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Encoding LDPC Codes Using the Triangular Factorization

SUMMARY  An algorithm for encoding low-density parity check
(LDPC) codes is investigated. The algorithm computes parity check sym-
bols by solving a set of sparse equations, and the triangular factorization is
employed to solve the equations efficiently. It is shown analytically and ex-
perimentally that the proposed algorithm is more efficient than the Richard-
son’s encoding algorithm if the code has a small gap.
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1. Introduction

The encoding can be a computational bottleneck of a com-
munication system which uses a low density parity check
(LDPC) code. It has been considered for long years that en-
coding is “easier” operation than decoding. Indeed, for clas-
sic linear block codes, encoding is possible in the quadratic-
order in the code length, while the maximum likelihood de-
coding is, for example, NP-complete in general. Conse-
quently major efforts of coding theorists have been aimed
to reduce the decoding complexity, and little attention have
been paid to reduce the encoding complexity. The situation
is, however, quite different for LDPC codes. Thanks to the
sparse structure of LDPC codes, a belief propagation algo-
rithm with relatively small number of iterations can estimate
the transmitted codeword with near-optimum precision. In
other words, we have sufficiently powerful and efficient, say
almost linear-order, decoding algorithms for LDPC codes.
Consequently, for LDPC codes, encoding becomes “more
complicated” operation than decoding. To make the abil-
ity of LDPC codes fully effective, we usually need to use
a very long code, say several thousand bits for example.
Therefore the gap of the encoding and decoding complex-
ities may cause serious problems in the implementation of
communication systems.

One solution to this issue is to investigate a subclass of
LDPC codes which are easy to encode and also show good
performance. For example, the irregular repeated accumu-
late code (IRA code) [3] with optimized profile show very
good performance. The IRA code can be regarded as an
LDPC code whose parity check matrix contains a triangular
submatrix, and hence the encoding is possible in the linear

Manuscript received January 25, 2006.
Manuscript revised April 12, 2006.
Final manuscript received June 6, 2006.

"The author is with the Graduate School of Information Sci-
ence, Nara Institute of Science and Technology, Ikoma-shi, 630-
0101 Japan.

a) E-mail: kaji@is.naist.jp
DOI: 10.1093/ietfec/e89-a.10.2510

Yuichi KAJI'™®, Member

order to the code length by utilizing the back substitution
technique (or by a simple accumulation circuit). Another
example in this approach is a quasi-cyclic LDPC code. The
quasi-cyclic LDPC codes are a class of LDPC codes which
have favorable structure for efficient encoding and decod-
ing. It is known that appropriately constructed quasi-cyclic
LDPC codes show very good error correcting performance.
See [1], [2] and [7] for recent results on quasi-cyclic LDPC
codes. It is promising and significant to investigate these
classes of LDPC codes with certain structures, but we need
to remind that this kind of structure may restrict the per-
formance and characteristics of codes. To promote studies
for wider classes of LDPC codes, it is also important to de-
velop encoding algorithms which can be used for arbitrary
LDPC codes. A widely known results in this philosophy is
the algorithm proposed by Richardson and Urbanke [8]. The
Richardson’s algorithm fully makes use of the sparseness
of the parity check matrices of LDPC codes, and achieve
much smaller complexity than the conventional encoding al-
gorithms. The complexity of the Richarson’s algorithm is
O(g* + N) where ¢ is a parameter called the gap of the code,
and N is the code length. Asymptotically, the gap g is pro-
portional to the code length N in general, and therefore the
complexity of the Richardson’s algorithm is still quadratic-
order to N. However, it is also shown in [8] that g is expected
to be very small compared to N. With respect to practical
and quantitative complexity measure, instead of asymptotic
order-notation, we can say that the Richardson’s algorithm
is much more efficient than naive encoding algorithms.

In this paper, we investigate a new encoding algorithm
for general LDPC codes. It has been widely recognized that
the encoding of a linear block code can be regarded as solv-
ing a system of equations. This fact however did not attract
researchers because solving a system of equations is another
difficult problem. In this paper, we consider to use the fri-
angular factorization, also known as the LU-factorization,
to solve a system of sparse equations. Similar to the case
of the Richardson’s algorithm, we need to permute the row
and column vectors of the parity check matrix beforehand to
reduce the complexity of the encoding algorithm. Unfortu-
nately it seems quite difficult to find the optimum permuta-
tion which makes the algorithm most efficient, and therefore
we investigate two sub-optimum permutations in this paper.
To compare the complexity of encoding algorithms in detail,
the number of operations which are needed in an encoding
operation is evaluated for the proposed and the Richardson’s
algorithms. Intuitively, the number of operations is a mea-
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sure of the number of logic gates in a hardware implemented
encoder. It is shown that the proposed algorithm consumes
small number of operations if an LDPC code has a small
gap. To justify this result, we also present some results of
computer simulation.

2. Preliminary
2.1 Two-Stage Encoding

Let C be a low-density parity check matrix (LDPC) code
with code length N and dimension K. We write P = N — K
to represent the number of parity check symbols of C. We
consider, for simplicity, the case that C is a binary code. The
extension of our result to the non-binary case is straight-
forward. It is assumed that operations and computations
over matrices and vectors are over modulo 2, and we will
omit “mod2” in equations if it is clear from a context. Let
X~ = {0, 1} be the set of binary symbols. For a nonnegative
integer n, we write X" for the set of vectors of length n over
Y. The concatenation of two vectors x and y is written as
x -y, and the transposition of a vector x is written as xT,

Let H be a parity check matrix of the code C, and con-
sider to represent H as H = [HH,] where H| and H, are
P x K and P x P submatrices, respectively. Assume that H,
is nonsingular. This assumption is equivalent to assuming
that C is systematic and the first K symbols of a codeword
of C are information symbols. For two vectors s € XX and
p € P, their concatenation s - p is a correct codeword of
C if and only if H(s - p)T = 0 mod 2. Since H = [HH,],
this equation is equivalent to H;s” = H,p” mod 2. There-
fore, the encoding can be regarded as a procedure to find
the vector p € ¥ which satisfies H;s” = H,p! mod 2 for
a given vector s € XX of information symbols. According
to this observation, we can consider the following two-stage
encoding procedure.

Stage 1: Compute u! = H;s’.
Stage 2: Solve Hop” = u” mod 2 with respect to p.

If C is an LDPC code, then H, H; and H, are all sparse (low-
density). Therefore, by using the algorithm for the sparse-
matrix multiplication, the computation in the stage 1 above
is possible in a linear order (precisely, the complexity is pro-
portional to the number of nonzero components in H;). On
the other hand, the complexity needed to execute the stage 2
is beyond linear order in general. For example, we may con-
sider to solve the equation by computing H; ! first and then
by computing p” = H,'u’. The complexity of this proce-
dure will be in the order of P? in general since H; !"is no
more sparse even if H, is sparse. If there are efficient means
for solving Hop” = u’ mod 2, then we can realize an effi-
cient encoding algorithm for LDPC codes. In this study, we
consider to use the triangular factorization for solving the
equation efficiently.

2.2 Triangular Factorization

The triangular factorization, which is sometimes refereed
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as the LU-factorization in some textbooks, has been long
studied in a branch of mathematics [9]. The existing studies
are mostly for continuous systems, but we can do similar
discussion for the binary case.

Definition 2.1: Let A be an n X n binary matrix. The k-th
order leading principle of A, where 1 < k < n, is the k X k
submatrix of A which consists of the first £ rows and the
first k columns of A. The matrix A is said to satisfy the LP-
condition if its k-th order leading principle is nonsingular
forall k with Il <k < n. O

It follows from the definition that if A satisfies the LP-
condition, then A is nonsingular. The converse does not hold
in general, but if A is nonsingular, then we can permute rows
and columns of A in such a way that the matrix satisfy the
LP-condition.

Lemma 2.1: Let A be an n X n matrix and assume that A
is nonsingular (the rank of A is n). Then there exist permu-
tations of row and column vectors of A which makes A to
satisfy the LP-condition. O

The proof is presented in the Appendix.

Lemma 2.2: If A satisfies the LP-condition, then there
are a binary lower-triangular matrix L and a binary upper-
triangular matrix U satisfying A = LU mod 2. Furthermore,
L and U are unique, and diagonal components of L and U
are all one.

Proof. The proof is by induction on n. For n = 1, A sat-
isfies the LP-condition if and only if A = (1). In this case,
L = U = (1) . The uniqueness of L and U is obvious, and
the diagonal components of L and U are all one. For the
inductive step, assume that A is an n X n matrix. The matrix
A can be written as

A :( D x ),
y z

where D, x and y are (n — 1) x (n — 1), (n — 1) x 1 and
1x(n—1) binary matrices, respectively, and z is either zero or
one. Since A is assumed to satisfy the LP-condition, D also
satisfies the LP-condition. Therefore, there are Lp and Up
which satisfies D = LpUp by the inductive hypothesis. Note
that the inductive hypothesis also implies that the diagonal
components of Lp and U, are all one, and therefore Ly and
Up have inverse matrices LBI and UBl, respectively. Now
define

L= Lp 0

“\yUy! yU'Lpx+z |

[ Up Lpx
U‘( 0o 1 )

We can easily see that L and U are triangular, A = LU mod
2 and all components in L and U are determined uniquely.
Remind again that the diagonal components of L, and Up
are all one. This obviously implies that the diagonal com-
ponents of U are all one. Assume that the (n,n) compo-
nent of L is zero. In this case, the n-th column of L is a
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zero vector, and the rank of L must be n — 1 or less. Be-
cause A = LU mod 2, this means that the rank of A must be
n—1 or less, which cannot occur because A satisfies the LP-
condition and therefore nonsingular (i.e. has rank n). Con-
sequently, the (n, n) component of L is one and the diagonal
components of L are all one. This completes the proof. O

If A = LU, then we say that L and U are factors of A.
Consider to solve an equation Ax = b mod 2, and assume
that L and U are factors of A. Then A = LU and Ax = b is
transformed into

x=A"p=U"'L"b.

Since L is triangular, we can use the back substitution tech-
nique to compute the vector y = L~'b. Using another back
substitution (forward substitution) to this y, we can compute
x = U™'y. The complexity for the two back substitutions de-
pends on the density of L and U. Indeed, the complexity for
the back substitution is small if L and U have small number
of nonzero components (i.e. the matrices are sparse). Un-
fortunately, the relation among the density of A, L and U is
not known clearly. However, in most cases, L and U are ex-
pected to be sparse if A is sparse, even though they are less
sparse than A.

Example 2.1: Consider the following matrix A.

100000
010011
001011
A=l1o00110
111100
011101
This matrix can be represented as A = LU where
1 00 0 0O
01 0 00
I = 0 01 0 0O
11 0 01 0 O0Y)
1 1.1 110
01 1 1 11
1 0 0 00O
01 0 0 1 1
0 01 0 1 1
U=lo o001 10
000 0 10
0 0 0 0 01

Readers may notice that the matrices L and U have similar
zero-one patterns to A. The lower-triangular part of A is
inherited to L, and the upper-triangular part of A is inherited
to U. The underlined components in L and U indicates that
they are different from their counterparts in A. O

We remark that the order of the rows and columns in
A is important for the sparseness of L and U. Permuting
row and/or column vectors in A (and corresponding compo-
nents in x and b) does not change the solution of the equa-
tion Ax = b, but changes the density of L and U in general.
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For example, let A” be the matrix obtained from A in Exam-
ple 2.1 by moving the fifth row vector of A to the top row
position;

111100
100000
, 1010011
A=loo1o01 1|
100110
011101
then A’ is represented as A’ = L' U’ where
1 000 00O
1 10000
I 011000
10 0 1 1 0 0}
110110
01 00 01
111100
011100
, 10 0 1 1 11
“Zlooo 100
000010
00 0 0 01

Compare L’ and U’ with L and U in Example 2.1, and read-
ers may notice that more zero components in A" become
nonzero in L’ and U’. This suggests that the back substi-
tutions for L and U’ will consume more complexity than
those for L and U in Example 2.1. To solve the equation
Ax = b efficiently, we should permute the row and column
vectors of A so that its factors are as sparse as possible.

3. Proposed Algorithm

Recall the two-stage encoding procedure which was consid-
ered in 2.1. As we have seen, the stage 1 can be executed ef-
ficiently, while the stage 2 for solving H,p” = u’ consumes
large complexity in general. Now consider to factor H, by
the triangular factorization, then we can solve the equation
by two back substitutions. The procedure for encoding is
sketched as follows.

Algorithm 3.1: We need to execute the following pre-
computation step only once before we actually perform en-
coding.

[pre-computation] Permute row vectors and column vec-
tors of the parity check matrix H so that the H,-part of H
satisfies the LP-condition, and the triangular matrices L and
U with H, = LU mod 2 are sparse. We will discuss later
how to obtain good permutations.

[encoding] Given an information vector s € XX, the parity
check vector p € ¥ for s is computed as follows.

Stage 1: Compute u’ = H;s”.
Stage 2: Solve Hyp” = u” as follows;

1. compute v” = L~'u” by a back substitution for L, and
then
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2. compute p” = U~'v” by a back substitution for U.

We call this algorithm the TSTF (Tivo-Stage encoding with
the Triangular Factorization) in this paper. O

Regarding the above procedure, there are two issues
which we need to discuss. The first issue is the LP-condition
of the submatrix H,. For a randomly constructed LDPC
code, we cannot assume that the submatrix H, satisfies the
LP-condition. If H, does not satisfy the LP-condition, then
the above procedure is not available because we cannot fac-
tor H, to two triangular matrices. To avoid this issue, we
need to permute row and column vectors of the parity check
matrix. We can easily extend Lemma 2.1 to non-square ma-
trices, and obtain the following lemma.

Lemma 3.1: If H is a P X N matrix with rank P, where
P < N, then there exist permutations of row and column
vectors of H which transforms H to H’ = [H{H}] in such a
way that H satisfies the LP-condition. O

The proof is omitted since it is essentially the same as the
proof of Lemma 2.1. We remark that a permutation of row
vectors of H does not change the code itself. In general,
a permutation of column vectors of H changes the symbol
order in a codeword, but the change does not affect code
profiles such as the minimum distance, weight distributions,
girth and so on. Thus, the permutation is not essential for
error correction capability of the code. Thus, we can say
that the above procedure can be used for arbitrary LDPC
codes.

The second issue concerning the above procedure is the
complexity. If back substitutions consume more complex-
ity than simply computing H;'u”, then the above procedure
is useless. To evaluate the complexity of the proposed en-
coding algorithm, we first introduce a quantitative and de-
tailed measure for the complexity. The order notation which
is widely used in the algorithm theory is a good measure
to discuss asymptotic behavior of algorithms, but it is too
coarse for comparing algorithms for a fixed size instances.
In this paper, we will discuss the complexity of encoding
algorithms by means of the number of operations. Let |M|
denote the number of nonzero components in a matrix M,
and let x and y be vectors with an appropriate length. We
define

o The number of operations necessary for computing Mx
is [M].

o The number of operations necessary for computing
T~ 'xis |T| where T is a triangular matrix.

o The number of operations necessary for computing x +
y is the length of x (y).

The above definition is derived by observing a typical algo-
rithm for each computation. The number can be used to esti-
mate the number of logic gates in a hardware-implemented
encoder. Using the above definition, the number of oper-
ations needed in the TSTF algorithm, denoted as yrstr, is
represented as yrstr = |H)| + |L| + |U|. To reduce the num-
ber of operations, we need to reduce |H;| or |L| or |U|. we

2513

make use of the permutation in the pre-computation step of
the algorithm to realize this requirement.

4. Permutations of Vectors of a Matrix

To make the TSTF algorithm efficient, we need to find a
good permutation of the check matrix so that the factors L
and U are as sparse as possible. To the author’s knowledge,
unfortunately, there is no efficient method for finding the op-
timum permutation which makes |L| and |U| smallest. In this
section, we investigate two sub-optimum strategy to make
|L| and |U| small.

4.1 Permutations based on Approximate Triangular Matri-
ces

4.1.1 Approximate Triangular Matrices

A parity check matrix in an approximate triangular form
is investigated by Richardson [8] to reduce the complexity
of his encoding algorithm. It is shown in this section that
a parity check matrix in an approximate triangular form is
also useful for the TSTF algorithm.

A parity check matrix H is said to be an approximate
triangular matrix (ATM for short) if

A BT
H:(CDE)’ b

where T is a triangular matrix. The number of row vectors
in the second row block (C, D and E) is called the gap of this
matrix, and the second column block (B and D) is taken so
that the number of column vectors in the block equals to the
gap. In [8], some algorithms are investigated for transform-
ing a parity check matrix into an ATM form by permuting
row and column vectors in the matrix. Remark that the ma-
trix obtained in this way has the same density as the original
parity check matrix. It is also shown in [8] that the gap g is
asymptotically proportional to the code length N but its ratio
g/N will be quite small for most practical LDPC codes.
From the parity check matrix in an ATM form in (1),
exchange the second and the third column blocks, and define

le(/é), sz(g g) @)

Remark that the k-th order leading principle of H, with 1 <
k < P — g is obviously nonsingural because the left-upper
submatrix of H, is a triangular matrix 7" with size P — g.
The k-th order leading principle with P — g < k < P may
not be nonsingular, but we can permute rows and columns
in the second row block and the second column block of H5,
respectively, to make the all leading principles nonsingular
(see Lemma 2.1). Consequently, we can always make H,
satisfy the LP-condition. Now Consider to apply the trian-
gular factorization to H,. The factors L and U of H, must
be of the form

(T o0 (1 By
L_(E DL)’ U‘(o DU)’ )
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where [ is an identity matrix, Dy, By and Dy are matrices
satisfying B = TBy and D = EBy + Dy Dy. Remark that
T and E are sparse if H is sparse, while Dy, By and Dy
are not sparse in general. However, if the gap g is small,
then Dy, By and Dy occupy small portion of the matrices
L and U. In this case, L and U are “mostly” sparse and we
can expect that L and U contain small number of nonzero
components. We have seen in the previous section that the
number of operations yrstr 1S given as |H;| + |L| + |U|. By
using (2), (3) and the fact that |I| = P — g,

vistr = |Hi| +|L| +|U|
= |A| +|C| + |T| + |E| + |Dy|
+P—g+|By|l +|Dyl.

To compare the above complexity with the complexity
of the Richardson’s algorithm, we evaluate the number of
operations needed in the Richardson’s algorithm. We omit
the details of the algorithm but it consists of some steps of
matrix operations. Table 1 shows how many operations are
needed to execute each step in the Richardson’s algorithm,
where p = p, - p,, p; and p, have length g and P — g,
respectively, and ¢ = —ET~'B + D (see [8] for the details).
The total number of operations needed for the Richardson’s
algorithm is

yru = A+ |TI+|E| +|Cl + g + ¢~
+|B|+P—-g+|T|.

Consider the difference between yrstr and yry, and de-
fine

A = yrstF — YRU
= |Dy| + Byl + Dyl — g — 1¢~"| - Bl - |T| )

If A < 0, then the TSTF algorithm consumes smaller num-
ber of operations than the Richardson’s algorithm.

We would like to evaluate A but it is difficult to esti-
mate the number of nonzero components in the matrices in
(4) precisely. Thus we approximate A under the following
assumptions.

Assumption 1: A dense matrix has almost equal number of
zeros and ones.

Assumption 2: Nonzero components in A distribute “uni-
formly” in the matrix H except the triangular zero-part
of H.

From the assumption 1, we approximate |¢~!| = g*/2 since
¢~! has ¢g*> components, and about half the components
are considered to be nonzero. Similarly we approximate
Byl = g(P — g)/2, though this approximation of By is “too
conservative” as we will see later. According to the simi-
lar assumption, |Dy| and |Dy| are both approximated to be
gz /4, since the matrices are dense triangular; half the com-
ponents above (or below) diagonal components are all zero,
and the remaining half contains almost equal number of ze-
ros and ones. As for the assumption-2, let p be the ratio
of nonzero components in H, and consider that a submatrix
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of H which has m components contains mp nonzero com-
ponents. This assumption implies that |B| = g(P — g)p and
IT| = (P~ g)°p/2.

Substitute terms in (4) with the above approximated
value, then

1
A=-3((1=-p)g* —(P=2)g+Pp). ©)

From (5), we can see that A approaches to —P?c/2 as the
gap g approaches to zero. This suggests that if the gap g is
very small, then the TSTF algorithm is more efficient (with
respect to the number of operations) than the Richardson’s
algorithm.

For the practical viewpoint, the size of gaps of LDPC
codes are of great interest. Richardson gives theoretical dis-
cussion on the gap size [8], and showed that the gap size has
strong relation to the erasure decoding. The conclusion in
[8] is that; good codes have small gaps. There is good cor-
respondence between Richardson’s encoding algorithm and
the message-passing erasure decoding algorithm. The gap
size intuitively corresponds to the number of erasures which
cannot be recovered by a message-passing erasure decoding
algorithm. Thus, if the code is good enough and has suffi-
cient ability for erasure decoding, then the gap is expected
to be small. For the detailed discussion, see [8]. This re-
sult suggests that the proposed algorithm will be more effi-
cient than Richardson’s algorithm for wide range of “good”
LDPC codes.

4.1.2 Improved Approximate Triangular Form

In the previous section, we assumed that dense submatrices
in L and U are random matrices (the assumption 1). How-
ever, this assumption might be too conservative for some
submatrices. Indeed, the density of the submatrix By is
“controllable” to some extent, and we can manage so that
|By| <« g(P — g)/2. Making |By| small reduces the num-
ber of operations of the TSTF algorithm. We consider to
“improve” the matrix H, obtained in the previous section.

In the following, we consider to sweep out bad column
vectors in H, to Hy. In other words, column vectors which
belong to H, and make many nonzero components in U are
exchanged with other column vectors in H;. Assume that
H has been transformed to an ATM form given in (2). The
factors L and U are defined as (3). Let i be an integer with
1 <i < g, and assume that we number columns in B from
one to g. Consider to exchange the i-th column vector of B
with a column vector in A. The corresponding column vec-
tors in D and C are also exchanged. Let H{, H) be matrices
after this exchange, and L’ and U’ be factors of Hé, assum-
ing that H} satisfies the LP-condition. The density of H; and
H7 will be almost the same because the exchanged column
vectors are expected to have almost the same density. The
matrices H, and H have the same T-part and E-part, which
means that L’ and U’ can be written as

T 0 I B
L= . U= 5’)-
(E DL) (0 DU
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Table 1
computation of plT = ¢ W(—ET'A + O)sT
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The number of computations in the Richardson’s algorithm.

computation of pZT =T 'AsT + BplT)

operation # of operations operation # of operations
AsT |A] AsT 0 (already computed)
T7'[As"] 7 Bp| B
—E[T7'AsT] |E| [AslT] +[BpT] P-yg
CsT IC| T~'[As" + BpT] |T|
[-ET'AsT1+[CsT] ¢
-¢~'[-ET'As"] ™"

H, L

Fig.1  Factorization for the (1008, 504) Gallager code; ATM based permutation.

The matrix By, equals to By except the i-th column. The
same property holds for D, and D/, and also for Dy and
Dj,. In other words, changing the i-th column of B and D
changes the i-th column of By, Dy and Dy, but does not
change other column vectors in L and U. Therefore, if the
sum of nonzero components in the i-th columns of By, D}
and D}, is smaller than that of By, Dy and Dy, then we will
have |H{| + |L'| +|U’| < |Hy| + |L| +|U|. Based on the above
discussion, we can examine if a column vector in B and D
can be replaced by a better column vector in A and C. By
“improving” the check matrix in this way, we can reduce the
number of nonzero components in L and U. As we can see
in the following example, |By/| can be much smaller than the
approximated conservative value g(P — g)/2.

Example 4.1: Let C be the (1008, 504) Gallager code with
column weight 3 [6]. Figure 1 shows H,, L and U for this
code. The gap of this matrix is 20, and the submatrix By has
504 — 20 = 484 rows and 20 columns. If By is a random
matrix, then the expected value of |By|is 484x20/2 = 4840.
In the case of the matrix U shown in Fig. 1, |By| = 718,
much smaller than the expected value of 4840. The number
of operations yrstr and yry for these matrices are 4399 and
5077, respectively. This means that, for this code, the TSTF
algorithm is more efficient than the Richardson’s algorithm,
saving more than 600 operations. O

4.2 Permutations Based on a Greedy Strategy

Tewarson proposes a greedy algorithm which permutes row
and column vectors of a given matrix so that its factors be-
come sparse [9]. We first investigate a binary version of the

Tewarson’s algorithm, and consider to apply it to reduce the
number of operations of the TSTF algorithm.

Meanwhile, consider that an n X n square matrix A =
(a;;) is given, and we compute triangular matrices L = (/; ;)
and U = (u;;) satisfying A = LU mod 2. This equation
implies that

n
Cli,j = Z l,-’kuk’j mod 2.
k=1

Remind that L and U are triangular matrices whose diagonal
components are all one. Thus we have /;; = u;; = 1 for
1<i<nlj=0fori< j,andu;; =0fori> j. Therefore

i-1

Z l,-,kuk,j + Ui j mod 2 (i < ]),
k=1
j-1

Zz,-,kukﬁl,,,- mod2 (i3> )).
k=1

Cl,',j =

By using the equations, /; ; with i > jand u;; with i < j are
both written as

min(i,j)—1

ajj+ (mod 2). (6)

li g,
oy

We consider an iteration algorithm which transforms
the matrix A. At the r-th iteration of the algorithm, we de-
termine a column vector and a row vector which should be
brought to the 7-th column position and the r-th row posi-
tion, respectively. Assume that we already have determined
the first » — 1 row vectors and the first » — 1 column vectors
of A. In this case, the first » — 1 column vectors of L and
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N
Hy
Fig.2  Factorization for the (1008, 504) Gallager code; greedy permutation.
Table2  The number of operations for several codes.
name N K P | A | gap | gaprate | Richardson ATM | greedy
16383.2130.3.103 | 16,383 | 14,253 | 2,130 | 3 17 | 0.0010 57,608 | 51,717 N/A
4095.737.3.101 4,095 3,358 737 | 3 9 | 0.0022 15,089 | 13,215 N/A
1057.244.3.352 1,057 813 244 | 3 4 | 0.0038 4,090 3,472 3,751
1057.244.3.457 1,057 813 244 | 3 6 | 0.0057 4,070 3,485 3,777
1057.244.3.353 1,057 813 244 | 3 6 | 0.0057 4,072 3,483 3,811
4161.731.4.356 4,161 3,430 731 | 4 39 | 0.0093 24,644 | 23,399 N/A
4161.731.4.352 4,161 3,430 731 | 4 42 | 0.0101 24,745 | 23,744 N/A
4095.738.4.102 4,095 3,358 737 | 4 45 | 0.0110 20,111 | 20,672 N/A
1057.244.4.389 1,057 814 243 | 4 17 | 0.0161 5,254 4,920 5,496
1057.244.4.364 1,057 814 243 | 4 17 | 0.0161 5,255 4,971 5,484
1057.244.4.360 1,057 814 243 | 4 17 | 0.0161 5,236 4,975 5,406
8000.4000.3.483 8,000 4,000 | 4,000 | 3 | 148 | 0.0185 49,727 | 59,694 N/A
4000.2000.3.243 4,000 2,000 | 2,000 | 3 75 | 0.0188 22,218 | 23,143 N/A
816.3.174 816 410 406 | 3 16 | 0.0196 4,029 3,439 4,173
504.504.3.504 1,008 504 504 | 3 20 | 0.0198 5,077 4,399 5,025
4986.93xb.329 9,972 4,986 | 4,986 | 3 | 211 | 0.0212 75,743 | 87,462 N/A
4986.93y.654 9,972 4,986 | 4986 | 3 | 212 | 0.0212 75,716 | 84,895 N/A
816.1A4.843 816 273 543 | 4 77 | 0.0944 8,190 | 15,012 | 10,984
816.55.156 816 408 408 | 5 77 | 0.0944 8,529 | 12,494 | 11,296
816.55.134 816 408 408 | 5 79 | 0.0968 8,671 | 12,693 | 11,204
816.55.178 816 408 408 | 5 81 | 0.0993 8,713 | 13,134 | 11,544

the first r — 1 row vectors of U are computable by using (6).
If we bring the j-th column vector of A, where j > r, to
the 7-th column position, then the r-th column of L must be
defined as

r—1

L =aij+ )l (mod2) — (i>1).
k=1

Examine the above equation for each j with j > r, and we
can find the “best” column vector which makes the weight
of the r-th column vector of L minimum. Bring the best col-
umn at the r-th column position in A. In a similar way, find
the “best” row vector which makes the weight of the r-th
row vector of U minimum, and bring it to the r-th row posi-
tion. One small issue we need to remark is the LP-condition.
We need to choose the r-th row and r-th column vectors so
that the the r-th order leading principle of H, is nonsingu-
lar. Thus, for the choice of vectors, we should exclude some
combinations of vectors which fail to make the leading prin-
ciple nonsingular. For this sake, we can use the technique
used in the proof of Lemma 2.1, but the detailed discussion
is omitted here.

The above algorithm can be used to matrices which
have more columns than rows. Give the algorithm a P X N
check matrix H, and execute the algorithm for P iterations.
The algorithm determines the first P row vectors and the first
P column vectors. Let H, be the P x P left submatrix of the
resulted matrix, and let H; be the remaining P X K subma-
trix. The row and column vectors of H, have been chosen,
in a greedy manner, so that they make L and U sparse.

Example 4.2: Let C be the Gallagar code considered in
Example 4.1. Figure 2 shows H;, L and U for the greedy
permutation. In this case, |H|| = 1,512, |[L] = 1,863 and
|U| = 1,641. The total number of operations is yrstr =
5,025, and for this code, the greedy permutation is not as
good as the permutation based on the ATM form. O

4.3 Simulation Results

To compare the complexity of the proposed algorithm with
that of the Richardson’s algorithm, the number of opera-
tions needed in the algorithms is evaluated for several LDPC
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codes found at [6]. Table 2 shows code parameters and the
number of operations. The result is in the increasing order of
the gap rate which is the rate of the gap g to the code length
N. In the table, N, K, P and A denote the code length, the
number of information symbols, the number of parity check
symbols and the column weight of the code, respectively.
All the codes shown in the table are Gallager code. Some
codes have the same parameters but they are constructed us-
ing different random seeds. The “name” is the actual file
name of the check matrix found at [6]. The number of oper-
ations is evaluated for the Richardson’s algorithm, the pro-
posed algorithm with the ATM based permutation and the
proposed algorithm with the greedy permutation. For codes
with relatively large parameters, the data was not available
(N/A in the table) for the greedy permutation due to big
computational complexity for the greedy algorithm.

We can see that, for several codes, the proposed al-
gorithm consumes smaller number of operations than the
Richardson’s algorithm. In general, the proposed algo-
rithm with the ATM based permutation is more efficient than
the Richardson’s algorithm if the size of the gap is rela-
tively small. This coincides with the analytical discussion
in Sect.4.1.1. On the other hand, for codes with relatively
large gap, the proposed algorithm with the ATM based per-
mutation consumes a large number of operations. This is
because that the size of the dense submatrix By becomes
large if the gap size is large. In this case, the greedy permu-
tation is better than the ATM based permutation, though, the
number of operations of the TSTF algorithm is still bigger
than that of the Richardson’s algorithm for these codes.

5. Concluding Remarks

An algorithm for encoding LDPC codes is proposed. The al-
gorithm computes parity check symbols by solving a system
of sparse equations. For solving the equations, we make use
of the triangular factorizations to reduce the number of oper-
ations. We also investigated permutations of check matrices,
and showed by computer simulation that the proposed algo-
rithm consumes smaller number of operations than Richard-
son’s algorithm, if the code has relatively small gap. As dis-
cussed in [8], good LDPC codes have small gaps in general,
and this perspective suggests that the encoding algorithm
proposed in this paper contributes to reduce the complexity
for encoding LDPC codes. We would like to note that the
permutations considered in this paper are just two of sub-
optimum solutions. The complexity of the TSTF algorithm
can be further reduced if we could find more sophisticated
permutations.
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Appendix: The Proof of Lemma 2.1

The proof is given constructively. If A does not satisfy the
LP-condition, then there exists an integer k such that the k-th
order leading principle of A is nonsingular, but the k + 1-st
order leading principle of A is singular. Write

X v
(0 w)

where X is the k-th order leading principle of A (the size
of X is therefore k X k) and the size of the other submatri-
ces are defined accordingly. The rank of X is k and we can
use the Gaussian elimination technique to eliminate nonzero
components in Z. This transforms A into

(50
where O is a zero matrix. Note that the rank of matrices
is not changed by the Gaussian elimination and hence the
rank of A, must be n. This implies that W’ is not a zero
matrix, because if W were a zero matrix then the rank of
A, is defined to be k, the rank of X, and a contradiction is
derived. Let (i, j) withk+ 1 <i<mandk+1 < j < nbe
a position of a nonzero component in A,. The position (i, j)
points a nonzero component in W’. Now we come back to
the matrix A, and define A’ be the matrix which is obtained
from A by exchanging the k + 1-st row vector and the i-th
row vector, and simultaneously by exchanging the & + 1-st
column vector and the j-th column vector. By applying the
Gaussian elimination to the k + 1-st leading principle of A’,
the leading principle is transformed to

, [ X ¢
w(o1)
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where c is the (j — k)-th column vector of Y. This matrix
A, has rank k + 1 and hence nonsingular. By repeatedly
applying this kind of permutations, we can transform A into
a matrix which satisfies the LP-condition.

Yuichi Kaji was born in Osaka, Japan, on
December 23, 1968. He received the B.E., M.E.,
and Ph.D. degrees in information and computer
sciences from Osaka University, Osaka, Japan,
in 1991, 1992 and 1994, respectively. In 1994,
he joined Graduate School of Information Sci-
ence, Nara Institute of Science and Technology,
Nara, Japan. In 2003 and 2004, he visited the
University of California Davis and the Univer-
sity of Hawaii at Manoa as a visiting researcher.
His current research interests include the theory
of error correcting codes, fundamental techniques for information security,
and the theory of automata and rewriting systems. He is a member of IPSJ,
SITA and IEEE.

IEICE TRANS. FUNDAMENTALS, VOL.E89-A, NO.10 OCTOBER 2006




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <>
    /NLD <>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <>
    /SVE <>
    /KOR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


