AWP cache)." The AWP cache has multi-operation modes and dynamically adapts the operation mode based on the accuracy of way-prediction results. A confidence counter for way prediction is implemented to each cache set. In order to analyze the effectiveness of the AWP cache, we perform a SRAM design using 0.18 µm CMOS technology and cycle-accurate processor simulations. As the results, for a benchmark program (179.art), it is observed that a performance-aware AWP cache reduces the 49% of performance overhead caused by an original way-predicting cache to 17%. Furthermore, a energy-aware AWP cache achieves 73% of energy reduction, whereas that obtained from the original way-predicting scheme is only 38%, compared to an non-optimized conventional cache. For the consideration of energy-performance efficiency, we see that the energy-aware AWP cache produces better results; the energy-delay product of conventional organization is reduced to only 35% in average which is 6% better than the original way-predicting scheme." />


Adaptive Mode Control for Low-Power Caches Based on Way-Prediction Accuracy

Hidekazu TANAKA
Koji INOUE

Publication
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences   Vol.E88-A    No.12    pp.3274-3281
Publication Date: 2005/12/01
Online ISSN: 
DOI: 10.1093/ietfec/e88-a.12.3274
Print ISSN: 0916-8508
Type of Manuscript: Special Section PAPER (Special Section on VLSI Design and CAD Algorithms)
Category: Low Power Methodology
Keyword: 
low power,  cache,  way prediction,  confidence information,  

Full Text: PDF(1MB)>>
Buy this Article



Summary: 
This paper proposes a novel cache architecture for low power consumption, called "Adaptive Way-Predicting Cache (AWP cache)." The AWP cache has multi-operation modes and dynamically adapts the operation mode based on the accuracy of way-prediction results. A confidence counter for way prediction is implemented to each cache set. In order to analyze the effectiveness of the AWP cache, we perform a SRAM design using 0.18 µm CMOS technology and cycle-accurate processor simulations. As the results, for a benchmark program (179.art), it is observed that a performance-aware AWP cache reduces the 49% of performance overhead caused by an original way-predicting cache to 17%. Furthermore, a energy-aware AWP cache achieves 73% of energy reduction, whereas that obtained from the original way-predicting scheme is only 38%, compared to an non-optimized conventional cache. For the consideration of energy-performance efficiency, we see that the energy-aware AWP cache produces better results; the energy-delay product of conventional organization is reduced to only 35% in average which is 6% better than the original way-predicting scheme.


open access publishing via