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Abstract

A family of binary sequences is presented and proved to hatienal correlation property and
large linear span. It includes the small set of Kasami secegerNo sequence set and TN sequence set
as special cases. An explicit lower bound expression onitiead span of sequences in the family is
given. With suitable choices of parameters, it is proved tha family has exponentially larger linear
spans than both No sequences and TN sequences. A class bhideeorrelation sequences is also

constructed and proved to have large linear span.
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. INTRODUCTION

Binary sequences are important for CDMA systems, spreactrsme systems, and broadband
satellite communications [1]. Families of sequences farthsapplications are desired to have
low autocorrelation, low cross-correlation, and largeeéinspan [2], [3]. Families of Gold-pairs
[4], [5] and bent function sequences [6], [7] as well as thelsmnd large families of Kasami
sequences [8], [9] all have desirable correlation propsrtHowever, these sequences, except
the bent function functions, have small values of lineamsya [10], relaxing correlation, Gong

constructed a sequence set with a much larger linear span.

Important results are obtained for increasing linear sphiseguences while keeping the
sequences optimal in correlation respect to the Welch bguhj [12], [13]. No and Kumar

[12] proposed a family of No sequences of perizyd— 1, which are defined by
su(t) = tri{[try,(a®) + ya®" 07 (1)

wheren = 2m, « is a primitive element of the finite field,., v, ranges over each element of
F,.,» exactly once a% ranges froml to 2"/2, andr is an integer withl < r < 2™ — 1 such
that ged(r,2™ — 1) = 1. Whenr = 1, the family is the small set of Kasami sequences. The
maximal linear span of No sequencesiién - 47). Klapper [13] generalized the family to that

of so-called Trace-Norm (TN) sequences with an expressidheoform
sn(t) =ty { [t (try, (o) + e ] (2)

wheren, a, v, andr are the same as for the No-Kumar family, while other two patansm
and k satisfymk = . For suitablek andr, TN sequences have much larger linear spans than
that of No sequences, and their maximal linear spaf(s - 57). These constructions were
extended by Nat al. in 1997 [14], and generalized by Gong in 2002 [10]. Theseralad and
generalized families of sequences have the same correlataperties as that of No sequences
and TN sequences [10]. It remains unanswered whether ayfaindequences with larger linear
span exists.

In this correspondence, we study the linear span of binajyeseces defined by

salt) = Y {trm [t (™) + ™ U ) 3)

iel
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TABLE |

FAMILIES OF BINARY SEQUENCES OF PERIOR™ — 1 WITH OPTIMAL CORRELATION Rmax = 2% +1

Family n Family size Maximum linear span
Bent function sequences  4m 2% > (Zfi) on/2
Small set of Kasami sequences  2m 2% 37"
No sequences 2m 2% n(2% —1)/2
TN sequences 2mk 2% > 3n(3k —1)"72/2
Sequences we studied 2mk 2% > 3P n[2P2(3k — 1)) 2/2

wheren, m, k, o, v, andr are the same as for the Klapper family, andsatisfies] < u <

2m% — 1 andged(u, 2™ — 1) = 1. The index setl is chosen such that for a primitive element

B of Fom, {3 B }2°_, represents an ideal autocorrelation sequence of peériod 1. When
i€l

I={r2r---,2" 7} andu = 1, sequences in Eq. (3) is the Klapper sequences.

This family of sequences defined by Eq. (3) can be regardedpsaal case of the generalized
Kasami signal set [10], whose linear span was not considérki$ correspondence gives a

k—2 .
lower bound on linear spans of sequences in Eq. (3). Moreigalgc for v = > 2" and

3 < k < 5, we prove that a majority of sequences in the family haveaiirmpéns at least
O(n - 22:—7) (2% > 6.32%), which is significantly larger than the linear sp@n - 47) for No-
Kumar sequences ar@(n - 57) for Klapper sequences. Table | summarizes the family size an

linear span properties of the families mentioned above.

The family of sequences in Eq. (3) has optimal correlatioopprty. It contains an ideal
autocorrelation sequence [15], whose linear span, althaegy large, is much less than that of
any other sequence in the family. In order to obtain sequemdth ideal autocorrelation and
large linear span, we will further specifyto relate it to Legendre sequences and derive a tighter
lower bound on the linear span of this ideal autocorrelasequence. This will be presented in
Section IV.

The remainder of this correspondence is organized as fsll®ection Il gives some necessary

notations and preliminary lemmas. Section Il derives Ioweunds on linear spans of the
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sequences. Section IV shows that a class of sequences wdhadtocorrelation property also

have large linear span. Section V concludes the study.

[I. PRELIMINARIES

Let F be the family of M binary sequences of periadl = 2" — 1 given by
F={{sn(t),0<t<N—-1}|0<h<M-—1}.
The correlation function of the sequencess;(t)} and{s;(t)} in F is

N-1
Rualr) = 3 (~1) 0700
=0

t

where0 < h,l < M —1, and0 < 7 < N — 1. The maximum magnitude R,,.. of the correlation
values is

Rmax = Imax |Rh,l(7->|

where0 < h,l < M —1,0 <7 < N — 1, and the cases of in-phase autocorrelations=(
[ and 7 = 0) are excluded. A family of binary sequences of perifd— 1 is said to have
optimal correlation property if R, < 2% + 1. Forh = [, R;,;(7), abbreviated by, (1), is the
autocorrelation function of {s;(¢)}. The sequencés;(t)} is said to have aideal autocorrelation

property if

Rh(T) =

N if 7 = 0mod N;
—1 otherwise.

Let F,. be the finite field with2” elements, andh = em for some positive integers and m.

The trace function ¢r (-) from Fy. to Fym is defined by

e—1

tr (x) = Z 2"

=0
wherex is an element infyn.
The trace function has the following properties [16]:
i) trl’ (ax +by) =a-trl(z) +b-tr7 (y), foral a, b € Fom, x, y € Fyn.
i) tre (22") = tr" (), for all z € Fyn.

i) tri(z) = tr*(tr] (x)), for all x € Fyn.
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The operation of multiplying by divides the integers modul®™ — 1 into sets called the
cyclotomic cosets modulo2™ — 1. The cyclotomic coset containingis {s, 2s, 22s, - - -, 2¢71s},
where e, is the smallest positive integer such th¥ts = s (mod 2™ — 1). Furthermore,
dividesm, ande;, = m for m prime ands # 0 (mod2™ — 1). The smallest positive integer in

the cyclotomic cosefs, 2s,2%s, - - -, 2%~ 15} is called itscoset leader [17].

For two integers: and b with a < b, let [a, b] be the interval consisting of all integerwith
a < c<b, and thelength is b — a + 1. Whena = b, [a,b] is called asingle point interval and
written as[a]. Two intervals[a, b] and [c, d] are un-incorporativeif b+2 < cord+2 <a. A
set of several pairwisely un-incorporative non-negativervals{[a;,b;] | j € J} determines a
positive integerd>. > 2%, whereJ is an index set. For a positive integerthere exist an

j€ aela; by

index setK consisting of non-negative integers such that 3" 2%, which determines a set of
keK
un-incorporative interval§[a;, b;] | j € J} such thatJ, ,[a;, b;] = K. This fact will be used in

derivation of the main result in this correspondence.

The following notations are used in the rest of this corresiemce:
« m, k, andn: positive integersp = 2mk;

—_on — om N _ 2"-1.
e N=2"—1,M=2"—1,andT = & = 2=L;

o Fy.: the finite field with2™ elements;

o «: a primitive element offy:;

o 3 =a': a primitive element offyn;

« I'(m): the set consisting of all non-zero coset leaders moduile- 1;

e C; = {i2 (mod2™ — 1)|j = 0,1,---,m}, i.e., the cyclotomic coset modul®™ — 1
containing the element

e ¢, =1C;

« Z,. a residue ring of integers modujo

« V={0,1,---,k—1} }, wherek is a positive integer;

e VE=V xV x...-xV is the Cartesian product efcopies ofV;

. w(i): the weight of integer, i.e., the number of ones in the coefficients of the binary
expansion ofj;

« |z]: the largest integer not exceeding

[a, b]: the integer interval consisting of all integemwith a < ¢ <b.
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o Y0 =0,71,,Yms_;: all 2% elements of the field",..

The following lemmas will be used to prove our results.

Lemma 1 (Proposition 1, [10], or Theorem 5, [15]): LétC Z,, be an index set. If the binary
sequencesa(t;)} of period M given by
alty) =>_p™ (4)
i€l
has the ideal autocorrelation property, then so does thebsequence(t) of period N defined
by
c(t) = d_{trmt(trn(a®) ]} (5)

i€l
for any u satisfyingged(u, 2™ — 1) = 1.
It is noted that any binary sequence of peritdl— 1 with ideal autocorrelation property can

be written as

alty) = Y, Ap™ (6)

0<i<2m —2
where 4; € {0,1} and A; take a same value on each cyclotomic coset modtio- 1, i.e.,

Ag; = A; forany 1 <i < 2™ —1[18].

Take I as the set of all with A; # 0, then Eq. (6) becomes Eq. (4).is a union of several
cyclotomic cosets, andl = U;c;~r(m)C;. For the goal of obtaining a good lower bound on linear
span, we assume in this correspondence that there is an/ such that gcti,, 2" — 1) =1
(This is an assumption satisfied by many ideal autocorcglasiequences). Since ded—! —
1,2 — 1) = 1, replacing with 8" '~y med2"~1 e can further assun®"! — 1 € I.

The optimal correlation property of the family of sequenegpressed in Eq. (7) is restated
as Lemma 2 for completeness.

Lemma 2: (Proposition 2, [10]) Letyg = 0,791, - - -, Yamk_9, @Ndyyme_, be the all elements of
Fymi. For0 < h < 2mk — 1, define{s,(t)} as the sequence by

() = S gt (tr (0) + a0y ™)

i€l
where! is the index set as mentioned above, and v < 2™* —1 is an integer relatively prime
to 2% — 1. Then the familyF

F = {{sn(t)}ocican_1 |0 < h < 2™ — 1} 8
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of 2% binary sequences of period is an optimal correlation sequence set with respect to
Welch’s bound. Furthermore), .(7) € {—1,2%2 -1, 25 —1} for any out-of-phase shifth, k, 7)
(h # Kk orm #0).

By Lemma 1,{s((¢)} is an ideal autocorrelation sequence.

Ill. LINEAR SPAN OF SEQUENCES

This section proves sequences in the fandfiyhave large linear span.

The linear span of a sequence is the smallest degree of wHidea recursion satisfied by
the sequence exists. Key [20] described a method for detexgthe linear span of a binary
sequence of period” — 1. The linear span ofs,(t) }o<t<2n—1 Can be determined by expanding
the expression of,(¢) as a polynomial im’ of degree less tha®® — 1 and then counting the
number of monomials ia! with nonzero coefficients occurring in the expansion. Tahhique

will be applied to determine the linear span of sequencesnmly F.
Denote each exponeinte 7 in Eq. (5) as
T L) L B L0 9)

where0 < i <idp < -+ <y <m — 1.

Let z = of andy = 22""~'. Substituting Eq. (9) into Eq. (7). Then,(¢) can be written as

Sh(t) = > [ > (Oézt + 'Vhoz(zmk-i-l)t + azmkﬂt)tﬁm”]i
iel v=0
k—1

= TS @0+ ny + )
Tk (10)
= LI X[ +my +y2)"*

i€l j=1v=0

= > ¥ [P +my -+
i€l yey ()

whereV = {0,1,-- -,k — 1}, v = (v1, 02, , vu(z)) € V¥, and

w(i)
6(i,v) = > w2t (11)
j=1

As the first step to count the number of monomialsinwith nonzero coefficients occurring

in right side of Eq. (10), we show the following

Lemma 3: For different pairgi, v) and (¢, '), there is no monomial that appears with nonzero

coefficients in the expansions of bath?(1 + vy + 32))°¢¥ and (22(1 + vy + y?))°¢.
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Proof: Sincey = #2""~!, each monomial in: in the expansion of:2(1 + v,y + 42) has an
exponent (respect to) congruent to 2 modul@™* — 1. Thus, each monomial in the expansion
of (z%(1 + vy + 42))°2) has an exponent congruent2e §(i, v) modulo2™* — 1.

If there is a monomial that appears with nonzero coefficientee expansions of botfx?(1+

vy +y%))°0 and (22(1 + qy +3%))°"), then
2-6(i,v) = 2-0(i, ') mod (2™ — 1). (12)

The integer2u is relatively prime to2™* — 1. By Eq. (11) and Eqg. (12), we have

w(i) w(i’)
Soomuti = $7 o™t mod (2% — 1), (13)
i=1 =1

Notice that

w(i) w(i)

Z 2mv]+z] < Z 2m(k 1)4i; _ 2m(k—1)7l < 2mk —1.

w(i') P ]
Similarly, > 2™%* < 2™ — 1, Eq. (13) can be written as

7j=1
w(t) ‘ w(i’) o
Z 2mvj+2j — Z 2mvj+2j. (14)
7j=1 7j=1

Since2™ = 1mod (2™ — 1) and2™% ™% = 2% mod (2™ — 1), by Eq. (14), one has

w(i) w(i’)

Z 20 = Z 2% mod (2™ — 1). (15)

Since the both sides of Eq. (15) are Iess tBé&n— 1, then

w(i) w(i’)

2_22% = 226 =
Eq. (14) can be written as
w(t) w(t) 4
Z 2mvj+ij _ Z 2mvj+z]-. (16)
j=1 J=1

Sincel < iy < iy < -+ <y < m— 1, my; +i; are pairwise incongruent modute for all
different j. This implies that the two sides of Eq. (16) are the binaryaggions of the same

integer, and hence,
{mv; +i;:1 < j <w(i)} = {mv)+i;: 1 <5 <w(i)}

Comparing the integers with the same remainder modulove havev; = v} for all j, i.e.,
v =1v'. Thus,(i,v) = (',2’). The proof ends.
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Let p(i,v) denote the number of monomials inappearing in the expansion ¢f + v,y +
y?)°@v) with nonzero coefficients. By Eq. (10) and Lemma 3, we have
SUs ) =3 3 pli,v) 17)
i€l yeyw(i)

Furthermore, Eq. (17) can be written as follows.

Proposition 4:

LS{ss®H) = > > ei-pli,v). (18)

ieINC(m) veVw(@)

Proof: Note that! is a union of several cyclotomic cosets, i.e5 Ujcinrm)Ci, to prove Eq.
(18), it is sufficient to show
Yo )= Y pi ) (19)
yevw(i) QGVw(i/)

holds for anyi, ' € I with i = 2/ mod(2™ — 1).

In Eq. (10), let
k-1 2 27nk 1 27nk+1 9mu k 2 2
A(z) =Y (a® a4 2 = R[22 (1 g+ y)"].
v=0

For anyz € Fyn, A(x) € Fom and henceA(z)’ = (A(z)")? if i = 2i’ mod(2™ — 1). From Eq.
(10), one has

Alx) = > [2*(1+ymy +y*)]° 0,
erw(i)

and then

Yo Py ) = Y [Py 7))
EEV“}() Eve(z

Since (A(z)")? and A(z)” have the same number of nonzero monomials in their expassion
comparing the numbers of nonzero monomials in the expassibthe both sides of the above
equality, Eq. (19) holds.

By Proposition 4, the linear span can be determined by fingiigy) for all : € I N T'(m)

andv € Vv®

No and Kumar [12] determined the number of nonzero mononimatee expansion of1 +

Yy +y?)7 for j < 2mF — 1. Whenj > 2™* — 1, we can replace with j mod(2™* — 1). Then,
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10

p(i,v) equals to the number of nonzero monomials in the expansiofl af v,y + y?)% (2,
whered’(i,v) is the remainder of(i, v) modulo2™* — 1.
For v, # 0, defines;, = —1 if the quadraticy? + ~, - y + 1 = 0 is reducible overF,..., and

e, = 1 otherwise. Letr, be an integer with) < ¢, < 2™*~! such that

ach(27rzk +1) lf €h — _1
op = 20

is a root ofy? + 5, -y + 1 = 0. Let g, = ged(cy, 2™ +¢,). Then, g, < 2mk~1 [12].

Let R(i,v) be the total number of 1-runs occurring within the binary angion ofd’ (i, v),
and L(i, v, j) be the length of thg-th 1-run,1 < j < R(i,v), with the runs being consecutively

numbered from the least to the most significant bits. TI?Sé(m' v) can be written as

Rzy)

5iv0) = Z

J
whered; denotes the lowest exponent of 2 associated withjttte 1-run.

—~

I
—_

By Theorem 2 in [12], the number of monomials with nonzerofiidents appearing in the
expansion of(1 + v,y + y2)5’(i,y> is

H {oLuvi+l _ 1 _ 9|

(2L(zv 7)) 1)gh
ka + e

1} (21)

When~; = 0, one has
pli, v) = 2702 (22)

[12], whereT(i,v) is the weight ofd’(i,v). It was proved in [12] thap(i,v) is always larger
for ~, # 0 than~;, = 0. Thus, the linear span of the ideal autocorrelation seqéngt)} is
always less than that of other sequences in the fafily

Run lengths in Eq. (21) deserves further consideration.kFor2 and let

w=1+2"4 ... 4 20k=29m (23)
Then
w(t) _ w(i) k—2 _
= Z w- Mt — Z Z gm(v; +)+i5 (24)
j=1 j=11=0
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11

Lemma 5: Let ¢;; be the remainder of; + [ modulok for 1 < j <w(i) and0 <1 < k —2.
Then

|
N

1( _ wk mc; +i;
8 (i,0) = 2MEHTE (25)

1

.
Il
-
Il
=)

Proof: Since2m™s+) = 2m%t mod(2™* — 1), 6(i,v) = ¢'(4,v) mod (2™F — 1).
For a fixedj, any two elements ofv, + (|0 <[ < k — 2} are pairwise incongruent modulo
k. Then{c;; |0 <1 < k — 2} are pairwise different and take valuesiofc —1,---, and 1 for a

maximal summation. Hence

w(i) k—2 o w@) k=2 w(@) k-1 omk _ gm
SO omert =379 Y gmen < 3 g Y oml < (9m 1) T2 cgmk
j=11=0 j=1 =0 j=1 =1 2m—1

Sinced’(i,v) is the remainder of(i,v) modulo2™* — 1, Eq. (25) holds.
From the proof of Lemma 5 and Eq. (25), the weightotf, v) is

T(i,v) = (k= 1) - w(i). (26)

To guarantee the period ¢k (t)} reaching2” — 1, the parametet. must be relatively prime

to 2% — 1. The following lemma gives such an integer.

Lemma 6: Let £ > 2 andu be defined as Eq. (23). Then

ged(u, 2™ — 1) = ged(k — 1, 2™ — 1).

Proof: Since
oMk ] — (22 — M) (142" 4 2kTDmy —gm
and
m (k—Z)m . _ m
1+2" 4. +2 =k — 1(mod2 1),
one has

ged(u, 2™ — 1) = ged(u, 2™ — 1) = ged(k — 1, 2™ — 1).

From this point on we assumgd(k — 1, 2™ — 1) = 1. Thenged(u, 2™ — 1) = 1.
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12

To simplify Eq. (21), we consider a subfamily & as

mk
F ={{so®)}. {sn()} : h #0,9n < %

and estimate a lower bound for linear spans of sequencesignstiibfamily. This subfamily

and 0 < ¢, < ka_l},

contains a great majority of the sequencesriras shown by
1
F > 562" 1)+ 627 + 1),
[13], whereg(t) is Euler's phi function. The subfamily size is close26*.

For a sequencés;(t)} in 7 with h # 0, we have
R(iw) o
v) = [] {2802 — 1} (27)
j=1

for anyi € I andv € V(). We use an approach proposed by Klapper [13] to estimate erlow
bound on Y p(i,v) for somes.
erw(i)
to
Forl <t<m-—1,leti® = Y 27~ with the weightt.
j=1
Lemma 7: Let1 <t <m — 1. Then
(1) For~, =0,

(2) Formy, # 0,
Z P (t > 3k 1]{5((3]{3 )2k—2)t—1

veV?
Proof: (1) The conclusion follows that for eaahe V¥, p(i®),v) = 2=V by Eq. (22) and
Eq. (26).
(2) Assumey, # 0. We establish a lower bound ony p(i®V o)/ > p(i®, v) for
1 <t <m —2 and then deduce the conclusion. e e
For anyv = (vy,---,v;) € Vi andwv,y € V, let v’ = (v, -+, v, v:41) € VITL By Eq. (24)
and Eg. (25),

k— t k—
_ Z 2m(vj+l +5—1 and 5/ (t Z 2mcj7l+j—l‘
j=11=0 j=11=0

[\
[\
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13

There are similar expressions féfi ), v') and &' (i1 v’). Define
t k—1

— Z Z2mcjl+] 1

7j=11=0
For fixed integersl andj (0 < d < k—1 and1 < j <), there exists a unique integewith

0 <1<k — 1 such thate;, = d. This indicates that all run intervals ofi", v) are
0,8 — 1], [mom+t— 1), [m(k — 1),m(k — 1) + ¢ — 1], (28)
Similarly, the run intervals of (i1, ') are
0,t], [m,m+t], -, [m(k—1),m(k—1)+t¢].

By deleting all terms with the forn2™<x1+ti-1 (1 < 5 < t) from the binary expansion of
5(i™,v), the binary expansion of (i), v) is obtained. Thus, the run intervals &fi"), v) can
be obtained by deleting the integers:; ;,_; + j — 1 (1 < 5 < t) from the run intervals in Eq.
(20).

Arun interval ofé’ (i, v) is called a type-I interval if it contains an integer of forne, ;+t—1,
where0 < [ < k-2, and is called a type-Il interval otherwise. Thag;®, v) has exactly(k—1)

run intervals in type-Il. Let;, denote the length of the run interval containimg;; + ¢ — 1.
Whenwv, ., = v, for any0 <[ < k — 1, one has
Upp1 + 1l =v+ 1l and mey +t = (mey +t— 1)+ 1

This means that the length of each type-I run intervad’6f**?) ') is larger by 1 than that of
a corresponding type-I run interval 6f(i), v), and that all type-Il run intervals of (i1 v/)
coincide with that of’(i", v). (Example 8 (1) illustrates this.) Thus,

p(i(Hl),v_’) B k—2 2ul+1+1 1 k—2 . 1
p(i(t),y) - = Qui+l _ > H 2=2 (29)

Whenwv,; # v;, one has
mey +t=(megy, +t—1)+1

if and only if
I'=14 vy — vy (mod k). (30)

Letly (0 <ly <k — 1) be the unique solution of
I+ v, — v =k — 1(modk).
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14

Then0 <[y <k —2.

For any0 <1 < k—2with [ # [y, let0 <!’ < k—2 be determined by Eq. (29). Then among
the run intervals ob’(i**1), 1’), the length of the interval containing the integet;.,, +tis
larger by 1 than that of the interval 6f(i¥), v) containingmc,; +t — 1. On the other hand, the
interval of §'(i®, v) containing the integemc;,;, +t — 1 is identical to a corresponding interval
of &' (i1, v'). So does each type-Il interval 6f(i), v). Notice that the integetc; ,_, +t is
not in any interval oy’ (i), v), and[me; 1 +1t] = [mct+1,l1 +t] is a single-point run interval of
81V '), wherel; = k — 14 v, — v, (modk) and0 < I} < k—2. ( Example 8 (2) illustrates
this .) Thus,

P(i(tﬂ)av_/) 1+1 AP w1 k—2
— = =(2 -1) —_ > 3.2 (31)
p(@(t)7y) l=(£[75l0 Qui+l _ 1

Applying Eg. (29) and Eq. (31), one has

> eV ) = £ (8 e () + X p@Y, (0 vi))

v/ eVittl veEVE Vt41=0¢ V1At
>>Ug&}2k‘1+-(k-1)3-2k‘2)p(#“,y) (32)
= (3k—1)-22 ¥ p(i®,0),

VeVt

k=2 k—2
Forv, € V.= {0,1,---,k — 1}, one has§(1,v;) = 3 2™+ and §'(1,v;) = 3 2me,
=0 =0
There are exactlyk — 1) 1-runs of length 1. Thus,

k—2

p(i(l)vvl) = p(]-a'Ul) = H(21+1 - 1) = 3k_17
=0

and
> p(1vn) = k-3 (33)

v eV

Applying Eg. (33), and Eq. (32) iteratively, one has Lemma). (

Example 8: (1) Suppose thatn = 7, k =t =4, v = (3,0,3,1) and2’ = (3,0,3,1,1). The

run intervals ofd(i®), ) and§(i¥, v) are
[0, 3], [7, 10], [14, 17], [21, 24]

and
[0,4],[7,11],[14, 18], [21, 25],
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respectively. A direct calculation will find the run intetsaof (i, v) and6(i®, ") are
0,2],[7,10]", [15], [17]%, [21], [23, 24]"

and
0,2],[7,11]*, [15], [17, 18]*, [21], [23, 25]",

respectively, where the intervals marked witare in type-l and type-Il otherwise.
Obviously, the type-I run intervalg, 11], [17, 18], and [23, 25] are of lengths larger by 1 than
[7,10],[17], and [23, 24], respectively, and all type-Il run intervals &fi®, v") and 6(i®, v)

coincide.
(2) If v = (3,0,3,1,2), then the run intervals of(i*), ) are
[0, 2], [4], [7, 10]*, [15], [17, 18]*, [21], [23, 25"

Sincelp =k —1+ v — v, = 0(modk), for 0 <1 <k — 2 with [ # [, i.e., forl =1 or 2,
I'=14v—wvq1=0o0r1. Then

{mer +t]1 = 0,2} = {18,25},

and we get two type-I run intervals marked withi.e., [17, 18] and[23, 25]. Sincel; = k — 1+
vy — vy = 2(mod k), the remaining type-l run interval is the single-point §8t The type-I
interval of (i, v) containingmec,;, +t — 1 = 10 is [7,10], it is a type-Il interval o6 (i©®), v’),

which is marked with+-. Other type-Il run intervals of(i®®, ") and6(i™, v) coincide.

Now we deduce the main result of the correspondence as fllow
By the assumption, we havé"~" ¢ I NT'(m). The size of the cyclotomic coset containing
im=1) is m. Applying Proposition 4 to such an index sepives

LS({sn(t) C > A ). (34)

veym-—1

Applying Lemma 7 to Eq. (32), one has the theorem below.

Theorem 9: Let {s,(t)} € F'.
1)
LS({s0(t)}) = Lo = m(2" k)"~
(2) Forh #£ 0,
LS({sy(t)}) > Ly = 3F " 'mk[272(3k — 1)]™2
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TABLE Il

THE LOWER BOUND OF LINEAR SPAN OF SEQUENCES WITH PERIOZ" — 1 IN FAMILY F’

k 3 4 5

n 6m 8m 10m

Lo 128n/72 2% n /256 8070 ,/800
Ly In - 2% /512 27n - 44% /3872 81n - 112715 /25088

For a large integern, the lower bound.; given in Theorem 9 is maximized whén= 4. By
Lemma 6, we choosg = 4 whenm is odd and choosé = 3 or 5 whenm is even. Table Il
lists the boundd.,, and L;.

2n

Remark 10: The boundg)(n-2%), O(n-44%) andO(n-1127), given by takingk = 3,4, 5,
respectively, are exponentially larger than that of No seges and TN sequences, whose bounds
areO(n-47) andO(n - 51), respectively [13]. If we také: = 2, the lower bounds in Theorem
9 will be the same as that of TN sequences.

More precisely, let/y, = 22 -n/2 andUry = 9n - (16/3)373. ThenUy, andUpy are upper
bounds on linear spans of No sequences and TN sequencesctiesly [12], [13], which is
exponentially smaller than the lower bounds in Theorem 9 :éﬁ)ce44§ > 1121 > 23 >
(16/3)1 > 22.

IV. AN EXTENSION TO SEQUENCES WITH IDEAL AUTOCORRELATION

Instantiating the ideal autocorrelation sequence in E{. (@& can tighten the bound in
Theorem 9 (1), and construct a class of ideal autocorrelaemuences with larger linear span.
Most of known ideal autocorrelation sequences have veryldmeaar span [21], [22], [23].
Legendre sequences of a prime period can achieve an upped lwoulinear span of binary

ideal autocorrelation sequences [18].

Let p = 2™ — 1 be a Mersenne prime for some prime> 3. A Legendre sequence of period
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p is defined ada(t)} where
1, if t =0 (modp);
a(t) =< 0, if tis a quadratic residue modulo p;
1, if t is a quadratic nonresidue modulo p.

It is easy to verify that{a(t)} is an ideal autocorrelation sequence. Furthermore, itsetra

representation is given as follows.

Lemma 11: (Main theorem of [19]) Lety be a primitive element of,. There is a primitive

elementgs of Fy» such that

p—1_
2m 1

a(t) = Y " (57)
=0
is the trace representation &i(t)}.

For ¢ = 0 or 1, define two sequences(®)(t)} where

p—

2m

a9t) = X (s,

§=0
Then,{a@(t)} = {a(t)}, and{aV(t)} is they-decimation of{a(t)}. Therefore, both sequences

have ideal autocorrelation property.

Letk >2andu = 1+ 2™ + --- + 2= Assumegcd(k — 1,p) = 1. We construct ideal

autocorrelation sequences from® (¢)} and {a"(¢)} as follows. For¢ = 0 or 1, define

p—1__
2m 1

SO = X (Lt (@) ). (35)

=0

By Lemma 1,{s¢(¢)} is an ideal autocorrelation sequence of perdd” — 1.
The following lemma is needed for deducing a tighter boundhenlinear span ofs©(¢)}.

Lemma 12: (1) ([19]) Wheni varies from0 to p—;l —1, 4* runs through alll thé’;—1 cyclotomic
cosets of sizen modulop. For some integef, v = 27.
(2) Among % cyclotomic cosets of sizen modulo p, the number of cosets consisting of

integers of weight is (T) /m.
Theorem 13: For either( = 0 or 1, the linear span of sequences defined as in Eq. (33) satisfies

LS({s©(t)}) > %[(1 42k M — 1 — (28 k)™,
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Proof: For ( = 0 or 1, Proposition 4 together with Eq. (22) and Eq. (26) yields

p—1_
2m 1

LS{sO)}) = Y m- (287 k)w0¥),
7=0
One has
LS({s9(t)}) + LS({s"M(t)})
ET. v Bml piin
= Y m- (20T £ 7Y e (28 )0
j=0 Jj=0
-l

= Y m-(2F1k)e0?)
7=0
= ()@ )+ () @R+ () - (@)
— (1 + 2k_1/{3)m — 1= (2k_1]{7)m.
Thus, Theorem 13 holds.

Remark 14: An analysis toL, = m(2*~1k)™~! show that, for any givem, the boundL, is
maximized only ifk < 6. In this case, ifn > 2k + 1, then the bound in Theorem 13 is tighter
than that in Theorem 9 (1). More precisely,

%[(1 + 25 )™ — 1 — (2R > m (25 k)

holds fork < 6 andm > 2Fk + 1.

Sequences defined in Eq. (33) with the perio@*f* — 1 are an application of the construction
of Eq. (7) to the case of > 2. If we takek = 1 and define

2m

-1
() = S ([P, (36)
7=0

(¢ = 0 or 1), we will get two ideal autocorrelation sequences ofque2?” — 1, and their linear
span can be shown as

p—1
2m 1

LS5O} = Y m-20"

by Proposition 4 and Eq. (22). An analysis similar to TheorgBnshows eithef{3® (¢)} or
{3M(¢)} has linear span not less th&s™ — 1 —2)/2.

Eq. (33) and Eq. (34) provide a way to generate ideal autelaiion sequences with large
linear span.
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Example 15: Let {a(t) = 28: tr7(a*”")} be a Legendre sequence of period 127 &bd) =
a(3t)} be its 3-decimation.3‘:I'Ohe linear span of the sequerde€)(t)} derived from{b(t)} is
1232 > 1029 = (37 — 1 — 27)/2, which is larger than that of the sequence of perdt— 1
given in Example 9 of [23].

V. CONCLUDING REMARKS

The generalized Kasami sequence set [10] is given by
' = {g(tTZ/2<.T2) —+ 5:1:2’”1“-}-1)’ 5 c Fzmk,.’lj - F;n},

where{g(z),z € F,,.} is any one sequence with ideal autocorrelation propertg. §¢tI" has
optimal correlation property with respect to Welch bountieTinear span of sequenceslin
depends ory(z).

Let g(z) = X [tr™*(2)])!. Consider the linear span of sequences.iifo obtain large linear
span, an efficient approach is to choas@and index set/ appropriately such that the integer
d'(1,v) has large binary weight,

w(i)
§'(4,0) =Y w- 2™ (mod 2™ — 1),

j=1
wherei € I andv = (vi, v, -+, Vu()) € V*@_ In the original Kasami construction and No
sequences] was equal to{1}. No sequences achieved large linear span by havinith large
weight. Klapper took: = 1 and I consisting of only one integer with large binary weight,tsuc
that TN sequences can obtain even larger linear span thare¢lesces and the small set of
Kasami sequences.

This correspondence discusses a new case wherelzotth one element i have large binary
weight. For appropriate parametdrs, k, u, I), sequences discussed in this correspondence can
obtain larger linear span than that of Kasami sequencesll(se@, No sequences and TN
sequences.

Very likely by choosingu with other forms, sequences with larger linear span can bedo
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