyo. He was
at IBM Yamato Laboratory/at Tokyo Research
Laboratory/at IBM Texas Austin from 1994 till
2005. He received M.S. (2001) and Ph.D.
(2005) in Computer Science from Princeton
University. He has been teaching as an Asso-
ciate Professor in Applied Computer Science,
at Interfaculty Initiative in Information Studies,
Graduate School of Interdisciplinary Informa-

tion Studies, the University of Tokyo since 2005. (He has also been an
expert visiting scholar/a project leader at National Institute of Information
and Communications Technology (NICT) since 2007.)

Kengo Sasaki received B.S. in Faculty of
Electro-Communications, from the University
of Electro-Communications. He is a first year
Master student and belongs to Applied Com-
puter Science Course, Graduate School of Inter-
disciplinary Information Studies, the University
of Tokyo.

Shu Yamamoto received B.S., M.E., and
Ph.D. degrees in electronics engineering from
the University of Tokyo, Japan, in 1977, 1979,
and 1989, respectively. He joined KDD (cur-
rently KDDI) in 1979. He has been engaged in
the research on optical communication and mo-
bile networks. Since 2007, he is working on new
generation networking in NICT. He received the
best paper and the achievement awards from
IEICE in 1995 and 1997, respectively.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

