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SUMMARY  In this paper, single-input multiple-output (SIMO)-model-
based blind source separation (BSS) is addressed, where unknown mixed
source signals are detected at microphones, and can be separated, not into
monaural source signals but into SIMO-model-based signals from indepen-
dent sources as they are at the microphones. This technique is highly appli-
cable to high-fidelity signal processing such as binaural signal processing.
First, we provide an experimental comparison between two kinds of SIMO-
model-based BSS methods, namely, conventional frequency-domain ICA
with projection-back processing (FDICA-PB), and SIMO-ICA which was
recently proposed by the authors. Secondly, we propose a new combi-
nation technique of the FDICA-PB and SIMO-ICA, which can achieve a
higher separation performance than the two methods. The experimental
results reveal that the accuracy of the separated SIMO signals in the sim-
ple SIMO-ICA is inferior to that of the signals obtained by FDICA-PB
under low-quality initial value conditions, but the proposed combination
technique can outperform both simple FDICA-PB and SIMO-ICA.

key words: blind source separation, microphone array, independent com-
ponent analysis, SIMO model

1. Introduction

Blind source separation (BSS) is the approach taken to es-
timate original source signals using only the data of the
mixed signals observed in each input channel. This tech-
nique is based on unsupervised adaptive filtering [1], in
that the source-separation procedure requires no training se-
quences and no a priori information on the directions-of-
arrival (DOAs) of the sound sources. Owing to the attrac-
tive features of BSS, much attention has been paid to the
BSS technique in various fields of signal processing such
as digital communications systems and acoustic signal pro-
cessing systems. In this paper, we mainly address the BSS
problem encountered in acoustic signal processing.

In recent studies based on independent component
analysis (ICA) [2], various methods have been proposed for
dealing with the BSS for acoustical sounds [3]-[8]. How-
ever, the existing ICA-based BSS approaches are basically
means of extracting each of the independent sound sources
as a monaural signal. Accordingly, they have a serious
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drawback in that the separated sounds cannot maintain in-
formation about the directivity, localization, or spatial qual-
ities of each sound source. This prevents any BSS methods
from being applied to binaural signal processing [9], or any
high-fidelity acoustic signal processing.

In order to solve this problem, we must adopt a new
blind separation framework in which Single-Input Multiple-
Output (SIMO)-model-based BSS is considered. Here, the
term “SIMO” represents the specific transmission system in
which the input is a single source signal and the outputs are
its transmitted signals observed at multiple sensors. In the
SIMO-model-based separation scenario, unknown multiple
source signals which are mixed through unknown acousti-
cal transmission channels are detected at the microphones,
and these signals can be separated, not into monaural source
signals but info SIMO-model-based signals from indepen-
dent sources as they are at the microphones. Thus, SIMO-
model-based separated signals can maintain the spatial qual-
ities of each sound source. Clearly, this attractive feature
makes SIMO-model-based BSS highly applicable to high-
fidelity acoustic signal processing, e.g., binaural sound sepa-
ration [10]. In addition, owing to the fact that SIMO-model-
based separated signals are still one set of array signals,
there exist alternative applications in which SIMO-model-
based separation is combined with other types of multichan-
nel signal processing; the Multiple-Input Multiple-Output
(MIMO) system deconvolution [11], and the combination of
SIMO-model-based BSS with adaptive beamforming [12].

The first objective of this paper is to provide an
experimental comparison between two kinds of SIMO-
model-based BSS methods, as follows; (a) conventional
frequency-domain ICA (FDICA) with projection-back pro-
cessing (hereafter we call this FDICA-PB), proposed by
Murata and Ikeda [13], and (b) SIMO-ICA which consists
of multiple time-domain ICAs (TDICAs), recently proposed
by the authors [14], [15]. The second objective of this paper
is to propose a new combination technique of the FDICA-
PB and SIMO-ICA, which can achieve a higher separation
performance with low computational complexity in compar-
ison to each of the two separate methods. It is worth men-
tioning that this study is well inspired by Nishikawa’s multi-
stage ICA approach [16] although Nishikawa’s ICA was still
monaural-output ICA; indeed, the research presented in this
paper is an extension of the multistage ICA to SIMO-model-
based BSS framework. The experiments are carried out un-
der a reverberant condition, and the results explicitly reveal
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the advantages and disadvantages of each method, and the
superiority of the proposed combination technique over the
FDICA-PB and SIMO-ICA techniques.

The rest of this paper is organized as follows. In Sect. 2,
the sound mixing model is described. In Sect. 3, the con-
ventional SIMO-model-based BSS methods are explained
in detail. In Sect. 4, the complementarity among the conven-
tional methods is pointed out, and the combination method
is newly proposed. In Sect. 5, the signal-separation experi-
ments are described and the results are compared with those
for the conventional methods. Following a discussion on the
results of the experiments, we give conclusions in Sect. 6.

2. Sound Mixing Process
In this study, the number of microphones is K and the num-

ber of sound sources is L. The observed signals in which
multiple source signals are mixed linearly are expressed as

N-1
x(0) = )" a(ms(t—n) = A@s(@), ()

n=0
where s(7) = [s1(1),---, s.(t)] is the source signal vector,
and x(7) = [x;(1),---, xx(0)]T is the observed signal vector.

Also, a(n) = [ay(n)]y is the mixing filter matrix with the
length of N, and A(z) = [Au(2)]u = [Z-) au(n)z™"u is the
z-transform of a(n), where z~! is used as the unit-delay op-
erator, i.e., 7" - x(t) = x(t—n), ax(n) is the impulse response
between the k-th microphone and the /-th sound source, and
[X];; denotes the matrix which includes the element X in the
i-th row and the j-th column. Hereafter, we only deal with
the case of K = L in this paper.

3. Conventional SIMO-Model-Based BSS

3.1 What is SIMO-Model-Based BSS?

In general, the observed signal can be represented as a su-
perposition of the SIMO-model-based signals as follows:

x(t) = [An(@)si(t), -, Agi(D)s1(D]"
+[Ap@)s2(t), -+, Aga(D)s2(0)]
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+[A1L(2)sL(0), -+, Ag(@)sL (D], 2)

where [A1,(2)si(0), - - -, Agi(z)s,(H)]T is a vector which corre-
sponds to SIMO-model-based signals with respect to the /-th
sound source; the k-th element corresponds to the k-th mi-
crophone’s signal.

The aim of SIMO-model-based BSS is to decompose
the mixed observations x(#) into the SIMO components of
each independent sound source, i.e., we estimate Ag(z)s;(t)
for all k and / (up to the permissible time delay in the separa-
tion filtering). The SIMO-model-based BSS has the advan-
tages that the separated signals is less distorted and maintain
the spatial qualities of each sound source in comparison to
the conventional ICA-based BSS. Note that Matsuoka et al.
have proposed a modified ICA based on the Minimal Dis-
tortion Principle (MDP) [17] to reduce the distortion in the
separated signals. However, Matsuoka’s method only esti-
mates the limited part of the SIMO components, A;(z)s;(t)
for all [. Consequently, this method is valid only for monau-
ral outputs, and the spatial qualities of the output signals
cannot be obtained.

In the following section, two kinds of existing SIMO-
model-based BSS methods are described in detail, and their
advantages and disadvantages are pointed out.

3.2 Conventional FDICA-PB [13]

In the conventional FDICA-PB (see Fig. 1), first, the short-
time analysis of observed signals is conducted by frame-
by-frame discrete Fourier transform (DFT). By plotting the
spectral values in a frequency bin for each microphone
input frame by frame, we consider them as a time se-
ries. Hereafter, we designate the time series as X(f,1)
:[XI (f’ t)~ T XK(f» t)]T-

Next, we perform signal separation using the complex-
valued unmixing matrix, W(f) = [Wu(f)]«. so that the L
time-series output Y(f, )=[Y:(f,0),---, Yi.(f, H]T becomes
mutually independent; this procedure can be given as

Y(f.,0 = W(HX(S.0). 3)

We perform this procedure with respect to all frequency

A\ . L Xi(£0
Q7 s A Mo
f f . S'eparlated Projection-back
* 1) signals :
st-DFT \ =WOXGD g operation
« > Yi(f1) e . —»Yf”(ﬁr)
Xun | WO | Ygn W) '
X (H=A(2)s (1) > it Yz(fﬁ"@" _’Y;Z)(f’f):
\\ ; g
,,,,,,,,,, \:'.f_iiii’,’,‘,{,ﬂ (T) Resultant -
' Optimize W(f) | S
& | so that ¥,(f;1) and Yy(f,1) |

Fig. 1

! are mutually independent |

-

Example of input and output relations in FDICA-PB, where K=L=2.
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Fig.2  Example of input and output relations in SIMO-ICA, where permutation P; is given by (12).

bins. The optimal W(f) is obtained by, for example, the
following iterative updating equation:

WEN(f) = n[1 - (@ (F,)YH(f, ) |WI()
% WHLR, €

where (-); denotes the time-averaging operator, [{] is used to
express the value of the i th step in the iterations, and 7 is the
step-size parameter. In our research, we define the nonlinear
vector function ®(-) as [7]:

T
DY (f, 1) = [er e ... grasmin] )

where arg[-] represents an operation to take the argument
of the complex value. After the iterations, the permuta-
tion problem, i.e., indeterminacy in ordering sources, can
be solved by [18].

Finally, in order to obtain the SIMO components, the
separated signals are projected back onto the microphones
by using the inverse of W(f) [13]. In this method, the fol-
lowing operation is performed.

-1 L-l

OG0 = (W [0 0. (0.0 0T} ©)
where Yl(k)( f, 1) represents the /-th resultant separated source
signal which is projected back onto the k-th microphone,
and {-}; denotes the k-th element of the argument.

The FDICA-PB has the advantages that (F1) it is very
fast and insensitive to the initial value in the iterative updat-
ing because the optimization of the separation filter given
by (4) and the projection-back processing given by (6) are
simple. That is, FDICA can simplify the complex problem
of the separation filter optimization into the individual op-
timization of the separation matrix W(f) in each subband.
There exist, however, the disadvantages that (F2) the inver-
sion of W(f) often fails and yields harmful results because
the invertibility of every W(f) cannot be guaranteed [19],
and (F3) the circular convolution effect inherent in FDICA
is likely to cause the deterioration of the separation perfor-
mance.

3.3 SIMO-ICA [14],[15]

SIMO-ICA has recently been proposed by one of the authors
as a means of obtaining SIMO-model-based signals directly
in the ICA updating. The SIMO-ICA consists of (L — 1)
TDICA parts and a fidelity controller, and each ICA runs
in parallel under the fidelity control of the entire separation
system (see Fig.2). The separated signals of the /-th ICA
(I=1,---L-1)in SIMO-ICA are defined by

Yacap(® = [y(ICAI)(t)]kl

= Z wacan(mx(t = n), M

n=0

where wcan(n) = [wg.CAI)(n)]i ;j is the separation filter ma-
trix in the /-th ICA, and D is the filter length.

Regarding the fidelity controller, we calculate the fol-
lowing signal vector, in which all elements are to be mutu-
ally independent:

L-1

Yacan(® = Xt =D/2) = )" yacap(®. ®)
I=1

Hereafter, we regard y;ca.)(?) as an output of a virtual “L-
th” ICA, and define its virtual separation filter matrix as

wacap(n) = I6 (ﬂ = —) Z wacan(n), ©)

where 6(n) is a delta function, i.e., §(0) = 1 and 6(n) =
0 (n # 0). The reason we use the term virtual here is that
the L-th ICA does not have its own separation filters, unlike
the other ICAs, and wqcar(n) is subject to wqcan(n) (I =
1,---,L-1).

By transposing the second term (- ZIL;II Yacap(®) in
the right-hand side into the left-hand side, we can show that
(8) means a constraint to force the sum of all ICAs’ output
vectors YL 1=1 Yacan(?) to be the sum of all SIMO components

[Z,= Au()si(t = D/2)] (= x(t — D/2)). Here, the delay of
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D/2 is used to deal with nonminimum phase systems. Using
(7) and (8), we can obtain the appropriate separated signals
and maintain their spatial qualities as follows.

Theorem: If the independent sound sources are separated
by (7), and simultaneously the signals obtained by (8) are
also mutually independent, then the output signals converge
on unique solutions, up to the permutation, as

Yacan(®) = diag[AQ)P]| Pis(t - D/2), (10)

where diag[X] is the operation for setting every off-diagonal
element of the matrix X to zero, and P; (I = 1,---,L) are
exclusively-selected permutation matrices which satisfy

L

D P =11 (11)

=1

Regarding proof of the theorem, see [14].

Clearly, the solutions given by (10) provide necessary
and sufficient SIMO components, A(z)s:(t — D/2), for each
I-th source. For example, one possibility is shown in Fig. 2
and this corresponds to

P; = [Simek,nIkis (12)

where 6;; is Kronecker’s delta function, and

_ k+1-1 (k+1-1<51L)
m(k’l)”{k+z—1—L (k+1-1>1L) (13)
In this case, (10) yields
Yacan(®)
= [Ame ) Sme =D/ Dla (I=1,---,L). (14)

In order to obtain (10), the natural gradient of the
Kullback-Leibler divergence of (8) with respect to wcar (1)
should be added to the existing TDICA-based iterative
learning rule [4] of the separation filter in the /-th ICA

(I =1,---,L-1). The new iterative algorithm of the /-th
ICApart(l=1,---,L—1)in SIMO-ICA is given as

[ 1]

(;ZIAI)(H)

E’I]C a0 & i {off—diag <ga(yﬁlc A,)(t))
=0
yE;]CAI)(I —n+ d).T>t} E;]CAI)(d)
_ {off-diag < x(t - g) Z yE;]CA,)(t)
(x(t -n+d- g) Zl ygl(:Al) -n+ d))T>t}

(10ta- g) - Z wg]CA,)(d))], (15)

=1

where off-diag[X] is the operation for setting every diagonal
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element of the matrix X to zero, « is the step-size parameter,
and ¢(+) is the nonlinear vector function where the /-th ele-
ment is set to be tanh(y;(¢)). The initial values of wcas(n)
for all / should be different.

The SIMO-ICA has the following advantage and dis-
advantage. (T1) This method is free from both the circular
convolution effect and the invertibility of the separation fil-
ter matrix. (T2) Since the SIMO-ICA is based on TDICA
which involves more complex calculations than FDICA, the
convergence of the SIMO-ICA is very slow, and its sensitiv-
ity to the initial settings of separation filter matrices is very
high.

4. Proposed Method

4.1 Motivation: Complementarity between FDICA-PB
and SIMO-ICA

As described in the previous section, the two SIMO-model-
based BSS methods have some disadvantages. However,
we note that the advantages and disadvantages of FDICA-
PB and SIMO-ICA are mutually complementary, i.e., (F2)
and (F3) can be resolved by (T1), and (T2) can be resolved
by (F1). In order to explicitly illustrate this complementar-
ity, we carried out a preliminary experiment on SIMO-ICA’s
sensitivity to the initial value of the separation filter matri-
ces. We artificially generated multiple distinct initial values
of the separation filter matrices with various qualities by us-
ing the following equation:

W[ICAI)(Z) = Bdiag [A(z)PlT] P, A(Z)—l PP
+(1=-p)Pz P2, (16)

where W(IC AD (z) is the z-transform of w[?(]: AD (1), and B (=0—
1) is a parameter for controling the quahty of the initial val-
ues; e.g., the ideal separation is achieved if 8 = 1, but the
separation performance decreases as 3 decreases.

The experimental conditions are summarized in Ta-
ble 1. To simulate the convolutive mixtures, clean speech
samples are convolved with impulse responses recorded in
an experimental room (see Fig. 3) in which the reverberation
time (RT) is set at 150 ms. Two kinds of sentences spoken
by two male and two female speakers are used as the source
speech samples. Using these sentences, we obtain 12 com-
binations.

As an objective evaluation score, SIMO-model accu-
racy (SA) is used to indicate the degree of similarity (mean-
squared-error) between the SIMO-model-based BSSs’ out-

Table 1  Experimental conditions for signal separation (see also Fig. 3).

Number of Microphones 2
Interelement Spacing 4cm
Number of Sound Sources Z

Sound Source Directions —-30° and 40°
Sampling Frequency 8kHz
Speech Data Length 75s

FFT Length in FDICA-PB 2048 samples
Filter Length in SIMO-ICA | 2048 taps
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puts and the original SIMO-model-based signals (A;(z)s;(t—
D/2)). The detailed calculation of SA is described in Ap-
pendix.

Figure 4 shows the results of SAs for FDICA-PB and
SIMO-ICA with different initial values. We got 612 results
with 12 combinations X 51 types of B, and plot the aver-
age of the results whose initial SAs are within the same
range. From this figure, it is evident that the performances
of SIMO-ICA are inferior to those of FDICA-PB under low-

f 573m
/ g Loudspeakers
e (Height : 1.35 m)
- 1L15m
=]
ol I, UM
- 2.15m 40° ‘,"
Microphone \
array 2

(Height : 1.35 m)

(Room height : 2.70 m)

Fig.3 Layout of reverberant room used in experiments.
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Fig.4 SIMO-model accuracies of FDICA-PB and SIMO-ICA under dif-
ferent initial value conditions.
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quality initial value conditions (0-14 dB), but SIMO-ICA
can outperform FDICA-PB in particular when the initial
value is improved over 14 dB. This result is highly consis-
tent with (F1) and (T2). Also, this motivates us to propose a
promising combination technique of FDICA-PB and SIMO-
ICA, i.e., we can obtain accurate SIMO signals by using
SIMO-ICA which follows a saturated FDICA-PB with suf-
ficient iterative updating.

4.2 Combination Algorithm of FDICA-PB and SIMO-
ICA

We propose a new multistage technique combining FDICA-
PB and SIMO-ICA (see Fig.5). The proposed multistage
technique is conducted with the following steps.

Step 0: Set an arbitrary initial value of the separation ma-
trix W(f) in FDICA. For example, an appropriate null-
beamformer [8] can be used.

Step 1: Perform FDICA (see (4)) to separate the source
signals to some extent with the fast- and robust-
convergence advantage (F1).

Step 2: After the FDICA, we generate a specific initial
value wi?é A/)(”) for SIMO-ICA to be performed in the
next step, by using W(f) obtained from FDICA. This
procedure is given by

(0]
Wcan()

= IFFT (17)

diag (W' P P,W(f)],

where P, is set to be, e.g., (12), and IFFT][-] represents
an inverse DFT with the time shift of D/2 samples.

Step 3: Perform SIMO-ICA (see (15)) to obtain resultant
SIMO components with the advantage (T1).

Compared with the simple SIMO-ICA, this combina-
tion algorithm is not as sensitive to the initial value of the
separation filter because FDICA is used for the estimation
of a good initial value. Actually, the performance of the
separation filter optimized by FDICA is high enough for
SIMO-ICA to start leaning (see the result of FDICA-PB in

yIA - Ay (Z)fl (t-p12) Separated signals

Y ICAD (1) — A(LVI+2J|('Z)S1(I_D/2)

VI~ Ay(2)si(t-D12)

Y Au(ntemn)

3, 1A (f)— m

YN (—|  Ay(2)s,(t-DP2) e M0 i gl
: 1 signals :

V0| Aua(2)51(1-Dr) (7 comresponding t 50

VI ()= Awil(2)si(t-Dr2)

YO~ Au(2)s,(t-Dr2)
YA (O —| Awrn(2)s(t-Dr2)
YINND~ A (2)sult-Dr)
YA () —|  AL(z)su(t-Dr2)

Input and output relations in proposed multistage method.
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Fig. 4). Also, this technique offers the possibility of provid-
ing a more accurate separation result than the simple FDICA
because the resultant quality of the output signal is deter-
mined by the separation ability of the SIMO-ICA starting
from a good initial state.

5. Experiments and Results
5.1 Conditions for Experiment

The experimental conditions are the same as those provided
in Table 1 and Fig. 3. The RT is set to 150 ms and 300 ms.
Two kinds of sentences spoken by two male and two female
speakers are used as the source speech samples. Using these
sentences, we obtain 12 combinations. The initial value in
all methods is fixed to null-beamformer whose directional
null is steered to +45° [8]. Note that the null-beamformer
is commonly used as an ICA’s initial value in several recent
works on ICA-based BSS [16],[20], [21] because of the su-
periority to the traditional setting of the initial value such
as random values. This may be due to the close relation-
ship between ICA and the null-beamformer [22], which has
reported that ICA with the small number of sensors often
provides directional nulls against the undesired source sig-
nals.

5.2 Results

Figures 6 and 7 show the results of SAs for FDICA-PB,
SIMO-ICA, and the proposed combination technique in ail
speaker combinations, for each of the reverberation con-
ditions. In the results of the proposed combination tech-
nique, there exists a consistent improvement of SA com-
pared with the results of FDICA-PB as well as those of
the simple SIMO-ICA. At RT = 150 ms, the average score
of the improvement is 8.3 dB over SIMO-ICA, and 2.9dB
over FDICA-PB. Also, at RT = 300 ms, the average score
of the improvement is 5.1 dB over SIMO-ICA, and 2.9dB
over FDICA-PB. In these figures, we can also confirm that
SIMO-ICA step in the proposed method can start leaning
with the good initial separation filter whose performance
is high enough for SIMO-ICA step to outperform simple
FDICA-PB.

Figure 8 shows the sensitivity to the initial state of the
proposed method. The experimental conditions are the same
as those in Sect.4.1. From this figure, we can confirm that
the proposed method outperforms both of the conventional
methods with any initial states and the proposed method is
not sensitive to the initial state. On the basis of these results,
we can conclude that the proposed combination technique
can assist the SIMO-ICA in improving the separation per-
formance, and successfully achieve the SIMO-model-based
BSS under reverberant conditions.

5.3 Discussion on Combination Order

The previous section shows that the cascade connection of
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posed method under different initial value conditions.

FDICA-PB and SIMO-ICA improves the separation perfor-
mance. This is mainly due.to the fact that the FDICA-PB
in the first stage can provide a better separation filter matrix
for SIMO-ICA in the second stage, and subsequently SIMO-
ICA can improve the quality of the resultant separated sig-
nals. In this section, to discuss the validity of the proposed
combination order, we compare the proposed combination
with another combination in which SIMO-ICA is used in
the first stage and FDICA-PB is used .in the second stage
(hereafter we designate this combination as “swapped com-
bination”).



648
Table 2 Comparison of SIMO-model accuracy among FDICA-PB,
SIMO-ICA, proposed combination, and swapped combination (unit is dB).
[ ]| RT=150ms | RT=300ms |
Simple SIMO-ICA 11.3 8.4
Simple FDICA-PB 16.7 10.6
Proposed Combination 19.6 134
Swapped Combination 17.1 11.2

We show the result of comparison of the simple SIMO-
ICA, simple FDICA-PB, the proposed combination, and
the swapped combination in Table 2. The results shown
in Table 2 are the averages of 12 experiments with differ-
ent combinations of speakers. The average SA of 17.1dB
(RT=150ms) or 11.2dB (RT=300ms) is obtained in the
swapped combination. This performance is still better than
that of simple SIMO-ICA and almost the same as that of
simple FDICA-PB, but it is poorer than that of the proposed
combination. In the swapped combination, the SA is still
improved by using FDICA-PB in the second stage, but the
separation performance is saturated because of disadvan-
tages (F2) and (F3) of FDICA-PB. This finding indicates
that the proposed combination order (FDICA-PB in the first
stage and SIMO-ICA in the second stage) is both essential

“and optimal.

6. Conclusion

In this paper, first, the conventional FDICA-PB and SIMO-
ICA were compared under reverberant conditions to eval-
uate the feasibility of SIMO-model-based BSS. Secondly,
we proposed a new combination technique of FDICA-PB
and SIMO-ICA, in order to achieve a higher separation per-
formance compared with each of the two methods. The
experimental results revealed that the accuracy of the sep-
arated SIMO signals in the simple SIMO-ICA is inferior
to that of FDICA-PB under low-quality initial value condi-
tions, but the proposed combination technique of FDICA-
PB and SIMO-ICA can outperform both simple FDICA-
PB and SIMO-ICA. At RT=150 ms, the average improve-
ment was 8.3 dB over SIMO-ICA, and 2.9 dB over FDICA-
PB. Also, at RT=300 ms, the improvement was 5.1 dB over
SIMO-ICA, and 2.9 dB over FDICA-PB.

Needless to say, the computional complexity of the pro-
posed method is larger than those of simple FDICA-PB and
simple SIMO-ICA because the proposed method includes
both of them. The reduction of the computional cost still re-
mains as an open problem for future study. Fortunately sev-
eral kinds of real-time (low-computational-cost) ICA algo-
rithms have been proposed (see, e.g., [23]) in recent works.
In future, we should utilize such a fast algorithm in our mul-
tistage method to realize the speed-up.
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Appendix: Calculation of SA

This section describes a calculation of SA under the specific
assumption that the permutation matrices P; ([ = 1, 2) are
given by (12). If another permutation condition arises, the
sound source number should be swapped. Note that the unit
of all scores is the decibel (dB), but hereafter we omit the
unit in equations.

The SA for sound source 1 is defined as

SA
o (1A1@s1( - D/2)P),
= 0
SO\ (W0 — An@sic - DJ2)P),
(142131t = D/2)P),
+ 10log,,

< Iy(leAzi(,) — A (D)8 (2 — D/2)12>;
(A-1)

The SA for sound source 2 is defined as

SA,
o1 (4252t - D/2)R),
= Og
LI 0) - An@sat - D/2R),
(4122t = D/2)P),
+ 10log,q

(1{“* 1) - An@s:(t = DIDP),
(A-2)

The resultant SA is an average of SA; and SA;.
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