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Abstract : This paper deals with graph colouring games, an example of pseudo-telepathy,
in which two provers can convince a verifier that a graph G is c-colourable where c is less
than the chromatic number of the graph. They win the game if they convince the verifier. It
is known that the players cannot win if they share only classical information, but they can
win in some cases by sharing entanglement. The smallest known graph where the players win
in the quantum setting, but not in the classical setting, was found by Galliard, Tapp and
Wolf and has 32,768 vertices. It is a connected component of the Hadamard graph GN with
N = c = 16. Their protocol applies only to Hadamard graphs where N is a power of 2. We
propose a protocol that applies to all Hadamard graphs. Combined with a result of Frankl,
this shows that the players can win on any induced subgraph of G12 having 1609 vertices, with
c = 12. Combined with a result of Frankl and Rodl, our result shows that all sufficiently large
Hadamard graphs yield pseudo-telepathy games.

1 Introduction

It is known that quantum entanglement allows for a phenomenon called pseudo-telepathy,
that is, two parties pretend to be endowed with telepathic powers, as described in a survey
paper by Brassard, Broadbent and Tapp [1]. For two parties A and B, a pair of question
(qa, qb) ∈ QA × QB are given and then a pair of answer (aa, ab) ∈ AA × AB are returned. In
an initial phase, the parties can communicate with each other and share information. If the
parties share an entangled state, then this setting is called shared entanglement. In the second
phase, the parties are no longer allowed to communication with each other before revealing
their answers. The parties win this instance, if aa = ab ⇔ qa = qa. A protocol is successful
with probability p if it wins any instance that satisfies the promise with probability at least p.
This exchange is called a pseudo-telepathy game if there is a protocol that is successful with
probability 1 with shared entanglement and does not admit such a protocol that is successful
with probability 1 without sharing entanglement.

The graph colouring game is an example of a pseudo-telepathy game (Brassard, Cleve and
Tapp [1], Cleve, Høyer, Toner and Watrous [3]). In a graph colouring game, there are two
provers, called Alice and Bob, and a verifier. A graph G(V,E) and a integer c is given to Alice
and Bob. Alice and Bob agree on a protocol to convince the verifier that G is c-colourable.
The verifier sends a ∈ V to Alice and sends b ∈ V to Bob such that a = b or (a, b) ∈ E. Alice
and Bob are not permitted to communicate after receiving a and b. Alice sends the colour cA
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of a to the verifier and Bob sends the colour cB of b to the verifier. Alice and Bob win if a 6= b
and cA 6= cB or a = b and cA = cB , and lose otherwise. They win the game if they convince
the verifier.

The chromatic number χ(G) of a graph G is the the smallest number of colours that can
be assigned to vertices such that no two adjacent vertices receive the same colour. If c ≥ χ(G)
then there exists a protocol to win with probability 1 by using a colouring of G with c colours.
Otherwise, Alice and Bob cannot win the game with probability 1 using classical methods [2].
Using shared entanglement however, there are graphs where they can win in this situation.
The Hadamard graphs, defined by Ito [9, 10], provide such examples.

Let N = 4k for any positive integer k. The Hadamard graph GN is defined as the graph
whose vertex set VN = {0, 1}N and edge set EN = {(u, v) ∈ V 2

N |dH(u, v) = N/2}, where
dH(u, v) means Hamming distance of u and v. Hadamard graphs are related to Hadamard
matrices, which are an important object of study in combinatorics, especially design theory
(e.g., see Stinson [12]). One of the open problems is to decide whether for every k, there exists
a Hadamard matrix of order 4k.

With shared entanglement Brassard , Cleve and Tapp [2] showed that Alice and Bob win
the graph colouring game with probability 1 for G2n and c = 2n by using the Deutsch-Jozsa
protocol and by sharing an entangled state. A result of Frankl and Rodl [5] (Theorem 1.11)
implies that for all large enough n, χ(G2n) > 2n, and so asymptotically the game is an example
of a pseudo-telepathy game. Galliard, Tapp and Wolf [6] showed that this was already the
case for n = 16 using a rather complicated combinatorial argument. Thus the graph colouring
game for G16 and c = 16 is a pseudo-telepathy game.

We extend these results in this paper to all Hadamard graphs. In the next section we state
known results on the chromatic number of these graphs. In Section 3, we design a protocol to
win the graph colouring game for all Hadamard graph with probability 1. Combing these results
it is shown that the graph colouring game for G12 with c = 12 is a pseudo-telepathy game.
Furthermore this is the smallest value of N for which GN is a pseudo-telepathy game with
c = N , and this holds for any induced subgraph with at least 1069 vertices.. The concluding
section proposes a definition of quantum chromatic number and gives some open problems.

2 Chromatic number of Hadamard graphs

It is easily seen that χ(G4) = 4 and Ito [10] proved χ(G8) = 8. Given a graph G = (V,E),
the independence number of the graph, denoted α(G), is the cardinality of the largest subset
of vertices such that no two of them are joined by an edge. Let p ≥ 3 be an odd prime, q ≥ 1,
and k = pq. Frankl [4] showed that

α(G4k) = 4
k−1
∑

i=0

(

4k − 1

i

)

<
44k

33k
.

When p = 3 and q = 1 we get α(G12) = 268. An elementary result of graph theory is that
χ(G) ≥ |V |/α(G). Therefore χ(G12) ≥ 4096/268 > 12. In fact GN consists of two identical
connected components, each having independence number half of that of GN . Let H be any
induced subgraph, having 1609 vertices, of one of the connected components of G12. (In an
induced subgraph, two vertices are adjacent if and only if they are adjacent in the original
graph.) Then χ(H) ≥ 1609/134 > 12.

Since χ(G4) = 4, G4 is not a pseudo-telepathy game with c = 4. Similarly, G8 is not a
pseudo-telepathy game with c = 8. However we will see that H is a pseudo-telepathy game
with c = 12.



3 A protocol with probability 1 using QFT

In this section we extend the protocol by Brassard, Cleve and Tapp [2]. Their protocol employs
the quantum Hadamard transform while our protocol employs the quantum Fourier transform
(QFT) with any order, which can be exactly done as shown by Mosca and Zalka [11].

We describe a protocol such that Alice and Bob win the graph colouring game of GN with
probability 1 where 2n−1 < N ≤ 2n. In this protocol, we use the following two operations
QFTN and Pli : QFTN is a general quantum Fourier transform with order N , not necessarily
2n, defined as

QFTN : |i〉 −→ 1√
N

N−1
∑

j=0

(ω)i·j |j〉, (1)

where ω = exp
(

2π
√
−1

N

)

. Mosca and Zalka [11] show that this QFT with any order can be

performed exactly. The operation Pli is a phase shift corresponding to the i-th bit of an input
string l

Pli : |i〉 7→ (−1)li |i〉. (2)

Our protocol has four steps. Alice and Bob can communicate with each other at only step 1.

Step 1: Prepare initial state |ΨAB〉
In step I, Alice and Bob prepare 2n-qubits |0〉⊗n ⊗ |0〉⊗n. Alice has the first n-qubits and Bob
has the second. Alice first applies QFTN to her N -qubits:

|0〉⊗n ⊗ |0〉⊗n QFTN7→ 1√
N

N−1
∑

i=0

|i〉 ⊗ |0〉. (3)

Bob then applies controlled-NOT operations to his n-qubits with Alice’s qubits as control
qubits for sharing the initial entanglement states:

1√
N

N−1
∑

i=0

|i〉 ⊗ |i〉 =: |ΨAB〉. (4)

Step 2: Apply phaseshift Pai and Pbi

Alice and Bob compute

(Pai ⊗ Pbi)|ΨAB〉 =
1√
N

N−1
∑

i=0

(−1)ai⊕bi |i〉 ⊗ |i〉. (5)

Step 3: Apply the general quantum Fourier transform

Alice and Bob compute

(

QFTN ⊗QFT−1
N

)

(Pai ⊗ Pbi) |ΨAB〉

=

(

1√
N

)3 N−1
∑

jA=0

N−1
∑

jB=0

N−1
∑

i=0

(ω)i·(jA−jB)(−1)ai⊕bi |jA〉 ⊗ |jB〉.
(6)

Step 4: Measure

Alice and Bob measure her(his) qubits using the computational bases and each obtain one of
N basis states. They output colours corresponding to their measurement result to verifier.

We have the following theorem for our protocol.



Theorem 3.1 Alice and Bob win the game with probability 1 by our protocol.

Proof. Suppose that Alice(Bob) receives a(b) and sends cA(cB). The probability that Alice
and Bob obtain basis states |j〉 ⊗ |j〉 after measurement is

∣

∣

∣〈j| ⊗ 〈j|
(

QFTN ⊗QFT−1
N

)

(Pai ⊗ Pbi) |ΨAB〉
∣

∣

∣

2
=

∣

∣

∣

∣

∣

(

1√
N

)3 N−1
∑

i=0

(−1)ai⊕bi

∣

∣

∣

∣

∣

2

.

In case of a = b, it holds that ai ⊕ bi = 0 for any i. Thus the probability of cA = cB is

Pr[cA = cB ] = 1.

On the other case of a 6= b, it holds that dH(a, b) = N
2 , because of the definition of the

Hadamard graph. It means that
Pr[cA = cB ] = 0.

By combining Frankl’s result [4] and Theorem 3.1, there is a gap between the shared
entanglement setting and otherwise for G12, and for the smaller subgraph H mentioned in the
previous subsection. We have obtained the following result.

Theorem 3.2 The smallest Hadamard graph GN such that the graph colouring game is a

pseudo-telepathy game with c = N is G12. Any of its induced subgraphs with 1609 vertices also

has this property.

Godsil and Newman have proved that a Hadamard graph GN has chromatic number strictly
larger than N whenever N = 4m > 8 [8]. Then next result holds.

Theorem 3.3 The graph colouring game for Hadamard graph G4m is a pseudo-telepathy game

with c = 4m for all m ≥ 3.

The final statement of this theorem uses the result of Frankl and Rodl [5] mentioned in
Section 1.

4 Concluding remarks

In this paper, we have dealt with two party case for the quantum colouring game. It may be
interesting to investigate the multi-party case for quantum colouring game.

The chromatic number χ(G) of a graph G is equal to the minimum number of colours
such that Alice and Bob win the graph colouring game for G with probability 1 without shared
entanglement. Patrick Hayden [private communication] suggested we define the quantum chro-
matic number χQ(G) as the minimum number of colours such that Alice and Bob win the graph
colouring game for G, using shared entanglement, with probability 1. It is easy to see that
χQ(G) ≤ χ(G), and the pseudo-telepathy graph colouring game is concerned with graphs with
χQ(G) < χ(G). Characterizing such graphs G would be interesting from both the standpoint
of quantum communication and of combinatorics. What is the smallest such graph?

For Hadamard graphs G4pq , there is an exponential gap between the chromatic number and
the quantum chromatic number. What is the largest such gap as a function of the number of
vertices of G?
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