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A Family of Binary Sequences with Optimal

Correlation Property and Large Linear Span
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Abstract

A family of binary sequences is presented and proved to have optimal correlation property and

large linear span. It includes the small set of Kasami sequences, No sequence set and TN sequence set

as special cases. An explicit lower bound expression on the linear span of sequences in the family is

given. With suitable choices of parameters, it is proved that the family has exponentially larger linear

spans than both No sequences and TN sequences. A class of ideal autocorrelation sequences is also

constructed and proved to have large linear span.
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I. INTRODUCTION

Binary sequences are important for CDMA systems, spread spectrum systems, and broadband

satellite communications [1]. Families of sequences for such applications are desired to have

low autocorrelation, low cross-correlation, and large linear span [2], [3]. Families of Gold-pairs

[4], [5] and bent function sequences [6], [7] as well as the small and large families of Kasami

sequences [8], [9] all have desirable correlation properties. However, these sequences, except

the bent function functions, have small values of linear span. In [10], relaxing correlation, Gong

constructed a sequence set with a much larger linear span.

Important results are obtained for increasing linear span of sequences while keeping the

sequences optimal in correlation respect to the Welch bound[11], [12], [13]. No and Kumar

[12] proposed a family of No sequences of period2n − 1, which are defined by

sh(t) = trm1 {[tr
n
m(α

2t) + γhα
(2m+1)t]r} (1)

wheren = 2m, α is a primitive element of the finite fieldF2n , γh ranges over each element of

F2n/2 exactly once ash ranges from1 to 2n/2, andr is an integer with1 ≤ r < 2m − 1 such

that gcd(r, 2m − 1) = 1. When r = 1, the family is the small set of Kasami sequences. The

maximal linear span of No sequences isO(n · 4
n
4 ). Klapper [13] generalized the family to that

of so-called Trace-Norm (TN) sequences with an expression of the form

sh(t) = trm1 {[tr
mk
m (trnmk(α

2t) + γhα
(2mk+1)t)]r} (2)

wheren, α, γh and r are the same as for the No-Kumar family, while other two parametersm

andk satisfymk = n
2
. For suitablek and r, TN sequences have much larger linear spans than

that of No sequences, and their maximal linear span isO(n · 5
n
4 ). These constructions were

extended by Noet al. in 1997 [14], and generalized by Gong in 2002 [10]. These extended and

generalized families of sequences have the same correlation properties as that of No sequences

and TN sequences [10]. It remains unanswered whether a family of sequences with larger linear

span exists.

In this correspondence, we study the linear span of binary sequences defined by

sh(t) =
∑

i∈I

{trmk
m [(trnmk(α

2t) + γhα
(2mk+1)t)u]}i (3)
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TABLE I

FAMILIES OF BINARY SEQUENCES OF PERIOD2n − 1 WITH OPTIMAL CORRELATIONRmax = 2
n

2 + 1

Family n Family size Maximum linear span

Bent function sequences 4m 2
n

2 ≥

(
n/2
n/4

)
2n/2

Small set of Kasami sequences 2m 2
n

2
3n
2

No sequences 2m 2
n

2 n(2
n

2 − 1)/2

TN sequences 2mk 2
n

2 > 3n(3k − 1)m−2/2

Sequences we studied 2mk 2
n

2 > 3k−1n[2k−2(3k − 1)]m−2/2

wheren,m, k, α, γh and r are the same as for the Klapper family, andu satisfies1 ≤ u <

2mk − 1 andgcd(u, 2mk − 1) = 1. The index setI is chosen such that for a primitive element

β of F2m , {
∑
i∈I

βit1}∞t1=0 represents an ideal autocorrelation sequence of period2m − 1. When

I = {r, 2r, · · · , 2m−1r} andu = 1, sequences in Eq. (3) is the Klapper sequences.

This family of sequences defined by Eq. (3) can be regarded as aspecial case of the generalized

Kasami signal set [10], whose linear span was not considered. This correspondence gives a

lower bound on linear spans of sequences in Eq. (3). More precisely, for u =
k−2∑
j=0

2mj and

3 ≤ k ≤ 5, we prove that a majority of sequences in the family have linear spans at least

O(n · 2
2n
3 ) (2

2n
3 > 6.32

n
4 ), which is significantly larger than the linear spanO(n · 4

n
4 ) for No-

Kumar sequences andO(n · 5
n
4 ) for Klapper sequences. Table I summarizes the family size and

linear span properties of the families mentioned above.

The family of sequences in Eq. (3) has optimal correlation property. It contains an ideal

autocorrelation sequence [15], whose linear span, although very large, is much less than that of

any other sequence in the family. In order to obtain sequences with ideal autocorrelation and

large linear span, we will further specifyI to relate it to Legendre sequences and derive a tighter

lower bound on the linear span of this ideal autocorrelationsequence. This will be presented in

Section IV.

The remainder of this correspondence is organized as follows. Section II gives some necessary

notations and preliminary lemmas. Section III derives lower bounds on linear spans of the
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sequences. Section IV shows that a class of sequences with ideal autocorrelation property also

have large linear span. Section V concludes the study.

II. PRELIMINARIES

Let F be the family ofM binary sequences of periodN = 2n − 1 given by

F = {{sh(t), 0 ≤ t ≤ N − 1} | 0 ≤ h ≤ M − 1}.

The correlation function of the sequences{sh(t)} and{sl(t)} in F is

Rh,l(τ) =
N−1∑

t=0

(−1)sh(t)−sl(t+τ)

where0 ≤ h, l ≤ M − 1, and0 ≤ τ ≤ N − 1. The maximum magnitude Rmax of the correlation

values is

Rmax = max |Rh,l(τ)|

where 0 ≤ h, l ≤ M − 1, 0 ≤ τ ≤ N − 1, and the cases of in-phase autocorrelations (h =

l and τ = 0) are excluded. A family of binary sequences of period2n − 1 is said to have

optimal correlation property if Rmax ≤ 2
n
2 +1. For h = l, Rh,l(τ), abbreviated byRh(τ), is the

autocorrelation function of {sh(t)}. The sequence{sh(t)} is said to have anideal autocorrelation

property if

Rh(τ) =





N if τ ≡ 0modN ;

−1 otherwise.

Let F2n be the finite field with2n elements, andn = em for some positive integerse andm.

The trace function trnm(·) from F2n to F2m is defined by

trnm(x) =
e−1∑

i=0

x2im

wherex is an element inF2n .

The trace function has the following properties [16]:

i) trnm(ax+ by) = a · trnm(x) + b · trnm(y), for all a, b ∈ F2m , x, y ∈ F2n .

ii) trnm(x
2m) = trnm(x), for all x ∈ F2n .

iii) trn1 (x) = trm1 (tr
n
m(x)), for all x ∈ F2n .
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The operation of multiplying by2 divides the integers modulo2m − 1 into sets called the

cyclotomic cosets modulo2m−1. The cyclotomic coset containings is {s, 2s, 22s, · · ·, 2es−1s},

where es is the smallest positive integer such that2ess ≡ s (mod 2m − 1). Furthermore,es

dividesm, andes = m for m prime ands 6≡ 0 (mod2m − 1). The smallest positive integer in

the cyclotomic coset{s, 2s, 22s, · · · , 2es−1s} is called itscoset leader [17].

For two integersa and b with a ≤ b, let [a, b] be the interval consisting of all integerc with

a ≤ c ≤ b, and thelength is b− a + 1. Whena = b, [a, b] is called asingle point interval and

written as[a]. Two intervals[a, b] and [c, d] are un-incorporative if b + 2 ≤ c or d + 2 ≤ a. A

set of several pairwisely un-incorporative non-negative intervals{[aj , bj ] | j ∈ J} determines a

positive integer
∑
j∈J

∑
x∈[aj ,bj ]

2x, whereJ is an index set. For a positive integerc, there exist an

index setK consisting of non-negative integers such thatc =
∑
k∈K

2k, which determines a set of

un-incorporative intervals{[aj , bj] | j ∈ J} such that
⋃

j∈J [aj, bj ] = K. This fact will be used in

derivation of the main result in this correspondence.

The following notations are used in the rest of this correspondence:

• m, k, andn: positive integers,n = 2mk;

• N = 2n − 1, M = 2m − 1, andT = N
M

= 2n−1
2m−1

;

• F2n : the finite field with2n elements;

• α: a primitive element ofF2n ;

• β = αT : a primitive element ofF2m ;

• Γ(m): the set consisting of all non-zero coset leaders modulo2m − 1;

• Ci = {i2j (mod 2m − 1) | j = 0, 1, · · · , m}, i.e., the cyclotomic coset modulo2m − 1

containing the elementi;

• ei = |Ci|;

• Zp: a residue ring of integers modulop;

• V = {0, 1, · · · , k − 1} }, wherek is a positive integer;

• V t = V × V × · · · × V is the Cartesian product oft copies ofV ;

• w(i): the weight of integeri, i.e., the number of ones in the coefficients of the binary

expansion ofi;

• ⌊z⌋: the largest integer not exceedingz;

• [a, b]: the integer interval consisting of all integerc with a ≤ c ≤ b.
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• γ0 = 0, γ1, · · · , γ2mk−1: all 2mk elements of the fieldF2mk .

The following lemmas will be used to prove our results.

Lemma 1 (Proposition 1, [10], or Theorem 5, [15]): LetI ⊆ ZM be an index set. If the binary

sequences{a(t1)} of periodM given by

a(t1) =
∑

i∈I

βit1 (4)

has the ideal autocorrelation property, then so does the binary sequencec(t) of periodN defined

by

c(t) =
∑

i∈I

{trmk
m [(trnmk(α

2t))u]}i (5)

for any u satisfyinggcd(u, 2mk − 1) = 1.

It is noted that any binary sequence of period2m − 1 with ideal autocorrelation property can

be written as

a(t1) =
∑

0≤i≤2m−2

Aiβ
it1 (6)

whereAi ∈ {0, 1} and Ai take a same value on each cyclotomic coset modulo2m − 1, i.e.,

A2i = Ai for any 1 ≤ i < 2m − 1 [18].

TakeI as the set of alli with Ai 6= 0, then Eq. (6) becomes Eq. (4).I is a union of several

cyclotomic cosets, andI = ∪i∈I∩Γ(m)Ci. For the goal of obtaining a good lower bound on linear

span, we assume in this correspondence that there is ani0 ∈ I such that gcd(i0, 2m − 1) = 1

(This is an assumption satisfied by many ideal autocorrelation sequences). Since gcd(2m−1 −

1, 2m − 1) = 1, replacingβ with β(2m−1−1)i−1
0 mod 2m−1, we can further assume2m−1 − 1 ∈ I.

The optimal correlation property of the family of sequencesexpressed in Eq. (7) is restated

as Lemma 2 for completeness.

Lemma 2: (Proposition 2, [10]) Letγ0 = 0, γ1, · · · , γ2mk−2, andγ2mk−1 be the all elements of

F2mk . For 0 ≤ h ≤ 2mk − 1, define{sh(t)} as the sequence by

sh(t) =
∑

i∈I

{trmk
m [(trnmk(α

2t) + γhα
(2mk+1)t)u]}i (7)

whereI is the index set as mentioned above, and1 ≤ u ≤ 2mk−1 is an integer relatively prime

to 2mk − 1. Then the familyF

F = {{sh(t)}0≤t<2n−1 | 0 ≤ h ≤ 2mk − 1} (8)

August 22, 2005 DRAFT
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of 2mk binary sequences of periodN is an optimal correlation sequence set with respect to

Welch’s bound. Furthermore,Rh,k(τ) ∈ {−1, 2
n
2 −1,−2

n
2 −1} for any out-of-phase shift(h, k, τ)

(h 6= k or τ 6= 0).

By Lemma 1,{s0(t)} is an ideal autocorrelation sequence.

III. L INEAR SPAN OF SEQUENCES

This section proves sequences in the familyF have large linear span.

The linear span of a sequence is the smallest degree of which alinear recursion satisfied by

the sequence exists. Key [20] described a method for determining the linear span of a binary

sequence of period2n − 1. The linear span of{sh(t)}0≤t<2n−1 can be determined by expanding

the expression ofsh(t) as a polynomial inαt of degree less than2n − 1 and then counting the

number of monomials inαt with nonzero coefficients occurring in the expansion. This technique

will be applied to determine the linear span of sequences in family F .

Denote each exponenti ∈ I in Eq. (5) as

i = 2i1 + 2i2 + · · ·+ 2iw(i) (9)

where0 ≤ i1 < i2 < · · · < iw(i) ≤ m− 1.

Let x = αt andy = x2mk−1. Substituting Eq. (9) into Eq. (7). Thensh(t) can be written as

sh(t) =
∑
i∈I

[
k−1∑
v=0

(α2t + γhα
(2mk+1)t + α2mk+1t)u2

mv
]i

=
∑
i∈I

(
k−1∑
v=0

[x2(1 + γhy + y2)]u·2
mv
)i

=
∑
i∈I

w(i)∏
j=1

k−1∑
v=0

[x2(1 + γhy + y2)]u·2
mv+ij

=
∑
i∈I

∑

v∈V w(i)

[x2(1 + γhy + y2)]δ(i,v)

(10)

whereV = {0, 1, · · · , k − 1}, v = (v1, v2, · · · , vw(i)) ∈ V w(i), and

δ(i, v) =
w(i)∑

j=1

u · 2mvj+ij . (11)

As the first step to count the number of monomials inαt with nonzero coefficients occurring

in right side of Eq. (10), we show the following

Lemma 3: For different pairs(i, v) and(i′, v′), there is no monomial that appears with nonzero

coefficients in the expansions of both(x2(1 + γy + y2))δ(i,v) and (x2(1 + γy + y2))δ(i
′,v′).

August 22, 2005 DRAFT



8

Proof: Sincey = x2mk−1, each monomial inx in the expansion ofx2(1 + γhy + y2) has an

exponent (respect tox) congruent to 2 modulo2mk − 1. Thus, each monomial in the expansion

of (x2(1 + γhy + y2))δ(i,v) has an exponent congruent to2 · δ(i, v) modulo2mk − 1.

If there is a monomial that appears with nonzero coefficientsin the expansions of both(x2(1+

γy + y2))δ(i,v) and (x2(1 + γy + y2))δ(i
′,v′), then

2 · δ(i, v) ≡ 2 · δ(i′, v′)mod (2mk − 1). (12)

The integer2u is relatively prime to2mk − 1. By Eq. (11) and Eq. (12), we have

w(i)∑

j=1

2mvj+ij ≡
w(i′)∑

j=1

2mv′j+i′j mod (2mk − 1). (13)

Notice that
w(i)∑

j=1

2mvj+ij ≤
w(i)∑

j=1

2m(k−1)+ij = 2m(k−1)i < 2mk − 1.

Similarly,
w(i′)∑
j=1

2mv′j+i′j < 2mk − 1. Eq. (13) can be written as

w(i)∑

j=1

2mvj+ij =
w(i′)∑

j=1

2mv′j+i′j . (14)

Since2mvj ≡ 1mod (2m − 1) and2mvj+ij ≡ 2ij mod (2m − 1), by Eq. (14), one has

w(i)∑

j=1

2ij ≡
w(i′)∑

j=1

2i
′

j mod (2m − 1). (15)

Since the both sides of Eq. (15) are less than2m − 1, then

i =
w(i)∑

j=1

2ij =
w(i′)∑

j=1

2i
′

j = i′.

Eq. (14) can be written as
w(i)∑

j=1

2mvj+ij =
w(i)∑

j=1

2mv′j+ij . (16)

Since0 ≤ i1 < i2 < · · · < iw(i) ≤ m − 1, mvj + ij are pairwise incongruent modulom for all

different j. This implies that the two sides of Eq. (16) are the binary expansions of the same

integer, and hence,

{mv′j + ij : 1 ≤ j ≤ w(i)} = {mv′j + ij : 1 ≤ j ≤ w(i)}.

Comparing the integers with the same remainder modulom, we havevj = v′j for all j, i.e.,

v = v′. Thus,(i, v) = (i′, v′). The proof ends.
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Let ρ(i, v) denote the number of monomials iny appearing in the expansion of(1 + γhy +

y2)δ(i,v) with nonzero coefficients. By Eq. (10) and Lemma 3, we have

LS({sh(t)}) =
∑

i∈I

∑

v∈V w(i)

ρ(i, v). (17)

Furthermore, Eq. (17) can be written as follows.

Proposition 4:

LS({sh(t)}) =
∑

i∈I∩Γ(m)

∑

v∈V w(i)

ei · ρ(i, v). (18)

Proof: Note thatI is a union of several cyclotomic cosets, i.e.,I = ∪i∈I∩Γ(m)Ci, to prove Eq.

(18), it is sufficient to show

∑

v∈V w(i)

ρ(i, v) =
∑

v∈V w(i′)

ρ(i′, v) (19)

holds for anyi, i′ ∈ I with i ≡ 2i′ mod(2m − 1).

In Eq. (10), let

∆(x) =
k−1∑

v=0

(x2 + γhx
(2mk+1) + x2mk+1

)u2
mv

= trmk
m [(x2(1 + γhy + y2))u].

For anyx ∈ F2n , ∆(x) ∈ F2m and hence∆(x)i = (∆(x)i
′

)2 if i ≡ 2i′ mod(2m − 1). From Eq.

(10), one has

∆(x)i =
∑

v∈V w(i)

[x2(1 + γhy + y2)]δ(i,v),

and then
∑

v∈V w(i)

[x2(1 + γhy + y2)]δ(i,v) = {
∑

v∈V w(i′)

[x2(1 + γhy + y2)]δ(i
′,v)}2.

Since(∆(x)i
′

)2 and∆(x)i
′

have the same number of nonzero monomials in their expansions,

comparing the numbers of nonzero monomials in the expansions of the both sides of the above

equality, Eq. (19) holds.

By Proposition 4, the linear span can be determined by findingρ(i, v) for all i ∈ I ∩ Γ(m)

andv ∈ V w(i).

No and Kumar [12] determined the number of nonzero monomialsin the expansion of(1 +

γhy + y2)j for j < 2mk − 1. Whenj ≥ 2mk − 1, we can replacej with j mod(2mk − 1). Then,

August 22, 2005 DRAFT
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ρ(i, v) equals to the number of nonzero monomials in the expansion of(1 + γhy + y2)δ
′(i,v),

whereδ′(i, v) is the remainder ofδ(i, v) modulo2mk − 1.

For γh 6= 0, defineεh = −1 if the quadraticy2 + γh · y + 1 = 0 is reducible overF2mk , and

εh = 1 otherwise. Letch be an integer with0 ≤ ch ≤ 2mk−1 such that

δh =





αch(2
mk+1) if εh = −1

αch(2
mk−1) if εh = 1

(20)

is a root ofy2 + γh · y + 1 = 0. Let gh = gcd(ch, 2
mk + εh). Then,gh < 2mk−1 [12].

Let R(i, v) be the total number of 1-runs occurring within the binary expansion ofδ′(i, v),

andL(i, v, j) be the length of thej-th 1-run,1 ≤ j ≤ R(i, v), with the runs being consecutively

numbered from the least to the most significant bits. Then,δ′(i, v) can be written as

δ′(i, v) =
R(i,v)∑

j=1

2dj · (
L(i,v,j)∑

l=0

2l),

wheredj denotes the lowest exponent of 2 associated with thej-th 1-run.

By Theorem 2 in [12], the number of monomials with nonzero coefficients appearing in the

expansion of(1 + γhy + y2)δ
′(i,v) is

ρ(i, v) =
R(i,v)∏

j=1

{2L(i,v, j)+1 − 1− 2⌊
(2L(i,v, j) − 1)gh

2mk + εh
⌋}. (21)

Whenγh = 0, one has

ρ(i, v) = 2τ(i,v) (22)

[12], whereτ(i, v) is the weight ofδ′(i, v). It was proved in [12] thatρ(i, v) is always larger

for γh 6= 0 than γh = 0. Thus, the linear span of the ideal autocorrelation sequence {s0(t)} is

always less than that of other sequences in the familyF .

Run lengths in Eq. (21) deserves further consideration. Fork ≥ 2 and let

u = 1 + 2m + · · ·+ 2(k−2)m. (23)

Then

δ(i, v) =
w(i)∑

j=1

u · 2mvj+ij =
w(i)∑

j=1

k−2∑

l=0

2m(vj+l)+ij . (24)

August 22, 2005 DRAFT
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Lemma 5: Let cj,l be the remainder ofvj + l modulok for 1 ≤ j ≤ w(i) and0 ≤ l ≤ k − 2.

Then

δ′(i, v) =
w(i)∑

j=1

k−2∑

l=0

2mcj,l+ij . (25)

Proof: Since2m(vj+l) ≡ 2mcj,l mod(2mk − 1), δ(i, v) ≡ δ′(i, v)mod (2mk − 1).

For a fixedj, any two elements of{vj + l | 0 ≤ l ≤ k − 2} are pairwise incongruent modulo

k. Then{cj,l | 0 ≤ l ≤ k − 2} are pairwise different and take values ofk, k − 1, · · ·, and 1 for a

maximal summation. Hence
w(i)∑

j=1

k−2∑

l=0

2mcj,l+ij =
w(i)∑

j=1

2ij
k−2∑

l=0

2mcj,l ≤
w(i)∑

j=1

2ij
k−1∑

l=1

2ml ≤ (2m − 1) ·
2mk − 2m

2m − 1
< 2mk − 1.

Sinceδ′(i, v) is the remainder ofδ(i, v) modulo2mk − 1, Eq. (25) holds.

From the proof of Lemma 5 and Eq. (25), the weight ofδ′(i, v) is

τ(i, v) = (k − 1) · w(i). (26)

To guarantee the period of{sh(t)} reaching2n − 1, the parameteru must be relatively prime

to 2mk − 1. The following lemma gives such an integer.

Lemma 6: Let k ≥ 2 andu be defined as Eq. (23). Then

gcd(u, 2mk − 1) = gcd(k − 1, 2m − 1).

Proof: Since

2mk − 1− (22m − 2m)(1 + 2m + · · ·+ 2(k−2)m) = 2m − 1

and

1 + 2m + · · ·+ 2(k−2)m = k − 1(mod 2m − 1),

one has

gcd(u, 2mk − 1) = gcd(u, 2m − 1) = gcd(k − 1, 2m − 1).

From this point on we assumegcd(k − 1, 2m − 1) = 1. Thengcd(u, 2mk − 1) = 1.
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To simplify Eq. (21), we consider a subfamily ofF as

F ′ = {{s0(t)}, {sh(t)} : h 6= 0, gh <
2mk + εh
2m−1 + εh

and 0 ≤ ch ≤ 2mk−1},

and estimate a lower bound for linear spans of sequences in this subfamily. This subfamily

contains a great majority of the sequences inF as shown by

|F ′| >
1

2
(φ(2mk − 1) + φ(2mk + 1)),

[13], whereφ(t) is Euler’s phi function. The subfamily size is close to2mk.

For a sequence{sh(t)} in F ′ with h 6= 0, we have

ρ(i, v) =
R(i,v)∏

j=1

{2L(i,v, j)+1 − 1} (27)

for any i ∈ I andv ∈ V w(i). We use an approach proposed by Klapper [13] to estimate a lower

bound on
∑

v∈V w(i)

ρ(i, v) for somei.

For 1 ≤ t ≤ m− 1, let i(t) =
t∑

j=1
2j−1 with the weightt.

Lemma 7: Let 1 ≤ t ≤ m− 1. Then

(1) For γh = 0,
∑

v∈V t

ρ(i(t), v) = (2k−1k)t.

(2) For γh 6= 0,
∑

v∈V t

ρ(i(t), v) > 3k−1k((3k − 1)2k−2)t−1.

Proof: (1) The conclusion follows that for eachv ∈ V t, ρ(i(t), v) = 2(k−1)t by Eq. (22) and

Eq. (26).

(2) Assumeγh 6= 0. We establish a lower bound on
∑

v′∈V t+1
ρ(i(t+1), v′)/

∑
v∈V t

ρ(i(t), v) for

1 ≤ t ≤ m− 2 and then deduce the conclusion.

For anyv = (v1, · · · , vt) ∈ V t and vt+1 ∈ V , let v′ = (v1, · · · , vt, vt+1) ∈ V t+1. By Eq. (24)

and Eq. (25),

δ(i(t), v) =
t∑

j=1

k−2∑

l=0

2m(vj+l)+j−1 and δ′(i(t), v) =
t∑

j=1

k−2∑

l=0

2mcj,l+j−1.
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There are similar expressions forδ(i(t+1), v′) andδ′(i(t+1), v′). Define

δ̃(i(t), v) =
t∑

j=1

k−1∑

l=0

2mcj,l+j−1.

For fixed integersd andj (0 ≤ d ≤ k− 1 and1 ≤ j ≤ t), there exists a unique integerl with

0 ≤ l ≤ k − 1 such thatcj,l = d. This indicates that all run intervals of̃δ(i(t), v) are

[0, t− 1], [m,m+ t− 1], · · · , [m(k − 1), m(k − 1) + t− 1]. (28)

Similarly, the run intervals of̃δ(i(t+1), v′) are

[0, t], [m,m+ t], · · · , [m(k − 1), m(k − 1) + t].

By deleting all terms with the form2mcj,k−1+j−1 (1 ≤ j ≤ t) from the binary expansion of

δ̃(i(t), v), the binary expansion ofδ′(i(t), v) is obtained. Thus, the run intervals ofδ′(i(t), v) can

be obtained by deleting the integersmcj,k−1 + j − 1 (1 ≤ j ≤ t) from the run intervals in Eq.

(20).

A run interval ofδ′(i(t), v) is called a type-I interval if it contains an integer of formmct,l+t−1,

where0 ≤ l ≤ k−2, and is called a type-II interval otherwise. Thus,δ′(i(t), v) has exactly(k−1)

run intervals in type-I. Letul denote the length of the run interval containingmct,l + t− 1.

Whenvt+1 = vt, for any0 ≤ l ≤ k − 1, one has

vt+1 + l = vt + l and mct+1,l + t = (mct,l + t− 1) + 1.

This means that the length of each type-I run interval ofδ′(i(t+1), v′) is larger by 1 than that of

a corresponding type-I run interval ofδ′(i(t), v), and that all type-II run intervals ofδ′(i(t+1), v′)

coincide with that ofδ′(i(t), v). (Example 8 (1) illustrates this.) Thus,

ρ(i(t+1), v′)

ρ(i(t), v)
=

k−2∏

l=0

2ul+1+1 − 1

2ul+1 − 1
>

k−2∏

l=0

2 = 2k−1. (29)

Whenvt+1 6= vt, one has

mct+1,l′ + t = (mct,l + t− 1) + 1

if and only if

l′ = l + vt − vt+1(mod k). (30)

Let l0 (0 ≤ l0 ≤ k − 1) be the unique solution of

l + vt − vt+1 = k − 1(mod k).
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Then0 ≤ l0 ≤ k − 2.

For any0 ≤ l ≤ k− 2 with l 6= l0, let 0 ≤ l′ ≤ k− 2 be determined by Eq. (29). Then among

the run intervals ofδ′(i(t+1), v′), the length of the interval containing the integermct+1,l′ + t is

larger by 1 than that of the interval ofδ′(i(t), v) containingmct,l + t− 1. On the other hand, the

interval of δ′(i(t), v) containing the integermct,l0 + t− 1 is identical to a corresponding interval

of δ′(i(t+1), v′). So does each type-II interval ofδ′(i(t), v). Notice that the integermct,k−1 + t is

not in any interval ofδ′(i(t), v), and[mct,k−1+ t] = [mct+1,l1 + t] is a single-point run interval of

δ′(i(t+1), v′), wherel1 = k−1+ vt− vt+1(modk) and0 ≤ l1 ≤ k−2. ( Example 8 (2) illustrates

this .) Thus,
ρ(i(t+1), v′)

ρ(i(t), v)
= (21+1 − 1)

k−2∏

l=0,l 6=l0

2ul+1+1 − 1

2ul+1 − 1
> 3 · 2k−2. (31)

Applying Eq. (29) and Eq. (31), one has

∑
v′∈V t+1

ρ(i(t+1), v′) =
∑

v∈V t
(

∑
vt+1=vt

ρ(i(t+1), (v, vt+1)) +
∑

vt+1 6=vt

ρ(i(t+1), (v, vt+1))

>
∑

v∈V t
(2k−1 + (k − 1)3 · 2k−2)ρ(i(t), v)

= (3k − 1) · 2k−2 ∑
v∈V t

ρ(i(t), v).

(32)

For v1 ∈ V = {0, 1, · · · , k − 1}, one hasδ(1, v1) =
k−2∑
l=0

2m(v1+l) and δ′(1, v1) =
k−2∑
l=0

2mc1,l.

There are exactly(k − 1) 1-runs of length 1. Thus,

ρ(i(1), v1) = ρ(1, v1) =
k−2∏

l=0

(21+1 − 1) = 3k−1,

and
∑

v1∈V

ρ(1, v1) = k · 3k−1. (33)

Applying Eq. (33), and Eq. (32) iteratively, one has Lemma 7 (2).

Example 8: (1) Suppose thatm = 7, k = t = 4, v = (3, 0, 3, 1) and v′ = (3, 0, 3, 1, 1). The

run intervals ofδ̃(i(5), v′) and δ̃(i(4), v) are

[0, 3], [7, 10], [14, 17], [21, 24]

and

[0, 4], [7, 11], [14, 18], [21, 25],
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respectively. A direct calculation will find the run intervals of δ(i(4), v) andδ(i(5), v′) are

[0, 2], [7, 10]∗, [15], [17]∗, [21], [23, 24]∗

and

[0, 2], [7, 11]∗, [15], [17, 18]∗, [21], [23, 25]∗,

respectively, where the intervals marked with∗ are in type-I and type-II otherwise.

Obviously, the type-I run intervals[7, 11], [17, 18], and[23, 25] are of lengths larger by 1 than

[7, 10], [17], and [23, 24], respectively, and all type-II run intervals ofδ(i(5), v′) and δ(i(4), v)

coincide.

(2) If v′ = (3, 0, 3, 1, 2), then the run intervals ofδ(i(5), v′) are

[0, 2], [4], [7, 10]+, [15], [17, 18]∗, [21], [23, 25]∗.

Since l0 = k − 1 + vt+1 − vt = 0 (mod k), for 0 ≤ l ≤ k − 2 with l 6= l0, i.e., for l = 1 or 2,

l′ = l + vt − vt+1 = 0 or 1. Then

{mct+1,l′ + t | l′ = 0, 2} = {18, 25},

and we get two type-I run intervals marked with∗, i.e., [17, 18] and [23, 25]. Sincel1 = k− 1+

vt − vt+1 = 2(mod k), the remaining type-I run interval is the single-point set[4]. The type-I

interval of δ(i(4), v) containingmct,l0 + t− 1 = 10 is [7,10], it is a type-II interval ofδ(i(5), v′),

which is marked with+. Other type-II run intervals ofδ(i(5), v′) andδ(i(4), v) coincide.

Now we deduce the main result of the correspondence as follows.

By the assumption, we havei(m−1) ∈ I ∩ Γ(m). The size of the cyclotomic coset containing

i(m−1) is m. Applying Proposition 4 to such an index setI gives

LS({sh(t)}) ≥ m ·
∑

v∈V m−1

ρ(i(m−1), v). (34)

Applying Lemma 7 to Eq. (32), one has the theorem below.

Theorem 9: Let {sh(t)} ∈ F ′.

(1)

LS({s0(t)}) ≥ L0 = m(2k−1k)m−1.

(2) For h 6= 0,

LS({sh(t)}) > L1 = 3k−1mk[2k−2(3k − 1)]m−2.
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TABLE II

THE LOWER BOUND OF LINEAR SPAN OF SEQUENCES WITH PERIOD2n − 1 IN FAMILY F ′

k 3 4 5

n 6m 8m 10m

L0 12
n

6 n/72 2
5n

8 n/256 80
n

10 n/800

L1 9n · 2
2n

3 /512 27n · 44
n

8 /3872 81n · 112
n

10 /25088

For a large integern, the lower boundL1 given in Theorem 9 is maximized whenk = 4. By

Lemma 6, we choosek = 4 whenm is odd and choosek = 3 or 5 whenm is even. Table II

lists the boundsL0 andL1.

Remark 10: The boundsO(n · 2
2n
3 ), O(n · 44

n
8 ) andO(n · 112

n
10 ), given by takingk = 3, 4, 5,

respectively, are exponentially larger than that of No sequences and TN sequences, whose bounds

areO(n · 4
n
4 ) andO(n · 5

n
4 ), respectively [13]. If we takek = 2, the lower bounds in Theorem

9 will be the same as that of TN sequences.

More precisely, letUNo = 2
n
2 ·n/2 andUTN = 9n · (16/3)

n
4
−3. ThenUNo andUTN are upper

bounds on linear spans of No sequences and TN sequences, respectively [12], [13], which is

exponentially smaller than the lower bounds in Theorem 9 (2), since44
1
8 > 112

1
10 > 2

2
3 >

(16/3)
1
4 > 2

1
2 .

IV. A N EXTENSION TO SEQUENCES WITH IDEAL AUTOCORRELATION

Instantiating the ideal autocorrelation sequence in Eq. (6), we can tighten the bound in

Theorem 9 (1), and construct a class of ideal autocorrelation sequences with larger linear span.

Most of known ideal autocorrelation sequences have very small linear span [21], [22], [23].

Legendre sequences of a prime period can achieve an upper bound on linear span of binary

ideal autocorrelation sequences [18].

Let p = 2m− 1 be a Mersenne prime for some primem ≥ 3. A Legendre sequence of period
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p is defined as{a(t)} where

a(t) =





1, if t ≡ 0 (modp);

0, if t is a quadratic residue modulo p;

1, if t is a quadratic nonresidue modulo p.

It is easy to verify that{a(t)} is an ideal autocorrelation sequence. Furthermore, its trace

representation is given as follows.

Lemma 11: (Main theorem of [19]) Letγ be a primitive element ofZp. There is a primitive

elementβ of F2m such that

a(t) =

p−1
2m

−1∑

j=0

trm1 (β
γ2jt)

is the trace representation of{a(t)}.

For ζ = 0 or 1, define two sequences{a(ζ)(t)} where

a(ζ)(t) =

p−1
2m

−1∑

j=0

trm1 (β
tγ2j+ζ

).

Then,{a(0)(t)} = {a(t)}, and{a(1)(t)} is theγ-decimation of{a(t)}. Therefore, both sequences

have ideal autocorrelation property.

Let k ≥ 2 and u = 1 + 2m + · · · + 2(k−2)m. Assumegcd(k − 1, p) = 1. We construct ideal

autocorrelation sequences from{a(0)(t)} and{a(1)(t)} as follows. Forζ = 0 or 1, define

s(ζ)(t) =

p−1
2m

−1∑

j=0

trm1 ({tr
mk
m [(trnmk(α

2t))u]}γ
2j+ζ

). (35)

By Lemma 1,{sζ(t)} is an ideal autocorrelation sequence of period22mk − 1.

The following lemma is needed for deducing a tighter bound onthe linear span of{s(ζ)(t)}.

Lemma 12: (1) ([19]) Wheni varies from0 to p−1
m

−1, γi runs through all thep−1
m

cyclotomic

cosets of sizem modulop. For some integerj, γ
p−1
m = 2j.

(2) Among p−1
m

cyclotomic cosets of sizem modulo p, the number of cosets consisting of

integers of weighti is
(
m
i

)
/m.

Theorem 13: For eitherζ = 0 or 1, the linear span of sequences defined as in Eq. (33) satisfies

LS({s(ζ)(t)}) ≥
1

2
[(1 + 2k−1k)m − 1− (2k−1k)m].
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Proof: For ζ = 0 or 1, Proposition 4 together with Eq. (22) and Eq. (26) yields

LS({s(ζ)(t)}) =

p−1
2m

−1∑

j=0

m · (2k−1k)w(γ2j+ζ).

One has
LS({s(0)(t)}) + LS({s(1)(t)})

=

p−1
2m

−1∑
j=0

m · (2k−1k)w(γ2j) +

p−1
2m

−1∑
j=0

m · (2k−1k)w(γ2j+1)

=

p−1
m

−1∑
j=0

m · (2k−1k)w(γj)

=
(
m
1

)
· (2k−1k) +

(
m
2

)
· (2k−1k)2 + · · ·+

(
m

m−1

)
· (2k−1k)m−1

= (1 + 2k−1k)m − 1− (2k−1k)m.

Thus, Theorem 13 holds.

Remark 14: An analysis toL0 = m(2k−1k)m−1 show that, for any givenn, the boundL0 is

maximized only ifk ≤ 6. In this case, ifm ≥ 2kk+1, then the bound in Theorem 13 is tighter

than that in Theorem 9 (1). More precisely,

1

2
[(1 + 2k−1k)m − 1− (2k−1k)m] ≥ m(2k−1k)m−1

holds fork ≤ 6 andm ≥ 2kk + 1.

Sequences defined in Eq. (33) with the period of22mk−1 are an application of the construction

of Eq. (7) to the case ofk ≥ 2. If we takek = 1 and define

s̃(ζ)(t) =

p−1
2m

−1∑

j=0

trm1 ([tr
2m
m (α2t)]γ

2j+ζ

), (36)

(ζ = 0 or 1), we will get two ideal autocorrelation sequences of period 22m− 1, and their linear

span can be shown as

LS({s̃(ζ)(t)}) =

p−1
2m

−1∑

j=0

m · 2w(γ2j+ζ)

by Proposition 4 and Eq. (22). An analysis similar to Theorem13 shows either{s̃(0)(t)} or

{s̃(1)(t)} has linear span not less than(3m − 1− 2m)/2.

Eq. (33) and Eq. (34) provide a way to generate ideal autocorrelation sequences with large

linear span.
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Example 15: Let {a(t) =
8∑

j=0
tr71(α

32jt)} be a Legendre sequence of period 127 and{b(t) =

a(3t)} be its 3-decimation. The linear span of the sequence{s(1)(t)} derived from{b(t)} is

1232 > 1029 = (37 − 1 − 27)/2, which is larger than that of the sequence of period214 − 1

given in Example 9 of [23].

V. CONCLUDING REMARKS

The generalized Kasami sequence set [10] is given by

Γ = {g(trnn/2(x
2) + βx2mk+1), β ∈ F2mk , x ∈ F ∗

2n},

where{g(x), x ∈ F ∗
2mk} is any one sequence with ideal autocorrelation property. The setΓ has

optimal correlation property with respect to Welch bound. The linear span of sequences inΓ

depends ong(x).

Let g(x) =
∑

i∈I [tr
mk
m (xu)]i. Consider the linear span of sequences inΓ. To obtain large linear

span, an efficient approach is to chooseu and index setI appropriately such that the integer

δ′(i, v) has large binary weight,

δ′(i, v) =
w(i)∑

j=1

u · 2mvj+ij (mod 2mk − 1),

where i ∈ I and v = (v1, v2, · · · , vw(i)) ∈ V w(i). In the original Kasami construction and No

sequences,I was equal to{1}. No sequences achieved large linear span by havingu with large

weight. Klapper tooku = 1 andI consisting of only one integer with large binary weight, such

that TN sequences can obtain even larger linear span than No sequences and the small set of

Kasami sequences.

This correspondence discusses a new case where bothu and one element inI have large binary

weight. For appropriate parameters(m, k, u, I), sequences discussed in this correspondence can

obtain larger linear span than that of Kasami sequences (small set), No sequences and TN

sequences.

Very likely by choosingu with other forms, sequences with larger linear span can be found.
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