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Abstract

It is known that for any general access structure, a secret sharing scheme (SSS) can be con-

structed from an (m,m)-threshold scheme by using the so-called cumulative map or from a (t,m)-

threshold SSS by a modified cumulative map. However, such constructed SSSs are not efficient

generally. In this paper, we propose a new method to construct a SSS from a (t,m)-threshold

scheme for any given general access structure. In the proposed method, integer programming is

used to distribute optimally the shares of (t,m)-threshold scheme to each participant of the general

access structure. From the optimality, it can always attain lower coding rate than the cumulative

maps except the cases that they give the optimal distribution. The same method is also applied to

construct SSSs for incomplete access structures and/or ramp access structures.

Key words: Secret sharing schemes, threshold schemes, general access structures, multiple as-

signment map, cumulative map, ramp schemes, integer programming.

1 Introduction

A Secret Sharing Scheme [1, 2] (SSS) is a method to encrypt a secret information S into n pieces

called shares V1, V2, . . . , Vn, each of which has no information of the secret S, but S can be decrypted

by collecting several shares. For example, a (k, n)-threshold SSS means that any k out of n shares

can decrypt the secret S although any k − 1 or less shares do not leak out any information of S. The

(k, n)-threshold access structure can be generalized to so-called general access structures which consist

of the families of qualified sets and forbidden sets. A qualified set is the subset of shares that can

decrypt the secret, but a forbidden set is the subset that does not leak out any information of S.

Generally, the efficiency of a SSS is measured by the entropy of each share. It is known that for

any access structures, the entropies of secret S and shares Vi, i = 1, 2, . . . , n, must satisfy H(Vi) ≥

H(S) [3, 4, 5]. On the other hand, in the case of (k, n)-threshold SSSs, the optimal SSSs attaining

H(Vi) = H(S) can easily be constructed [1]. However, it is hard to derive efficient SSSs for arbitrarily

given general access structures although several construction methods have been proposed.
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For example, the monotone circuit construction [6] is a method to realize a SSS by combining

several (m,m)-threshold SSSs. This method is simple but inefficient, and hence, it is extended to

the decomposition construction [7], which uses several decomposed general SSSs. Although the de-

composition construction can attain the optimal coding rates for some special access structures, it

cannot construct an efficient SSS in the case that the decomposed SSSs cannot be realized efficiently.

Note that a monotone circuit construction is based on qualified sets. Hence, as another extension of

monotone circuit construction, a method is proposed to construct a SSS with general access structures

based on qualified sets and (t,m)-threshold SSSs [8].

On the other hand, for any given general access structure, a SSS can be constructed from a (t,m)-

threshold SSS by a multiple assignment map such that t or more shares of the (t,m)-threshold SSS are

assigned to qualified sets but t− 1 or less shares are assigned to forbidden sets. The cumulative map

is a simple realization of the multiple assignment map based on an (m,m)-threshold SSS [9, 10, 11],

and from the simplicity, it is often used in visual secret sharing schemes for general access structures

[12, 13]. However, it is known that the SSS constructed by the cumulative map is inefficient generally,

especially in the case that the access structure is a (k, n)-threshold SSS with k 6= n. Recently, a

modified cumulative map based on a (t,m)-threshold SSS is proposed to overcome this defect [14].

But, the modified cumulative map is not always more efficient than the original cumulative map.

In this paper, we propose a new construction method that can derive the optimal multiple assign-

ment map by integer programming. The proposed construction method is simple and optimal in the

sense of multiple assignment maps. Furthermore, it can also be applied to incomplete and/or ramp

access structures.

This paper is organized as follows. In Section 2, we give the definitions of SSSs and introduce the

multiple assignment map. We also introduce the construction methods of the cumulative map and the

modified cumulative map, and we point out their defects. To overcome such defects, we propose a new

construction method of the optimal multiple assignment map by integer programming in Section 3.

Finally, Sections 4 and 5 are devoted to present the applications of the proposed method to incomplete

or ramp SSSs for general access structures, respectively.

2 Preliminaries

2.1 Definitions

Throughout this paper, a set of shares and a family of share sets are represented by bold-face and

script letters, respectively. For sets A and B, we denote a difference set by A−B, which is defined

as A − B
def
= A ∩ B where B means the complement of B. Furthermore, the cardinality of A is

represented by |A|, and the Cartesian product of A and B is expressed by A×B.

Let V = {V1, V2, . . . , Vn} be the set of shares, and let 2V be the family of all subsets of V .

We represent the family of qualified sets that can decrypt a secret information S and the family of

forbidden sets that cannot gain any information of S by A1 and A0, respectively.

Γ = {A1,A0} is called an access structure. For instance, the access structure of (k, n)-threshold

SSSs can be represented as follows:

A1 = {A ∈ 2V : k ≤ |A| ≤ n}, (1)

A0 = {A ∈ 2V : 0 ≤ |A| ≤ k − 1}. (2)
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In SSSs, it obviously holds that A1 ∩A0 = ∅. If it also holds that A1 ∪A0 = 2V , the access structure

is called complete. Note that any access structure must satisfy the following monotonicity.

A ∈ A1 ⇒ A′ ∈ A1 for all A′ ⊇ A (3)

A ∈ A0 ⇒ A′ ∈ A0 for all A′ ⊆ A (4)

Therefore, we can define the family of minimal qualified sets and the family of maximal forbidden sets

as follows:

A−
1 = {A ∈ A1 : A− {V } 6∈ A1 for any V ∈ A}, (5)

A+
0 = {A ∈ A0 : A ∪ {V } 6∈ A0 for any V ∈ V −A}. (6)

We assume that the secret information S and each share Vi are random variables, which take values

in finite fields FS and FVi
, respectively. Then, share set A = {Vi1 , Vi2 , . . . , Viu}(⊆ V ), which takes

values in FA
def
= FVi1

× FVi2
× · · · × FViu

, must satisfy the following conditions:

H(S|A) = H(S) if A ∈ A0, (7)

H(S|A) = 0 if A ∈ A1, (8)

where H(S) is the entropy of S and H(S|A) is the conditional entropy of S for given A.

Now, let us define the coding rate of a share Vi as ρi
def
= H(Vi)/H(S), for i = 1, 2, . . . , n. Since

each ρi may be different in the case of general access structures, it is cumbersome to treat each ρi
independently. Hence, we consider only the following average coding rate ρ̃ and worst coding rate ρ∗.

ρ̃
def
=

1

n

n
∑

i=1

ρi, (9)

ρ∗
def
= max

1≤i≤n
ρi. (10)

For a given access structure Γ = {A1,A0}, we call V ∈ V a significant share if there exists a share

set A ∈ 2V such that A ∪ {V } ∈ A1 but A ∈ A0.

Remark 1 Note that a non-significant share plays no roll in the SSS, and hence, ρi = 0 can always

be attained for each non-significant share Vi in any access structure Γ. Furthermore, if there exists a

non-significant share Vi with ρi > 0, the average coding rate can be reduced by setting ρi = 0 without

changing all the significant shares. Hence, we call a non-significant share a vacuous share. On the

other hand, we have ρi ≥ 1 for any significant share Vi because it must satisfy H(Vi) ≥ H(S) [4, 5, 3].

In the following, we assume that every share is significant. �

If a SSS attains ρi = 1 for all i, it is called ideal. It is known that in the case of (k, n)-threshold

SSSs, the ideal SSS can easily be constructed for any k and n [1]. Since ρi ≥ 1, i = 1, 2, . . . , n, must

hold for any significant share Vi in any access structures, ρ̃ = 1 or ρ∗ = 1 are the necessary and

sufficient conditions for a SSS to be ideal [4].

2.2 Multiple Assignment Map

Let Γ = {A1,A0} be a given general access structure with share set V = {V1, V2, . . . , Vn} and let

W (t,m) = {W
(t)
1 ,W

(t)
2 , . . . ,W

(t)
m } be the share set of a (t,m)-threshold SSS. We now consider a map

3



ϕΓ : {1, 2, . . . , n} → 2W (t,m) , which assigns each participant a subset of the shares generated by the

(t,m)-threshold scheme, and a map ΦΓ : 2V → 2W (t,m) , which is defined as ΦΓ(A)
def
=

⋃

Vi∈A
ϕΓ(i) for

a share set A ⊆ V . Then, ϕΓ is called a multiple assignment map for the access structure Γ if each

share Vi is determined by Vi = ϕΓ(i) and ΦΓ(A) satisfies the following conditions:

|ΦΓ(A)| ≥ t if A ∈ A1, (11)

|ΦΓ(A)| ≤ t− 1 if A ∈ A0, (12)

ΦΓ(V ) = W (t,m). (13)

To distinguish W
(t)
j ∈ W (t,m) from the shares Vi of Γ, we call W

(t)
j a primitive share.

Since any (t,m)-threshold SSS can easily be constructed as an ideal SSS [1, 3], we assume in this

paper that the (t,m)-threshold SSS with W (t,m) = {W
(t)
1 ,W

(t)
2 , . . . ,W

(t)
m } is ideal. Then, the average

and worst coding rates defined by (9) and (10) become

ρ̃ =
1

n

n
∑

i=1

|ϕΓ(i)|, (14)

ρ∗ = max
1≤i≤n

|ϕΓ(i)|, (15)

respectively, since it holds that ρi = |ϕΓ(i)|.

In the case of t = m, it is known that the multiple assignment map ϕΓ satisfying (11)–(13) can be

realized for any access structures [9, 10, 11]. Suppose that the access structure Γ = {A1,A0} has

A+
0 = {F 1,F 2, . . . ,Fm}. (16)

Note that m =
∣

∣A+
0

∣

∣. Then, consider the map ψΓ : {1, 2, . . . , n} → 2W (m,m) defined by

ψΓ(i) =
⋃

j:Vi 6∈F j

{

W
(m)
j

}

(17)

where F j ∈ A+
0 and W (m,m) = {W

(m)
1 ,W

(m)
2 , . . . ,W

(m)
m } is the set of primitive shares of an (m,m)-

threshold SSS. The above multiple assignment map ψΓ is called the cumulative map.

Example 2 Assume that n = 4 and access structure Γ1 is defined by

A−
1 = {{V1, V2, V3}, {V1, V4}, {V2, V4}, {V3, V4}}, (18)

A+
0 = {{V1, V2}, {V1, V3}, {V2, V3}, {V4}}. (19)

Then, m =
∣

∣A+
0

∣

∣ = 4, and the cumulative map ψΓ1 is given from (17) as follows.

V1 = ψΓ1(1) =
{

W
(4)
3 ,W

(4)
4

}

, (20)

V2 = ψΓ1(2) =
{

W
(4)
2 ,W

(4)
4

}

, (21)

V3 = ψΓ1(3) =
{

W
(4)
1 ,W

(4)
4

}

, (22)

V4 = ψΓ1(4) =
{

W
(4)
1 ,W

(4)
2 ,W

(4)
3

}

. (23)

In this example, it holds that ρ̃ = 9/4 and ρ∗ = 3. �
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It is known that the next theorem holds for the cumulative map ψΓ.

Theorem 3 ([15]) For any multiple assignment map ϕΓ : {1, 2, . . . , n} → 2W (t,m) with t = m, it must

hold that |W (m,m)| ≥ |A+
0 |, i.e., m ≥ |A+

0 |. The equality holds if and only if ϕΓ(i) is equal to the

cumulative map ψΓ(i) defined by (17), where we assume that all ψΓ’s obtained by permutations of

F j ’s in (16) are the same. �

Theorem 3 means that, in the case of t = m, the cumulative map ψΓ minimizes the number of

primitive shares m. But, the minimization of m does not mean the realization of an efficient SSS

generally because it does not minimize the average coding rate ρ̃ and/or the worst coding rate ρ∗.

For instance, consider the case that Γ is a (k, n)-threshold access structure with k 6= n. If we

construct shares Vi by the cumulative map ψ for this Γ, each Vi must consist of
(

n−1
k−1

)

primitive shares

of an
(

(

n
k−1

)

,
(

n
k−1

)

)

-threshold SSS because of |A+
0 | =

(

n
k−1

)

. This means that ρ̃ = ρ∗ =
(

n−1
k−1

)

. But,

if we use the (k, n)-threshold SSS itself, we have ρ̃ = ρ∗ = 1 because each Vi consists of one primitive

share. Hence, the cumulative map is quite inefficient in the case that Γ is a (k, n)-threshold access

structure. In order to overcome this defect, a modified cumulative map is proposed in [14] based on

(t,m)-threshold SSSs. The modified cumulative map ψ′
Γ is constructed as follows.

Construction 4 ([14]) For a given Γ = {A+
0 ,A

−
1 } and a positive integer g

def
= min

A∈A−
1

|A|, let G0 ⊆ A+
0

be the family defined by

G0 = {G ∈ A+
0 : |G| ≥ g}. (24)

When G0 = {G1,G2, . . . ,Gu} 6= ∅, let lj
def
= |Gj | − g + 1 for j = 1, 2, . . . , u, and ℓj

def
=

∑j
p=1 lp. If

G0 = ∅, let u = 1 and ℓ1 = 0. Then, consider a (g + ℓu, n+ ℓu)-threshold SSS and the set of primitive

shares W (g+ℓu,n+ℓu) = {W
(g+ℓu)
1 ,W

(g+ℓu)
2 , . . . ,W

(g+ℓu)
n+ℓu

}. Furthermore, let U j , j = 1, 2, . . . , u, be the

subset of primitive shares defined by

U1 = ∅ if G0 = ∅, (25)

U j =
{

W
(g+ℓu)
n+ℓj−1+1,W

(g+ℓu)
n+ℓj−1+2, . . . ,W

(g+ℓu)
n+ℓj

}

if G0 6= ∅, (26)

where ℓ0 = 0. Then, the modified cumulative map ψ′
Γ is defined by

ψ′
Γ(i) =

{

W
(g+ℓu)
i

}

∪







⋃

j:Vi 6∈Gj

U j







. (27)

�

In the case where Γ is a (k, n)-threshold access structure, it holds that G0 = ∅ and U1 = ∅,

and hence, it holds that ψ′
Γ(i) = {W

(k)
i } for i = 1, 2, . . . , n and this scheme coincides with the ideal

(k, n)-threshold SSS [14]. Therefore, the modified cumulative map ψ′
Γ is efficient if Γ is, or is near

to, a (k, n)-threshold access structures. Furthermore, it is shown in [14] that if the access structure Γ

satisfies
∣

∣A+
0

∣

∣ ≥
(n − g − 1)ℓu + n+ 2|G0|

n− g + 1
, (28)

then it holds that for the original cumulative map ψΓ,
∑

Vi∈V
|ψ′

Γ(i)| ≤
∑

Vi∈V
|ψΓ(i)|, which means

that the average coding rate ρ̃ of ψ′
Γ is smaller than or equal to ψΓ.

But, as shown in the following example, ψ′
Γ is not always more efficient than ψΓ if Γ does not

satisfy (28).
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Example 5 Consider the access structure Γ1 given by (18) and (19) in Example 2, which does not

satisfy (28). Since we have g = 2 from (18), G0 becomes G0 = {{V1, V2}, {V1, V3}, {V2, V3}}
def
=

{G1,G2,G3}. Furthermore, since we have that l1 = l2 = l3 = 1 and ℓ3 = 3, U i’s are determined

as U1 = {W
(5)
5 }, U2 = {W

(5)
6 }, U3 = {W

(5)
7 } for W (5,7) = {W

(5)
1 ,W

(5)
2 , . . . ,W

(5)
7 }. Hence, we can

check that Γ1 does not satisfy (28) because of |A+
0 | = 4, n = 4, g = 2, ℓu = 3, and |G0| = 3. Finally,

we have from (27) that

V1 = ψ′
Γ1
(1) =

{

W
(5)
1 ,W

(5)
7

}

, (29)

V2 = ψ′
Γ1
(2) =

{

W
(5)
2 ,W

(5)
6

}

, (30)

V3 = ψ′
Γ1
(3) =

{

W
(5)
3 ,W

(5)
5

}

, (31)

V4 = ψ′
Γ1
(4) =

{

W
(5)
4 ,W

(5)
5 ,W

(5)
6 ,W

(5)
7

}

. (32)

In this example, the coding rates are given by ρ̃ = 5/2 and ρ∗ = 4, which are larger than the coding

rates of Example 2, i.e., ρ̃ = 9/4 and ρ∗ = 3. �

Note that (28) does not guarantee that the worst coding rate ρ∗ of ψ′
Γ is smaller than ψΓ. Actually,

the next example shows a case where ψ′
Γ attains a smaller average coding rate but gives larger worst

coding rate than ψΓ.

Example 6 Consider the access structure Γ2 given by

A−
1 = {{V1, V2, V3, V5}, {V1, V2, V4}, {V1, V3, V4}, {V1, V4, V5},

{V2, V3, V4}, {V2, V4, V5}, {V3, V4, V5}}, (33)

A+
0 = {{V1, V2, V3}, {V1, V2, V5}, {V1, V3, V5}, {V2, V3, V5},

{V1, V4}, {V2, V4}, {V3, V4}, {V4, V5}}. (34)

Then, the cumulative map ψΓ2 is constructed as follows:

V1 = ψΓ2(1) =
{

W
(8)
4 ,W

(8)
6 ,W

(8)
7 ,W

(8)
8

}

, (35)

V2 = ψΓ2(2) =
{

W
(8)
3 ,W

(8)
5 ,W

(8)
7 ,W

(8)
8

}

, (36)

V3 = ψΓ2(3) =
{

W
(8)
2 ,W

(8)
5 ,W

(8)
6 ,W

(8)
8

}

, (37)

V4 = ψΓ2(4) =
{

W
(8)
1 ,W

(8)
2 ,W

(8)
3 ,W

(8)
4

}

, (38)

V5 = ψΓ2(5) =
{

W
(8)
1 ,W

(8)
5 ,W

(8)
6 ,W

(8)
7

}

, (39)

which attains that ρ̃ = ρ∗ = 4. On the other hand, the modified cumulative map ψ′
Γ2

is given by

V1 = ψ′
Γ2
(1) =

{

W
(7)
1 ,W

(7)
9

}

, (40)

V2 = ψ′
Γ2
(2) =

{

W
(7)
2 ,W

(7)
8

}

, (41)

V3 = ψ′
Γ2
(3) =

{

W
(7)
3 ,W

(7)
7

}

, (42)

V4 = ψ′
Γ2
(4) =

{

W
(7)
4 ,W

(7)
6 ,W

(7)
7 ,W

(7)
8 ,W

(7)
9

}

, (43)

V5 = ψ′
Γ2
(5) =

{

W
(7)
5 ,W

(7)
6

}

. (44)
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Observe that the rates of ψ′
Γ2

are given by ρ̃ = 13/5, ρ∗ = 5. Hence, ψ′
Γ2

gives smaller ρ̃ but larger ρ∗

than ψΓ2 . �

As shown in Examples 5 and 6, the modified cumulative map cannot always overcome the defects

of the original cumulative maps. Hence, in the next section, we propose a construction method of

multiple assignment maps that can attain the optimal average or worst case coding rates based on

integer programming.

3 Optimal Multiple Assignment Maps

For a multiple assignment map ϕΓ : {1, 2, . . . , n} → 2W (t,m) , a set A ⊆ V , and p ∈ {0, 1, . . . , 2n − 1},

let Xp be the subset of W (t,m) defined by

Xp =





⋂

i:b(p)i=1

ϕΓ(i)



 ∩





⋂

i:b(p)i=0

ϕΓ(i)



 , (45)

where b(p)i is the i-th least significant bit in the n-bit binary representation of p. For example, in the

case of p = 5 and n = 4, it holds that b(5)1 = b(5)3 = 1, and (45) becomes X5 = ϕΓ(4) ∩ ϕΓ(3) ∩

ϕΓ(2) ∩ ϕΓ(1). Figure 1 is the Venn diagram which shows the relation between Xp’s and ϕΓ(i)’s in

the case of n = 3. Since ϕΓ must satisfy (13), it must hold that
⋂n

i=1 ϕΓ(i) = ∅, which implies that

X0 = ∅. Hence, we consider only Xp for p = 1, 2, . . . , 2n − 1 in the following.

Then, it is easy to check thatXp’s satisfy the following equations for an arbitrary n andN
def
= 2n−1.

Xp ∩Xp′ = ∅ if p 6= p′ (46)

ϕΓ(i) =
⋃

p:b(p)i=1

Xp (47)

ΦΓ(A) =
⋃

Vi∈A

ϕΓ(i) =
⋃

p:b(p)i=1

for some Vi∈A

Xp (48)

Letting xp = |Xp|, the cardinality of ΦΓ(A) is given by

|ΦΓ(A)| =
∑

p:b(p)i=1

for some Vi∈A

xp, (49)

from (46) and (48).

Now, we describe how to design the optimal multiple assignment map ϕ̃Γ which attains the min-

imum average coding rate. Note that, in order to design the multiple assignment map ϕΓ for the

set of primitive shares W (t,m), we have to determine only xp, p = 1, 2, . . . , N , and t, since m can be

calculated as m =
∑N

p=1 xp from (13) and (49).

Let y
def
= [t, x1, x2, . . . , xN ] be the (N + 1)-dimensional parameter vector to minimize the average

coding rate. Furthermore, for an integer ℓ and a share set A, define an (N+1)-dimensional row vector

a(ℓ;A)
def
= [ℓ, 1(A)1, 1(A)2, . . . , 1(A)N ] where

1(A)p =

{

1 if b(p)i = 1 for some Vi ∈ A

0 otherwise.
(50)
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X4

X0 X1

X2

X3
X7

X5

X6

W (t,m)

ϕΓ(2) ϕΓ(3)

ϕΓ(1)

Figure 1: Relation between ϕΓ(i)’s and Xk’s in the case of n = 3.

Then, since (49) can be represented by inner product as |ΦΓ(A)| = a(0;A) · yT where superscript T

means the transpose of vector y, the inequalities in the constraints (11) and (12) can be represented

by a(0;A) ·yT ≥ t, and a(0;A) ·yT ≤ t−1, respectively. Therefore, these constraints can be expressed

as

a(−1;A) · yT ≥ 0 if A ∈ A−
1 , (51)

−a(−1;A) · yT − 1 ≥ 0 if A ∈ A+
0 , (52)

respectively. Furthermore, denoting the Hamming weight in the binary representation of p by hp, it

holds from (47) that

n
∑

i=1

|ϕΓ(i)| =
n
∑

i=1

∑

p:b(p)i=1

xp =

N
∑

p=1

hpxp = h · yT , (53)

where h = [h0, h1, . . . , hN ] ∈ ZN+1. Hence, the average coding rate ρ̃ in (14) is given by (1/n) h · yT

which we want to minimize.

We note here that a(·; ·) and h do not depend on the multiple assignment map ϕΓ, and hence,

summarizing (50)–(53), we can formulate the integer programming problem IPρ̃(Γ) that minimizes

the average coding rate ρ̃ under the constraints of (11) and (12) as follows:

IPρ̃(Γ)

minimize h · yT

subject to a(−1;A) · yT ≥ 0 for A ∈ A−
1

−a(−1;A) · yT ≥ 1 for A ∈ A+
0

y ≥ 0

8



The optimal multiple assignment map ϕ̃Γ that attains the minimum average coding rate can be con-

structed as follows. First, let ỹ = [t̃, x̃1, x̃2, . . . , x̃N ] be the minimizers of the integer programming prob-

lem IPρ̃(Γ), and we use the (t̃, m̃)-threshold SSS with primitive sharesW (t̃,m̃) = {W
(t̃)
1 ,W

(t̃)
2 , . . . ,W

(t̃)
m̃ }

for secret S where m̃ can be calculated from m̃ =
∑N

p=1 x̃p. Then, for each p, we can assign x̃p different

primitive shares of W (t̃,m̃) to Xp that satisfies |Xp| = x̃p and (46). Finally, the multiple assignment

map ϕ̃Γ is obtained by (47).

Next, we consider the integer programming problem IPρ∗(Γ) that minimizes the worst coding

rate ρ∗. Let M be the maximal number of assigned primitive shares among all Vi, i = 1, 2, . . . , n.

Then, it holds that |ϕΓ(i)| ≤ M for all i = 1, 2, . . . , n, and the minimization of M attains the

optimal worst coding rate. Now, let z be the (N + 2)-dimensional parameter vector defined by

z
def
= [M, t, x1, x2, . . . , xN ]. Then, it holds thatM = e·zT where e is the (N+2)-dimensional row vector

defined by e
def
= [1, 0, 0, . . . , 0]. Furthermore, by defining b(ℓ, ℓ′;A)

def
= [ℓ, ℓ′, 1(A)1, 1(A)2, . . . , 1(A)N ]

where 1(A)p is defined by (50), the number of primitive shares assigned to a share set A ⊆ V can

be expressed as b(0, 0;A) · zT . Hence, in the same way as IPρ̃(Γ), the integer programming problem

IPρ∗(Γ) that minimizes the worst coding rate ρ∗ can be formulated as follows:

IPρ∗(Γ)

minimize e · zT

subject to b(0,−1;A) · zT ≥ 0 for A ∈ A−
1

−b(0,−1;A) · zT ≥ 1 for A ∈ A+
0

−b(−1, 0; {V }) · zT ≥ 0 for V ∈ V

z ≥ 0

The multiple assignment map ϕ∗
Γ attaining the minimum ρ∗ can also be constructed from the

obtained minimizer in the same way as the construction of ϕ̃Γ.

Remark 7 Actually, in SSSs, we can assume without loss of generality that xN = 0, i.e., XN =
⋂n

i=1 ϕΓ(i) = ∅ because it is not necessary to consider the set of primitive shares commonly contained

in every share. Hence, the vectors in integer programming problems IPρ̃(Γ) and IPρ∗(Γ) can be

reduced to N -dimensional and (N + 1)-dimensional vectors, respectively. However, xN = 0 does not

hold generally in the case of ramp SS schemes, which is described in Remark 20 in Section 5.2. �

Example 8 For the access structure Γ1 defined by (18) and (19) in Example 2, the integer program-

ming problem IPρ̃(Γ1) can be formulated as follows:

IPρ̃(Γ1)

minimize x1 + x2 + 2x3 + x4 + 2x5 + 2x6 + 3x7 + x8 + 2x9 + 2x10
+3x11 + 2x12 + 3x13 + 3x14

subject to −t+ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x9
+x10 + x11 + x12 + x13 + x14 ≥ 0

−t+ x1 + x3 + x5 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 ≥ 0

−t+ x2 + x3 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 ≥ 0

−t+ x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 ≥ 0

t− x1 − x2 − x3 − x5 − x6 − x7 − x9 − x10 − x11 − x13 − x14 ≥ 1

t− x1 − x3 − x4 − x5 − x6 − x7 − x9 − x11 − x12 − x13 − x14 ≥ 1

t− x2 − x3 − x4 − x5 − x6 − x7 − x10 − x11 − x12 − x13 − x14 ≥ 1

t− x8 − x9 − x10 − x11 − x12 − x13 − x14 ≥ 1

xp ≥ 0, p = 1, 2, . . . , 14

9



By solving the above IPρ̃(Γ1), we obtain that the value of the objective function is 5, which is

attained by the following minimizers:

t̃ = 3, x̃1 = x̃2 = x̃4 = 1, x̃8 = 2, x̃i = 0 for i = 3, 5, 6, 7, 9, 10, . . . , 14, (54)

Hence, m̃ is given by m̃ =
∑14

p=1 x̃p = 5, and Xp’s become

X1 =
{

W
(3)
1

}

, X2 =
{

W
(3)
2

}

, X4 =
{

W
(3)
3

}

, X8 =
{

W
(3)
4 ,W

(3)
5

}

, (55)

where W (3,5) = {W
(3)
1 ,W

(3)
2 , . . . ,W

(3)
5 }. Finally, from (47), ϕ̃Γ1 is constructed as

V1 = ϕ̃Γ1(1) =
{

W
(3)
1

}

, (56)

V2 = ϕ̃Γ1(2) =
{

W
(3)
2

}

, (57)

V3 = ϕ̃Γ1(3) =
{

W
(3)
3

}

, (58)

V4 = ϕ̃Γ1(4) =
{

W
(3)
4 ,W

(3)
5

}

. (59)

In this case, we have that ρ̃ = 5/4 and ρ∗ = 2. The integer programming problem IPρ∗(Γ1) derives the

same solutions as (54), and hence, it holds that ϕ̃Γ1 = ϕ∗
Γ1

in this example. Recall that the cumulative

map ψΓ1 attains the coding rates ρ̃ = 9/4 and ρ∗ = 3, and the modified cumulative map ψ′
Γ1

attains

ρ̃ = 5/2 and ρ∗ = 4. Hence, ϕΓ1 can attain smaller coding rates compared with ψΓ1 and ψ′
Γ1
. �

Example 9 For the access structure Γ2 defined by (33) and (34) in Example 6, we can obtain the

following multiple assignment map by solving the integer programming problem IPρ̃(Γ2).

V1 = ϕ̃Γ2(1) =
{

W
(4)
1

}

, (60)

V2 = ϕ̃Γ2(2) =
{

W
(4)
2

}

, (61)

V3 = ϕ̃Γ2(3) =
{

W
(4)
3

}

, (62)

V4 = ϕ̃Γ2(4) =
{

W
(4)
4 ,W

(4)
5

}

, (63)

V5 = ϕ̃Γ2(5) =
{

W
(4)
6

}

, (64)

where W
(4)
i ∈ W (4,6). Then, it holds that ρ̃ = 6/5 and ρ∗ = 2. Furthermore, it holds that ϕ̃Γ2 = ϕ∗

Γ2

in this access structure. Recall again that the cumulative map ψΓ2 attains the coding rates ρ̃ = ρ∗ = 4,

and the modified cumulative map ψ′
Γ2

attains ρ̃ = 13/5 and ρ∗ = 5. Hence, ϕ̃Γ2 is more efficient than

ψΓ2 and ψ′
Γ2
. �

Since any access structure can be realized by the cumulative map (and the modified cumulative

map), there exists at least one multiple assignment map for any access structure. Therefore, the next

theorem holds obviously.

Theorem 10 For any access structure Γ that satisfies monotonicity (3) and (4), the integer program-

ming problems IPρ̃(Γ) and IPρ∗(Γ) always have at least one feasible solution, and hence, there exists

the optimal multiple assignment map. �

10



We note that the integer programming problems are NP-hard, and hence, the proposed algorithms

may take much time in solving for large n (= |V |). But, in the case that n is not large, the solution

is obtained quickly. For instance, in the case of IPρ(Γ3) in Example 11 with n = 6, it can be solved

within 0.1 seconds by a notebook computer.

Example 11 Consider the following access structure Γ3:

A−
1 = {{V1, V3, V4, V5}, {V1, V3, V5, V6}, {V1, V4, V5, V6}, {V3, V4, V5, V6}, {V1, V2, V3}, {V1, V2, V5},

{V1, V2, V6}, {V2, V3, V4}, {V2, V3, V5}, {V2, V3, V6}, {V2, V4, V5}, {V2, V4, V6}, {V2, V5, V6}},

(65)

A+
0 = {{V1, V3, V4, V6}, {V1, V2, V4}, {V1, V3, V5}, {V1, V4, V5}, {V1, V5, V6}, {V3, V4, V5},

{V3, V5, V6}, {V4, V5, V6}, {V2, V3}, {V2, V5}, {V2, V6}}. (66)

Then, we obtain the following multiple assignment map by solving IPρ̃ (Γ3).

V1 = ϕ̃Γ3(1) =
{

W
(6)
1 ,W

(6)
2

}

, (67)

V2 = ϕ̃Γ3(2) =
{

W
(6)
1 ,W

(6)
3 ,W

(6)
4 ,W

(6)
5

}

, (68)

V3 = ϕ̃Γ3(3) =
{

W
(6)
6

}

, (69)

V4 = ϕ̃Γ3(4) =
{

W
(6)
2 ,W

(6)
5

}

, (70)

V5 = ϕ̃Γ3(5) =
{

W
(6)
3 ,W

(6)
7

}

, (71)

V6 = ϕ̃Γ3(6) =
{

W
(6)
8

}

, (72)

where W
(6)
i ∈ W (6,8). ϕ̃Γ3 attains that ρ̃ = 2 and ρ∗ = 4. On the other hand, the cumulative map for

the access structure Γ3 are given by

V1 = ψΓ3(1) =
{

W
(11)
6 ,W

(11)
7 ,W

(11)
8 ,W

(11)
9 ,W

(11)
10 ,W

(11)
11

}

, (73)

V2 = ψΓ3(2) =
{

W
(11)
1 ,W

(11)
3 ,W

(11)
4 ,W

(11)
5 ,W

(11)
6 ,W

(11)
7 ,W

(11)
8

}

, (74)

V3 = ψΓ3(3) =
{

W
(11)
2 ,W

(11)
4 ,W

(11)
5 ,W

(11)
8 ,W

(11)
10 ,W

(11)
11

}

, (75)

V4 = ψΓ3(4) =
{

W
(11)
3 ,W

(11)
5 ,W

(11)
7 ,W

(11)
9 ,W

(11)
10 ,W

(11)
11

}

, (76)

V5 = ψΓ3(5) =
{

W
(11)
1 ,W

(11)
2 ,W

(11)
9 ,W

(11)
11

}

, (77)

V6 = ψΓ3(6) =
{

W
(11)
2 ,W

(11)
3 ,W

(11)
4 ,W

(11)
6 ,W

(11)
9 ,W

(11)
10

}

, (78)

where W
(11)
i ∈ W (11,11). ψΓ3 has ρ̃ = 35/6 and ρ∗ = 7. Furthermore, the modified cumulative map

for Γ3 requires (12, 15)-threshold SSS and has ρ̃ = 5 and ρ∗ = 9. �

Next, we clarify what kind of access structure can be realized as an ideal SSS by the multiple

assignment map.

Theorem 12 For an access structure Γ, the SSS constructed by the optimal multiple assignment map

is ideal, i.e., ρi = 1 for all i, if and only if A−
1 of Γ can be represented by

A−
1 =

⋃

∀{j1,j2,...,jt}
⊆{1,2,...,m}

{Aj1 ×Aj2 × · · · ×Ajt} , (79)

11



where t is a positive integer and {A1,A2, . . . ,Am} is a partition of V which satisfies

m
⋃

j=1

Aj = V , (80)

Aj 6= ∅ for j = 1, 2, . . . ,m, (81)

Aj ∩Aj′ = ∅ if j 6= j′. (82)

�

Proof of Theorem 12: If there exists a partition {A1,A2, . . . ,Am} satisfying (79)–(82) for the

access structure Γ, the ideal SSS can be obtained by letting

ϕΓ(i) =W
(t)
j if Vi ∈ Aj (83)

for each i = 1, 2, . . . , n. Next, we show the necessity of (79)–(82). Suppose that a certain ϕΓ(i) attains

ρi = 1 for all i. Then, define each Aj as

Aj
def
= Φ−1

Γ

({

W
(t)
j

})

, j = 1, 2, . . . ,m, (84)

for j = 1, 2, . . . ,m where Φ−1
Γ : 2W (t,m) → 2V is the inverse map of ΦΓ(A)

def
=

∑

i:Vi∈A
ϕΓ(i). Then, it

is easy to see that Aj ’s satisfy (79), (80) and (81). Next, we prove that Aj’s defined by (84) satisfy

(82). Assume that there exist Aj and Aj′ , j 6= j′, not satisfying (82). Then, there exists a share

Vi ∈ Aj ∩ Aj′. This means that ϕΓ(i) ⊇ {W
(t)
j ,W

(t)
j′ }, which contradicts ρi = |ϕΓ(i)| = 1. Hence,

{A1,A2, . . . ,Am} must be a partition of V satisfying (79)–(82). �

In the case of t = 2, it is known that an access structure Γ can be realized by an ideal SSS if and only

if Γ can be represented by a complete multipartite graph [16]. We note that this condition coincides

with (79)–(82) in this case. Furthermore, in the case that |Aj| = 1 for j = 1, 2, . . . ,m, the access

structure coincides with the (t,m)-threshold access structure. Hence, if Γ is the (k, n)-threshold access

structure, the multiple assignment maps obtained from the integer programming problems IPρ̃(Γ) and

IPρ∗(Γ) obviously satisfy that |ϕ̃Γ(i)| = |ϕ∗
Γ(i)| = 1 for all i.

We note that any access structures not satisfying (79)–(82) must have ρ̃ > 1 and ρ∗ ≥ 2 if the

multiple assignment map is used. But, an access structure not satisfying (79)–(82) might be realized

as an ideal SSS if we use another construction method. For example, refer [7].

In this paper, we assume that every share is significant. But, if there exist vacuous shares in the

access structure Γ, it is cumbersome to check whether each share is significant or vacuous. From

Remark 1, the optimal multiple assignment map ϕ̃Γ attaining the minimum average coding rate must

satisfy that |ϕ̃Γ(i)| = 0 for any vacuous share Vi. On the other hand, it clearly holds that |ϕΓ(i)| ≥ 1

for every significant share Vi since ρi ≥ 1 holds for any significant share. Hence, by solving the integer

programming problem IPρ̃(Γ), we can also know whether a share is significant or vacuous.

4 Multiple Assignment Maps for Incomplete Access Structures

In the previous sections, we considered how to construct a SSS for a complete general access structure

Γ = {A1,A0}. But in practice, it may be cumbersome to specify whether each subset of V is a

qualified set or a forbidden set because the number of the subsets is 2n. Hence, a method is proposed

in [11] to construct a SSS for the case such that some subsets of V are not specified as qualified nor

forbidden sets.

12



Theorem 13 ([11]) Let Γ♯ = {A♯
1,A

♯
0} be an incomplete access structure, which has A♯

1 ∪ A♯
1 6= 2V .

Then, there exists a complete access structure Γ = {A1,A0} such that

A♯
1 ⊆ A1, (85)

A♯
0 ⊆ A0, (86)

if and only if it holds that for any A ∈ A♯
1 and B ∈ A♯

0,

A * B. (87)

�

In case that (87) is satisfied, the SSS satisfying the incomplete access structure Γ♯ = {A♯
1,A

♯
0}

can be realized by applying the cumulative map to the complete access structure Γ = {A1,A0}.

In fact, for the access structure Γ♯ = {A♯
1,A

♯
0}, a SSS is constructed in [11] by a cumulative map

ψΓ♯(i) =
⋃

j:Vi 6∈F j
{W

(t)
j } for A♯+

0 = {F 1,F 2, . . . ,Fm}. This construction corresponds to the case that

A+
0 = A♯+

0 and A1 = 2V −A0. (88)

However, ψΓ♯ is not efficient generally because ψΓ♯ is a cumulative map, which is inefficient as

described in Section 2.2. Furthermore, even if the cumulative map can attain the optimal coding rates

for the access structure given by (88), the access structure may not be optimal among all the complete

access structures Γ = {A1,A0} satisfying (85) and (86) for given Γ♯ = {A♯
1,A

♯
0}.

In our construction based on integer programming, the optimal multiple assignment map for the

incomplete access structure Γ♯ = {A♯−
1 ,A♯+

0 } can easily be obtained by applying IPρ̃(Γ) or IPρ∗(Γ)

directly to Γ♯.

Example 14 Let us consider the following access structure Γ♯
3 = {A♯

1,A
♯
0}:

A♯
1 = {{V1, V4, V5, V6}, {V1, V2, V5}, {V1, V2, V6}, {V2, V3, V6}, {V2, V4, V6}}, (89)

A♯
0 = {{V1, V3, V4, V6}, {V1, V3, V5}, {V1, V5, V6}, {V3, V4, V5}, {V4, V5, V6}, {V2, V5}}, (90)

Note that A♯
1 and A♯

0 satisfy A♯
1 ⊆ A−

1 and A♯
0 ⊆ A+

0 for Γ3 = {A1,A0}, which is defined by (65) and

(66) in Example 11. Then, by solving IPρ̃(Γ
♯
3), we obtain the following multiple assignment map.

V1 = ϕ̃
Γ♯
3
(1) =

{

W
(4)
1

}

, (91)

V2 = ϕ̃
Γ♯
3
(2) =

{

W
(4)
2 ,W

(4)
3

}

, (92)

V3 = ϕ̃
Γ♯
3
(3) =

{

W
(4)
4

}

, (93)

V4 = ϕ̃
Γ♯
3
(4) =

{

W
(4)
4

}

, (94)

V5 = ϕ̃
Γ♯
3
(5) =

{

W
(4)
5

}

, (95)

V6 = ϕ̃
Γ♯
3
(6) =

{

W
(4)
6

}

, (96)

where W
(4)
i ∈ W (4,6), and it holds that ρ̃ = 7/6 and ρ∗ = 2. If we apply the cumulative map to Γ♯

3,

ψ
Γ♯
3
is constructed from the (6, 6)-threshold scheme, and it has ρ̃ = 3 and ρ∗ = 5. �

Similarly to the complete SSS, vacuous shares Vi in Γ♯ = {A♯
1,A

♯
0} can be detected by checking

|ϕΓ♯(i)| = 0 for the solution of the IPρ̃(Γ
♯).

13



5 Ramp SSSs with General Access Structures

The coding rate ρi must satisfy ρi ≥ 1 for any significant share Vi in the case that the access structure

consists of A1 and A0, i.e., every subset A ⊆ V is classified into either qualified sets or forbidden

sets. But, in the case of ramp access structures such that some subsets of V are allowed to have

intermediate properties between the qualified and forbidden sets, it is possible to decrease the coding

rate ρi to less than 1. The SSSs having the ramp access structure are called ramp schemes [17, 18].

In this section, we treat the construction of ramp SSSs based on the multiple assignment maps. We

consider only the minimum average coding rate in this section. But, for the minimum worst coding

rate, integer programming can be formulated in a similar way.

5.1 Preliminaries for Ramp Schemes

First, let us review the definition of ramp SSSs. Suppose that L+1 families Aj ⊆ 2V , j = 0, 1, . . . , L,

satisfy the following.

H(S|A) =
L− j

L
H(S), for any A ∈ Aj (97)

Equation (97) implies that the secret S leaks out from a set A ∈ Aj with the amount of (j/L)H(S).

Especially, S can be decrypted completely from any A ∈ AL, and any A ∈ A0 leaks out no information

of S. Note that, in the case of L = 1, the ramp SSS reduces to the SSS treated in Sections 2–4, and

hence, the ramp SSS can be considered as an extension of the ordinal SSS. To distinguish the ordinal

SSSs from ramp SSSs, the ordinal SSSs are called the perfect SSSs. We call ΓR = {A0,A1, . . . ,AL}

the access structure of the ramp SSS with L+1 levels. Without loss of generality, we can assume that
⋃L

j=0Aj = 2V and Aj ∩Aj′ = ∅ for j 6= j′, although incomplete access structures with
⋃L

j=0Aj 6= 2V

can be treated in the same way as in Section 4.

For example, the access structure of (k, L, n)-threshold ramp SSS [18, 17] is defined as follows:

A0 = {A ∈ 2V : 0 ≤ |A| ≤ k − L}, (98)

Aj = {A ∈ 2V : |A| = k − L+ j}, for 1 ≤ j ≤ L− 1, (99)

AL = {A ∈ 2V : k ≤ |A| ≤ n}. (100)

In ramp SSSs, a significant share can also be defined in the same way as the perfect SSSs shown

in Section 2.1. A share Vi ∈ V is called significant if there exists a share set A ∈ 2V such that

A∪{Vi} ∈ Aj andA ∈ Aj′ with j > j′. Then, a non-significant share Vi′ satisfies thatA∪{Vi′} ∈ Aj for

any share set A ∈ Aj , j = 0, 1, . . . , L. Furthermore, if a non-significant share Vi′ satisfies {Vi′} ∈ A0,

Vi′ plays no roll in the ramp SSS, and hence, we call Vi′ a vacuous share. However, there exists a ramp

scheme such that A0 = ∅ and a non-significant share satisfy {Vi} ∈ Aj for some j ≥ 1. This case

implies that H(Vi′) ≥ H(S)/L, and H(Vi′ |V ) = 0 for any V ∈ V , i.e., a non-significant Vi′ is included

in every share. Therefore, we call such a non-significant share Vi′ a common share.

Remark 15 It is known that for any access structure with L + 1 levels, the coding rate ρi must

satisfy ρi ≥ 1/L for any significant share Vi [19]. Especially, in the case of (k, L, n)-threshold SSSs,

the optimal ramp SSS attaining ρi = 1/L for all i can easily be constructed [17, 18]. Any common

share Vi must also satisfy that ρi ≥ 1/L. On the other hand, in the same way as Remark 1 for the

perfect SSSs, each vacuous share Vi can be realized as ρi = 0 for any access structure. Furthermore,
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if there exists a vacuous share with ρi > 0, the average coding rate can be reduced by setting ρi = 0

without changing all the significant and the common shares. �

Letting Ǎj
def
=

⋃L
ℓ=j Aℓ and Âj

def
=

⋃j
ℓ=1Aℓ, for j = 0, 1, . . . , L, the monotonicity in (3) and (4) are

extended as follows:

A ∈ Ǎj ⇒ A′ ∈ Ǎj for all A′ ⊇ A (101)

A ∈ Âj ⇒ A′ ∈ Âj for all A′ ⊆ A (102)

Therefore, the minimal and maximal families of the access structure, ΓR− = {A−
0 ,A

−
1 , . . . ,A

−
L} and

ΓR+ = {A+
0 ,A

+
1 , . . . ,A

+
L}, respectively, can be defined as

A−
j = {A ∈ Aj : A− {V } 6∈ Ǎj for any V ∈ A}, (103)

A+
j = {A ∈ Aj : A ∪ {V } 6∈ Âj for any V ∈ 2V −A}. (104)

Then, the following theorem holds.

Theorem 16 ([19]) A ramp SSS with access structure ΓR = {A0,A1, . . . ,AL} can be constructed if

and only if Ǎj (or Âj) satisfies the monotonicity (101) (or (102)) for all j = 1, 2, . . . , L. �

In Theorem 16, the necessity of the condition is obvious, and the sufficiency is established by the

next construction.

Construction 17 ([19]) Let S = {S〈1〉, S〈2〉, . . . , S〈L〉} be a secret, and let Γ〈j〉 = {Ǎj , 2
V − Ǎj},

j = 1, 2, . . . , L, be the perfect access structures determined from a given access structure ΓR. Since

each Γ〈j〉 is a perfect access structure satisfying the monotonicity (3) and (4), we can construct

a SSS with Γ〈j〉 for secret S〈j〉. Letting {V
〈j〉
1 , V

〈j〉
2 , . . . , V

〈j〉
n } be the shares for S〈j〉 and Γ〈j〉, the

share Vi = {V
〈1〉
i , V

〈2〉
i , . . . , V

〈L〉
i } realizes the access structure ΓR. For ΓR, a ramp SSS can also be

constructed from {2V − Âj, Âj} instead of Γ〈j〉 = {2V − Ǎj, Ǎj}.

�

Remark 18 Note that in Construction 17, we have ρi ≥ 1 for any access structure. For example, in

the case that Construction 17 is applied to the (k, L, n)-threshold access structure, the constructed

ramp SSS has ρi = 1 although the (k, L, n)-threshold SSS can be realized with ρi = 1/L. Therefore,

Construction 17 is not efficient generally. �

Example 19 Consider the following ramp access structure ΓR
4 for V = {V1, V2, V3, V4}:

A3 = {{V1, V2, V3, V4}}, (105)

A2 = {{V1, V2, V3}, {V1, V3, V4}}, (106)

A1 = {{V1, V2, V4}, {V2, V3, V4}}, (107)

A0 = {A : 0 ≤ |A| ≤ 2}. (108)

First, we derive the access structures Γ〈1〉, Γ〈2〉, and Γ〈3〉 based on (105)–(108), and it is easy to see

that Γ〈1〉 and Γ〈3〉 become (3, 4)- and (4, 4)-threshold access structures, respectively. Hence, we have

V
〈1〉
i = W

(3)
i and V

〈3〉
i = W

(4)
i for i = 1, 2, 3, 4 where {W

(3)
i }4i=1 and {W

(4)
i }4i=1 are the share sets

of (3, 4)- and (4, 4)-threshold access structures for secrets S〈1〉 and S〈3〉, respectively. Furthermore,

a perfect SSS with the access structure Γ〈2〉 for a secret S〈2〉 can be realized by {V
〈2〉
i }4i=1 such that
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V
〈2〉
1 = W

′(3)
1 , V

〈2〉
2 = W

′(3)
2 , V

〈2〉
3 = W

′(3)
3 , and V

〈2〉
4 = W

′(3)
2 where {W

′(3)
i }3i=1 is the share sets of

(3, 3)-threshold SSS for S〈2〉.

According to Construction 17, we can obtain the shares such that V1 = {W
(3)
1 ,W

′(3)
1 ,W

(4)
1 },

V2 = {W
(3)
2 ,W

′(3)
2 ,

W
(4)
2 }, V3 = {W

(3)
3 ,W

′(3)
3 ,W

(4)
3 }, V4 = {W

(3)
4 ,W

′(3)
4 ,W

(4)
4 }. Since each share consists of three primitive

shares for three secrets S〈1〉, S〈2〉, S〈3〉, the constructed ramp SSS has ρ̃ = ρ∗ = 1. �

The construction of ramp SSSs for general access structures are treated in [20]. But, since the

construction in [20] is based on monotone span programming, it is much complicated compared with

the multiple assignment map.

5.2 Optimal Multiple Assignment Maps for Ramp SSSs

First, let W (t,L,m) = {W
(t,L)
1 ,W

(t,L)
2 , . . . ,W

(t,L)
m } be the set of primitive shares for the (t, L,m)-

threshold ramp SSS with the coding rate ρi = 1/L. Then, defining y and a(ℓ;A) in the same way

as the perfect SSSs in Section 3, the optimal ramp SSS by the multiple assignment map for a general

access structure ΓR can be obtained by solving the following integer programming problem:

IPR
ρ̃

(

ΓR
)

minimize h · yT

subject to a(−1;A) · yT ≥ 0 for A ∈ A−
L

−a(−1;A) · yT = j for A ∈ A+
j ∪ A−

j for 1 ≤ j ≤ L− 1 (⋆)

−a(−1;A) · yT ≥ L for A ∈ A+
0

y ≥ 0

Remark 20 From the monotonicity defined in (101) and (102), it is sufficient to consider only A ∈

A+
j ∪ A−

j instead of all A ∈ Aj on the marked line (⋆) in IPR
ρ̃

(

ΓR
)

. Note that the same primitive

shares may be distributed to all shares since there may exist common shares in ramp SSSs. Hence, we

may have xN 6= 0 in the ramp SSSs although we can always assume that xN = 0 in the perfect SSSs.

�

From Remark 15, significant or common shares Vi must satisfy that |ϕΓ(i)| ≥ 1 for any multiple

assignment map ϕΓ. On the other hand, |ϕ̃Γ(i
′)| = 0 must hold for vacuous shares Vi′ for the optimal

multiple assignment map ϕ̃Γ attaining the minimal average coding rate. Hence, it suffices to consider

only significant shares and common shares in the ramp SSSs.

Example 21 If the access structures ΓR
4 in Example 19 is applied to the integer programming problem

IPR
ρ̃

(

ΓR
4

)

, the following multiple assignment map is obtained

V1 = ϕ̃ΓR
4
(1) =

{

W
(7,3)
1 ,W

(7,3)
2

}

, (109)

V2 = ϕ̃ΓR
3
(2) =

{

W
(7,3)
3 ,W

(7,3)
4

}

, (110)

V3 = ϕ̃ΓR
4
(3) =

{

W
(7,3)
5 ,W

(7,3)
6

}

, (111)

V4 = ϕ̃ΓR
4
(4) =

{

W
(7,3)
3 ,W

(7,3)
7

}

, (112)

where W
(7,3)
i ∈ W (7,3,7). ϕ̃ΓR

4
attains that ρ̃ = ρ∗ = 2/3. �

16



Note that the coding rates less than 1 cannot be achieved by Construction 17. Furthermore,

our construction is much simpler compared with the method in [20]. But, unfortunately, the integer

programming problem may not have any feasible solutions in the case of ramp SSSs.

Example 22 The following access structure ΓR
5 cannot be constructed by any multiple assignment

map since the corresponding integer programming problem has no feasible solution.

A−
4 = {{V1, V2, V3, V4}, {V1, V2, V4, V5}, {V2, V3, V4, V5}}, (113)

A3 = {{V1, V2, V3, V5}, {V1, V3, V4, V5}, {V1, V2, V3}, {V1, V2, V4}, {V1, V3, V4},

{V1, V3, V5}, {V2, V3, V4}}, (114)

A2 = {{V1, V2, V5}, {V1, V4, V5}, {V2, V3, V5}, {V2, V4, V5}, {V3, V4, V5}, {V1, V3}, {V1, V5}}, (115)

A1 = {{V1, V2}, {V2, V3}, {V3, V4}}, (116)

A+
0 = {{V1, V4}, {V2, V5}, {V3, V5}}, (117)

�

In this case, we can modify the definition of the ramp SSS given by (97) as follows.

H(S|A) = 0, for all A ∈ AL, (118)

H(S|A) ≥
L− j

L
H(S), for all A ∈ Aj, 1 ≤ j ≤ L− 1, (119)

H(S|A) = H(S), for all A ∈ A0. (120)

In order to implement (118)–(120) in the integer programming, it suffices to replace the marked line

(⋆) in IPR
ρ̃

(

ΓR
)

by −a(−1;Aj) · y
T ≥ j. Letting IPR2

ρ̃

(

ΓR
)

be the modified integer programming

problem, the next theorem holds.

Theorem 23 The integer programming problem IPR2
ρ̃

(

ΓR
)

always has a feasible solution for any

access structure ΓR. �

Proof of Theorem 23: Let V be a multiset in 2V , some elements of which may be the same. Then, for

V and A ⊆ V , we define N(V,A) as follows.

N(V,A) =
∣

∣{A′ ∈ V : A ⊆ A′}
∣

∣ , (121)

where all A′ ∈ V are treated as different sets even if some of them are the same. Now we construct a

multiset U for ΓR = {A0,A1, . . . ,AL} by the next construction.

Construction 24

(1) Let U := ∅ and j := 1.

(2) For each A ∈ A+
L−j satisfying N(U ,A) < j, we add A into U , (j −N(U ,A)) times.

(3) Let j := j + 1.

(4) If j < L, go to (2). In case of j = L, go to (5).

(5) Output U . �
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From the monotonicity of Ǎj in (101), the family U can always be constructed. Then, letting

U = {F 1,F 2, . . . ,Fm}, we can define a map ψ̌ : {1, 2, . . . , n} → 2W (m,L,m) by

ψ̌(i) =
⋃

j:Vi 6∈F j

{

W
(m,L)
j

}

, (122)

where W
(m,L)
j ∈ W (m,L,m). Note that in the case of L = 1, (122) coincides with the cumulative map

in (17). Furthermore, for any set F ℓ ∈ U , we can check from (122) that

W
(m,L)
ℓ′ 6∈

⋃

i:Vi∈F ℓ

ψ̌(i), (123)

holds for all ℓ′ satisfying F ℓ ⊆ F ℓ′ .

Now, assume that F ℓ ∈ A+
j . Then, from Construction 24, there exist a family of j subsets

{F ℓ1 ,F ℓ2 , . . . ,F ℓj} ⊆ U satisfying F ℓ ⊆ F ℓ′ for ℓ
′ ∈ {ℓ1, ℓ2, . . . , ℓj}. Hence, it holds from (123) that

W
(m,L)
ℓ′ /∈

⋃

i:Vi∈F ℓ
ψ̌(i) for ℓ′ ∈ {ℓ1, ℓ2, . . . , ℓj}. This means that we can verify that

∣

∣

∣

⋃

i:Vi∈F ℓ
ψ̌(j)

∣

∣

∣
≤

m − j, and Vi = ψ̌(i) satisfies (118)–(120). Therefore, IPR2
ρ̃

(

ΓR
)

always has at least one feasible

solution. �

Note that as shown in the following example, Construction 24 gives inefficient assignments of the

primitive shares, generally.

Example 25 Assume that the access structure ΓR
5 in (113)–(117) satisfies the conditions (118)–(120).

First, we apply Construction 24 to the access structure ΓR
5 . Then, we obtain the following multiset

UΓR
5
.

UΓR
5
= {{V1, V2, V3, V5}, {V1, V3, V4, V5}, {V1, V2, V4}, {V1, V2, V5}, {V1, V4, V5}, {V2, V3, V5},

{V2, V3, V4}, {V2, V4, V5}, {V2, V4, V5}, {V3, V4, V5}, {V1, V4}}. (124)

Hence, we can obtain Vi = ψ̌(i), i = 1, 2, . . . , 5, as follows:

V1 = ψ̌(1) =
{

W
(11,4)
6 ,W

(11,4)
7 ,W

(11,4)
8 ,W

(11,4)
9 ,W

(11,4)
10

}

, (125)

V2 = ψ̌(2) =
{

W
(11,4)
2 ,W

(11,4)
5 ,W

(11,4)
10 ,W

(11,4)
11

}

, (126)

V3 = ψ̌(3) =
{

W
(11,4)
3 ,W

(11,4)
4 ,W

(11,4)
5 ,W

(11,4)
8 ,W

(11,4)
9 ,W

(11,4)
11

}

, (127)

V4 = ψ̌(4) =
{

W
(11,4)
1 ,W

(11,4)
4 ,W

(11,4)
6

}

, (128)

V5 = ψ̌(5) =
{

W
(11,4)
3 ,W

(11,4)
7 ,W

(11,4)
11

}

, (129)

where Wi ∈ W (11,4,11). In this case, we have ρ̃ = 21/20 and ρ∗ = 3/2 since it holds that H(W
(11,4)
i ) =

H(S)/4 for each i.

On the other hand, we can construct the following optimal multiple assignment map ϕ̃ΓR
5
by solving
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the integer programming problem IPR2
ρ̃ (ΓR

5 ).

V1 = ϕ̃ΓR
5
(1) =

{

W
(8,4)
1 ,W

(8,4)
2

}

, (130)

V2 = ϕ̃ΓR
5
(2) =

{

W
(8,4)
3 ,W

(8,4)
4 ,W

(8,4)
5

}

, (131)

V3 = ϕ̃ΓR
5
(3) =

{

W
(8,4)
2 ,W

(8,4)
6

}

, (132)

V4 = ϕ̃ΓR
5
(4) =

{

W
(8,4)
7 ,W

(8,4)
8

}

, (133)

V5 = ϕ̃ΓR
5
(5) =

{

W
(8,4)
9

}

, (134)

whereW
(8,4)
i ∈ W (8,4,9), and it holds that ρ̃ = 1/2 and ρ∗ = 3/4, which are more efficient than the rates

of Construction 24. Note that (125)–(129) and (130)–(134) do not satisfy (97) but satisfy (118)–(120).

For instance, in (130)–(134), it holds for {V1, V5} ∈ A2 that H(S|{V1, V5}) = H(S) > H(S)/2.

Finally, we compare Construction 17 with Construction 24 for the access structure ΓR
5 . If we

use the cumulative map to realize each perfect SSS with the access structure Γ
〈j〉
5 , j = 1, 2, 3, 4, in

Construction 17, we obtain ρ̃ = 9/5 and ρ∗ = 2. Hence, Construction 17 is more inefficient than

Construction 24 in this case. �

6 Conclusion

We proposed a method to construct SSSs for any given general access structures based on (t,m)-

threshold SSSs and integer programming. The proposed method can attain the optimal average

and/or worst coding rates in the sense of multiple assignment maps. Hence, the proposed method can

attain smaller coding rates compared with the cumulative maps and the modified cumulative maps.

Furthermore, the proposed method can be applied to incomplete and/or ramp access structures in

addition to complete and perfect access structures.
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