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Indifferentiability of Single-Block-Length and Rate-1 Compression

Functions*

SUMMARY  The security notion of indifferentiability was proposed by
Maurer, Renner, and Holenstein in 2004. In 2005, Coron, Dodis, Malinaud,
and Puniya discussed the indifferentiability of hash functions. They have
shown that the Merkle-Damgérd construction is not secure in the sense of
indifferentiability. In this paper, we analyze the security of single-block-
length and rate-1 compression functions in the sense of indifferentiability.
We formally show that all single-block-length and rate-1 compression func-
tions, which include the Davies-Meyer compression function, are insecure.
Furthermore, we show how to construct a secure single-block-length and
rate-1 compression function in the sense of indifferentiability. This does
not contradict our result above.

key words: cryptography, hash function, compression function, block ci-
pher

1. Introduction

Most of the hash functions are designed as iterative pro-
cesses which hash an arbitrary-length message by process-
ing successive fixed-size blocks of the message. A function
for processing the fixed-size blocks is called a compression
function. The Merkle-Damgard construction is widely used
to construct a hash function by the iteration of the compres-
sion function [2], [3]. To improve the security, other con-
structions have been proposed recently (e.g., [4]-[6]).

In all constructions, the security of the underlying com-
pression function is closely related with that of the con-
structed hash function. Compression functions are usu-
ally designed using secure block ciphers. For example, the
Davies-Meyer compression function, the Matyas-Meyer-
Oseas compression function, and.the Miyaguchi-Preneel
compression function, which are the most popular compres-
sion functions, are based on block ciphers [7]. Compres-
sion functions can be classified as the output length and the
number of calls. Let n be the ciphertext length of the under-
lying block cipher, and let £ and m denote the output length
and the message length of the compression function, respec-
tively.

Output length: If £/n = 1, then the compression function is
called a single-block-length compression function. If
€/n = 2, then it is called a double-block-length com-
pression function.
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Number of calls: Let o be the number of calling the under-
lying block cipher to produce one output of the com-
pression function. A rate r of the compression func-
tion is defined as r = m/(no), which represents the
efficiency of the compression function. A compression
function with a rate of r is called a rate-r compression
function.

The security of compression functions has been dis-
cussed in the sense of preimage resistance, second-preimage
resistance, and collision resistance. In particular, the secu-
rity of collision resistance is theoretically and practically
important. From the theoretical viewpoint, the complex-
ity of collision resistance is not larger than O(2?) where
¢ is the output length. This fact is often called the birth-
day bound. From the practical viewpoint, drawbacks of
actual hash functions have been firstly found in terms of
collision resistance [8]-[10]. In addition to the three secu-
rity notions above, the notion of indifferentiability has been
introduced to the security of hash functions and compres-
sion functions recently [4],[11]. The notion of indifferen-
tiability is stronger than that of collision resistance. To de-
sign more secure hash functions or more secure compression
functions, it is necessary to discuss the security in the sense
of indifferentiability.

In this paper, we restrict our attention to single-block-
length and rate-1 compression functions (SBL-1 compres-
sion functions). The class of SBL-1 compression functions
is practically important. For example, the popular compres-
sion functions above are included in this class. When the ci-
phertext length of the underlying block cipher is equal to its
key length, the efficiency of SBL-1 compression functions is
optimal because, by definitions, the rate of any single-block-
length compression function is not larger than 1.

The security of SBL-1 compression functions has been
studied in detail. Preneel, Govaerts, and Vandewalle [12]
have discussed the security against several attacks, and con-
cluded that 12 compression functions are secure against the
attacks. We note that 64 possible SBL-1 compression func-
tions exist. Black, Rogaway, and Shrimpton [13] have in-
vestigated the provable security of the 64 possible SBL-1
compression functions. They concluded that the 12 com-
pression functions of Preneel et al. is optimally collision
resistant. Black, Cochran, and Shrimpton [14] have shown
that no rate-1 compression function can produce a provable
collision-resistant hash function if the key space is a small
fixed set. Their result is practically significant because the
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practical hash speed would be improved by the precompu-
tation of the key schedule algorithm of the block cipher if
the key space were small. Accordingly, SBL-1 compression
functions must be designed in such a way that the key space
is fully used. v

The notion of indifferentiability has been introduced
by Maurer, Renner, and Holenstein [15] to discuss the ex-
tended indistinguishability of systems. Coron, Dodis, Ma-
linaud, and Puniya [4] have applied the notion of indifferen-
tiability to the construction of hash functions from underly-
ing compression functions. They showed that the Merkle-
Damgérd construction is insecure in the sense of indiffer-
" entiability, and they also proposed some methods for en-
hancing the security of the Merkle-Damgéard construction.
In this paper, we discuss the security of SBL-1 compression
functions in terms of indifferentiability, not hash functions.
Indeed, Coron et al. [4] briefly discussed the indifferentiabil-
ity only of the Davies-Meyer compression function. Hirose
[11] discussed the indifferentiability of double-block-length
compression functions with the special-form input. This pa-
per formally discusses the indifferentiability of the 12 SBL-
1 compression functions, which are secure in the sense of
collision resistance [12], [13]. Furthermore, this paper pro-
poses a new SBL-1 compression function that is secure in
the sense of indifferentiability.

Chang, Lee, Nandi, and Yung [16] have analyzed the
hash function with prefix-free padding in terms of indiffer-
entiability. Their subject is indifferentiable security analysis
of hash functions, but is not that of compression functions.
They have first shown the following theorem; a prefix-free
single length Merkle-Damgard hash function based on the
compression function, which is indifferentiable from a ran-
dom oracle, is indifferentiable from a random oracle. How-
ever, no Preneel-Govaerts-Vandewalle (PGV) compression
functions are indifferentiable from a random oracle. Ac-
cordingly, Chang et al. have next discussed the indifferen-
tiability of hash functions based on some PGV compression
functions in spite of the fact that the PGV compression func-
tions are not indifferentiable from a random oracle.

In this paper, we discuss how to achieve indifferen-
tiable compression functions. If an indifferentiable com-
pression function is achieved, then it is possible to construct
an indifferentiably secure hash function because of the theo-
rem of Chang et al. To achieve indifferentiable compression
functions, we present two ways; one is the modification of
an ideal cipher model, and another is a proposal of a new
compression function.

The organization and the contribution of this paper are
as follows. In Sect. 2, we describe notations and definitions
about indifferentiability. The definition of indifferentiabil-
ity is the same as that of previous papers [4], [15], but we
introduce an experiment to evaluate the advantage of a dis-
tinguisher.

In Sect.3, we discuss the indifferentiability of the
Davies-Meyer compression function. When the distin-
guisher can have access only to the encryption oracle, the
Davies-Meyer compression function is not so insecure. No-
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tice that this model is not an ideal cipher model, which
allows the distinguisher to have access to both of the en-
cryption oracle and the decryption oracle. When the dis-
tinguisher can have access to the encryption oracle and the
decryption oracle, i.e., when the distinguisher is under the
ideal cipher model, the Davies-Meyer compression function
is insecure. This drawback was briefly pointed out by Coron
et al. [4], but they did not analyze the security formally. We
give the formal analysis of the Davies-Meyer compression
function in terms of indifferentiability.

‘In Sect.4, we show that the negative result of the
Davies-Meyer compression function is applicable to other
SBL-1 compression functions. It follows that all the 64
SBL-1 compression functions have the security drawback in
terms of preimage resistance, second-preimage resistance,
collision resistance, or indifferentiability.

In Sect. 5, we propose a new SBL-1 compression func-
tion, which is called a block-cipher-selection compression
function (a BCS compression function). The feature of the
BCS compression function is that one block cipher is selec-
tively used among many block ciphers to produce an output
for a given input. We prove that the BCS compression func-
tion is secure in the sense of indifferentiability. We explain
why this result does not contradict the result of Sect.4. In
Sect. 6, we summarize results of this paper.

2. Notations and Definitions

We will write @ « b to mean that a is to be set to the result

. . . $
of evaluating expression b, and write a < A to mean that a
is uniformly chosen at random from a finite set A. Let ,n
be positive integers. A block cipher is a function e: {0, 1}* X
{0,1)" — {0,1}* where, for each w € {0, 1}%, e(w,-) is a
permutation on {0, 1}*. For the block cipher e, the inverse
(the decryption function) is denoted by d, i.e., d(w, z) is the
string x such that z = e(w, x). Let &, , be the set of all block
ciphers e: {0, 1} x {0,1}* — {0,1}*. A block cipher & is
said to be an ideal block cipher if é is uniformly selected at

random from &, i.e., if & i Exn- Let H,,, be the set of all
functions from {0, 1} to {0, 1}*. A function H is said to be
arandom function if H is randomly selected from H,, ,, i.e.,

it & & H,,,. By definitions, it holds that &, € Heenn.

In this paper, we discuss the construction of a single-
block-length and rate-1 compression function H based on
the block cipher e € &, ,. That is, H is a function in Ha,,
and requires one invocation of ¢ to produce an output for a
given input. Our goal is to construct the compression func-
tion H that is indistinguishable from the random function
H e Honpn. In previous works, the security of the com-
pression function based on the block cipher has been stud-
ied in terms of preimage resistance, second-preimage resis-
tance, and collision resistance. Since the random function &
naturally satisfies these security requirements with desirable
level, our goal is reasonable.

To measure the indifferentiability between two func-
tions, the following definition has been introduced in [4],
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[15] (Fig. 1).

Definition 1: A function B with oracle access to an ideal
primitive f is said to be (fp, ty, g, €) indifferentiable from an
ideal primitive H if there exists a simulator f# such that the
following equation holds for any distinguisher D.

Pr [DHf’f = 1] —Pr[DH’fﬁ = 1] <€

The distinguisher has access to not only H/ but also f (sim-
ilarly, not only A but also fﬁ ). The simulator fﬁ has oracle
access to H and runs in time at most #;. The distinguisher
runs in time at most 7p and makes at most ¢ queries. If € is
a negligible function of the security parameter k, then H” is
said to be indifferentiable from A.

When we focus on the probability e, let us consider the fol-
lowing experiment to evaluate it.

step 1: Choose a bit £ € {0, 1} at random, then determine
(H, f) as follows:

_ H,f) ife=0,
(H, ) o
(H, f) otherwise.

The distinguisher does not know the value of £,
step 2: After the distinguisher has access to (H, f), the dis-
tinguisher guesses the value of £, denoted by &p.

Using the above experiment, we define the advantage of the
distinguisher D with at most g queries as follows:

1
Advy(D,q) =Pr[¢é = £p] - 5

where Pr[¢ = &p] is the probability that D can correctly
guess the value of ¢ with at most g queries. We note that
if D determines &p at random, then Pr [¢ = &p] is equal to
1/2. Thus, it can be assumed that Pr [£€ = &p] is not smaller
than 1/2. We use the value of Advg(D, ¢) as the value of €
of Definition 1. We define the achievable advantage with ¢
queries as

Advy(g) = max {Advy(D, g)}.

Fig.1 The indifferentiability between H/ and A.
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[Xad

In this paper, we denote by a symbol without an
actual algorithm, and denote by a symbol with ‘"’ an ideal
function. In addition, we denote by a symbol with “ ei-
ther the actual algorithm or the ideal function. For example,
when we argue a block cipher, g is an actual block cipher,
g is an ideal block cipher, and g is either the actual block
cipher g or the ideal block cipher §.

3. Davies-Meyer Compression Function

There are 12 compression functions that are secure in the
sense of collision resistance [13]. The Davies-Meyer com-
pression function, which is widely used in actual hash al-
gorithms such as SHA-2 [17], is one of the 12 compression
functions. The Davies-Meyer compression function H is de-
fined as

Hw, x) = e(w,x)® x, H

where é(w, x) is an ideal block cipher in &, (Fig. 2).

In this section we discuss indifferentiability of the
Davies-Meyer compression function in two cases separately.
The first case is that only an encryption oracle is available
to an adversary, and the second case is that both of an en-
cryption oracle and a decryption oracle are available to an
adversary. The second case is usually called an ideal cipher
model, and has been briefly studied in [4], [16]. We here
explain why we consider the first case. The Davies-Meyer
compression function needs only the encryption oracle, i.e.,
does not need the decryption oracle. Hence, we can consider
a modified ideal cipher model such that only the encryp-
tion oracle is available. Although the modified ideal cipher
model is weaker than the ideal cipher model in terms of the
security, the security in the modified ideal cipher model can
be analyzed in compliance with Definition 1. The discussion
about the first case is significance to isolate dependency on
security models. As described below, the Merkle-Damgérd
compression function is indifferentiable from a random ora-
cle in the modified ideal cipher model, but it is not indiffer-
entiable in the ideal cipher model.

3.1 Only Encryption Oracle

We discuss the indifferentiability between the Davies-Meyer

—g
g

w T -

>z r—» € >z

>

~ H*

»
T feg

A2

»>

i

Fig.2  The indifferentiability of the Davies-Meyer compression function.
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compression function and the random function when the dis-
tinguisher is allowed to have access to only e. One must
construct a simulator e such that interacting (H?, &) is in-
distinguishable from interacting (4, e ). We assume that the
distinguisher does not make the same query. Our simulator
el is defined as follows:

step 1: Initially, i « O and A (w, x) is undefined for any
(w, x)AE {0, 13" x {0, 1}~

step 2: e receives a query (w, x) from the distinguisher.
i« z+1 Wi = W, X; & X, i & H(wl,x,),z, — ;B X;.

step 3: e (wl,xl) « z; and e returns e (w,, Xi).

The above simulator ¢ may fail to emulate the ideal
block cipher é. Specifically, if eHA(wi, %) = e (w, x) Aw; =
w, forde € {1,2,...,i-1}, then e fails to emulate & because

" is no longer a permutation on {0, 1}". Let C; be the event
that there exists such an¢ € {1,2,...,i— 1} at the i-the query
and there does not exist such an ¢ at previous queries. As

long as C; does not occur, e can perfectly emulate . Since
the probability Pr[C;] is not larger than (i —1)/2", the prob-
ability Pr [fail] that " fails to emulate & is given as follows:

Pr[fail] = Pr[C; VCy V...V C,]

qig—1)

q q .
i-1
< ZPr[C,-] < Z Ton T T omi
i=1 i=1
Since the following equation holds for any distinguisher D,
Pr(¢ = £p] = Pr(¢ = ¢pl~fail] Pr[-fail]
' +Pr[¢ = &plfail] Pr [fail]

Pr[¢ = &p|-fail] (1 — Pr[fail])
+Pr [£ = &plfail] Pr [fail]

< %(1 — Pr[fail]) + 1 - Pr[fail]
< % + %Pr [fail)
we have
Adva(g) < ——Pr [fail] < Q(‘I D | @
We here used |
Pr€ = £pl-fai] = | ®

to obtain the bound of Advy(g). Bellare and Rogaway
[18] have indicated that Eq. (3) is not necessarily true. As
described in their paper, if the number of queries is ex-
actly g, then Eq.(3) is true, and the adversary asking at
most g queries can be modified to an adversary asking ex-
actly g queries without -decreasing the adversary’s advan-
tage. Hence, Eq. (3) is applicable. In the following sections,
we use equalities similar to Eq. (3) without noting it.

By demonstrating a distinguisher that achieves advan-
tage close to the above upper bound, we show that the bound
is tight. Our distinguisher D is defined as follows:

I nf ormation, and Conmuni cation Engi neers
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step 1: D randomly chooses wy from {0, 1}".

step2: Fori = 1,2,...,q, D performs the following. D
sends (wy, i) to H, and receives y; = H(wp, ). D com-
putes z; =y; @i

step 3: If there exists a pair of (1, 4) such that z, = z; in
{21, 22, ..., 24}, then D outputs ép = 1, otherwise D out-
puts &ép = 0.

We note that if H = H¢, i.e., & = 0, then there is no such a
pair. We evaluate the probability Pr [col] that there is such a
pair as follows:

g-1 . g-1

Pr [col] = 1—H(1 - {“)2 - ﬂe’“’(‘zin)

i=1 i=1
g(g-1)
> 1-exp (— el

where we used the fact that 1 ~ x < exp(—x) for0 < x < 1.
Since the following equation holds,

Pr[¢ = ép] = Pr[é = &p|—col] Pr[—col]
+Pr [¢ = &plcol] Pr[col]

1 1
= 5 + EPI' [col],

we have
1 1
Advy(D,q) = Pr[é = ép] - 7= EPr[COU

11 qig-1)
22 zeXp( o+l )

“4)

Using the fact that exp(—x) gives a close approximation to
1—x when x is close to 0, we observe that the lower bound of
Eq. (4) is approximately equal to the upper bound of Eq. (2)
if g is sufficiently smaller than 2". We notice that the above
distinguisher does not have access to e. The availability of e
is not effective for this distinguisher.

3.2 Encryption and Decryption Oracles

We discuss the indifferentiability between the Davies-Meyer
compression function and the random function when the
distinguisher is allowed to have access to both of the en-
cryption oracle  and the decryption oracle d. Although
one should construct a simulator (eﬁ , df ) such that in-
teracting (H?, (&, d) is indistinguishable from interacting
(H, (eﬁ , d? )), it is impossible to construct such a simulator.
This drawback was briefly pointed out by Coron at el. [4],
but they did not discuss the differentiability quantitatively.
In this section, we analyze the differentiability by demon-
strating a distinguisher.
Let us consider the distinguisher D defined below.

step 1: For i = 1,2,...,q, D performs the following. D
sends a query (i, 0) to d, and receives x; = - d(i,0). D
sends a query (i, x;) to H, and receives Y; = H(, x;).

step2: If x; = y; for Vj € {1,2,...,q}, then D outputs
&ép = 0, otherwise D outputs &p = 1.
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If H = H’ ie. ¢ = 0, then it holds that x; = y; for ¥j €
{1,2,...,q} from Eq.(1). If H = H, i.e., & = 1, then there
may exist ¢ such that x, # y, for I € {1,2,...,4}.

We will evaluate the probability Pr [neq] that such an ¢
exists. We notice that even if the simulator d” is intelligently
constructed, the probability Pr[neq] cannot be decreased.
To decrease the probability, 4 must find x such that x =
H(w, x) for a given w. Since H is the random function, the
probability depends only on the randomness of A. From the
above observation, when H = H, the probability Pr [neq] is

given by
lznq
1-]1-{1-—
-5

q
1—(1—exp(—1))q21—( 64) .

Pr[neq]

v

100

Hence, if H = H, then the probability that &, = 1 exponen-
tially tends to 1 as g increases. For example, when g = 10,
we have Pr[neq] > 0.98. Using the following equation,

Pr[¢ = ép)

1

Pr[¢ = épl-neq] Pr[-nheq]
+Pr [¢ = éplneq] Pr [neq]

1
E + EPI' I_neq]

we obtain the advantage of the distinguisher D as follows:

1 1 64 \?
Advy(D, q) = EPI' [HEQ] > 5(1 - (Eb-) ) ®)]

4. Other Collision-Resistant Compression Functions

In Sect.3, we discussed the (in)differentiability of the
Davies-Meyer compression function. In this section, we
discuss the indifferentiability of other 11 SBL-1 compres-
sion functions that are secure in the sense of collision re-
sistance [13]. As described below, we will find that the 11
compression functions are not better than the Davies-Meyer
compression function in terms of the indifferentiability.

We classify the 12 SBL-1 compression functions in-
cluding the Davies-Meyer compression function as the feed-
forward. Denoting by é the ideal block cipher in &, ,, we
have the following six sets.

Type-1: H‘f(w, x)=éew,x)®x

Type-2: Hi(w,x) =ew,x)®xdw
Type-3: Hi(w,x) = w,w®x) @ x
Type-4:  Hi(w,x) =e(w,w®x)®xdw
Type-5: Hi(w,x) = ew® x,x) @ x
Type-6:  Hi(w,x) = éwo@ x,x)@w

For example, the type-1 set includes the Davies-Meyer com-
pression function and the Matyas-Meyer-Oseas compres-
sion function. In the case of the Davies-Meyer compres-
sion function, w is a message block and x is an output of the

2305

previous compression function. In the case of the Matyas-
Meyer-Oseas compression function, w is an output of the
previous compression function and x is a message block.
The type-2 set includes the Miyaguchi-Preneel compression
function, which takes w as an output of the previous com-
pression function and x as a message block.

The discussion in Sect.3 does not depend on the use
of parameters, i.e., which a parameter is a message block.
Hence, all type-1 functions have the same security as the
Davies-Meyer compression function in the sense of indiffer-
entiability.

4.1 Only Encryption Oracle

Suppose that the distinguisher is allowed to have access to

only e. We consider the construction of a simulator elﬁ
where i € {2,3,...,6} that is similar to the simulator of
Sect. 3.1. For a given query (w, y) to efl , the query (w, x) to
H; is uniquely determined. Like the simulator of Sect. 3.1,
the output z; is computed from A (w, x) and (w, x). Although
the computation of z depends on H, it can be done by the
bitwise exclusive OR. When elH (w,-) is no longer the per-

mutation for Jw, eiﬁ (w, -) fails to emulate &(w, -). Hence, the
advantage of the distinguisher is given by Eq. (2).

4.2  Encryption and Decryption Oracles

Suppose that the distinguisher is allowed to have access to
¢ and d. We consider a distinguisher that is a similar to
that of Sect. 3.2. Namely, the distinguisher first asks (w, 0)
to d, and then asks the query (w, x), which is based on the
response of d, to H. When the output of ¢ is 0, the output of
H? is computed by a bitwise function of (w, x). On the other
hand, the output of A is not probably given by the bitwise
function of (w, x). Therefore, there exists the distinguisher
that can achieve the advantage of Eq. (5).

5. Block-Cipher-Selection Compression Function

From results of [12],[13] and results of previous sections,
we conclude that all the 64 SBL-1 compression functions
have the security drawback in terms of preimage resistance,
second-preimage resistance, collision resistance, or indiffer-
entiability. However, we propose a new SBL-1 compression
function that is secure in the sense of indifferentiability.

5.1 Construction

Letu=2"-1.Leté; (i =0,1,...,u) beideal block ciphers
in &, , where each ¢; is selected independently of each other,

. . $ . :
ie, & « &,, forVie {0,1,...,u}. We define a compres-
sion function H¢0°1% ag follows:

eow,x) ifx=0,

Heotte(y ) = el(w,x) ifx=1,
b

(©6)

e w,x) ifx=u,
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where x € {0, 1}” is considered as the binary representation
of an integer in {0, 1,...,u}. For simplification, we denote
by {é}, the set of &, é1,...,and &,. Using this notation, we
rewrite Eq. (6) as

H®(w, x) = 2,(w, x). 7

Since H® is a function in H,,, , and requires one invocation
of &; to produce an output for a given input, H® is an SBL-

1 compression function. We call this compression function

a block-cipher-selection compression function (a BCS com-
pression function).

5.2 Security Analysis

We now discuss the indifferentiability between the BCS
compression function H® and the random function A. As
described below, unlike the 64 SBL-1 compression func-
tions, the BCS compression function is completely indiffer-
entiable from the random function. That is, even if the dis-
tinguisher has infinitely computational resources, the prob-
ability that the distinguisher can distinguish the BCS com-
pression function from the random function is equal to 0.
Hence, the BCS compression function is optimal in the
sense of indifferentiability. This fact is due to Eq. (7), that
is, H®«(w, x) requires only &,(w, x). For example, H'¢(0, 0)
requires &(0, 0), but no H'®(w, x) requires 2¢(0, 1), 2(0, 2),
etc. This property makes it easy to construct a perfect sim-
ulator e;(w, x) from A because almost all values of e;(w, x)
can be determined independently of A.

We assume that the distinguisher does not make the
same query. Let (e,i,w,x) be a query to ¢; for requiring
the computation of e;(w, x) where e represents a query to
the encryption oracle e;. Similarly, let (d, 7, w, y) be a query
to d; for requiring d;(w, y).

5.2.1 Only Encryption Oracle

Suppose that only {e}, is available to the distinguisher. We
discuss the indifferentiability between H'® and H.

Theorem 1: Suppose that only {e}, is available to the dis-
tinguisher. The BCS compression function of Eq.(6) is
(oo, t, g, 0) indifferentiable from the random function, where
t < min(2%*, g) and g < 2%"(2"* + 1). The space complexity
of the simulator is O(g).

One must construct a simulator {e A }» such that in-
teractmg (H'®,{¢},) is indifferentiable from interacting
(A, {ef),). Our simulator {e}, is defined as follows. Our
simulator has plaintext-ciphertext tables of e{f (w,") for Vi e
{0,1,...,u} and Yw € {0, 1}* as shown in Fig. 3. Each table
is denoted by e;(w). Let X, be the set of plaintexts x in
e;(w), and let Y; , be the set of ciphertexts y in e;(w).

step 1: Initially, j;,, < O for Vi € {0,1,...,u} and Yw €
{0, 1}*. All tables are initialized with a special symbol
blank, which means that the entry is not yet used.

I nf ormation, and Conmuni cation Engi neers

IEICE TRANS. FUNDAMENTALS, VOL.E90-A, NO.10 OCTOBER 2007

Xiw. 4001 ... 1010 140 0001 ]~
1110111 f101 .. 0000|
Jiw—»{ 101 .. 0006 009 ... 1111 |4,
blank yzw
blank

Fig.3  The plaintext-ciphertext table ¢;(w).

step 2: The simulator receives a query (e, i, w, x) from the
distinguisher. Jiw « Jiw+1and x;,, < x. After
v < H(w, i), the simulator determines y;,, as follows:
yji,w —v ifi =X,
$
Yjiw <

0,1)" - ¥;, — {v} otherwise.

The simulator replaces (blank, blank) in the table e;(w)
with (x;,,,y;,,) and returns y;, .

Unlike the simulator of Sect. 3.1, {eﬁ }. can perfectly emu-
late {&},. In step 2, the simulator updates the table e;(w),
keeping a one-to-one and random mapping. When x takes
a string in {0, 1}" for a fixed i and a fixed w, the distribution
of efq (w, x) is identical to that of &;(w, x). Hence, we have
Advy(g) = 0, which is better than that of the Davies-Meyer
compression function.

The time complexity of the simulator depends on the
number of queries to H. Keeping H(w,i), the simulator
makes at most min(g, 22") queries to A. The size of tables
is O(g). The distinguisher can make at most 2°" queries to
{€}, and at most 2 queries to H. Hence, the number ¢ of
queries is not larger than 22"(2" + 1).

5.2.2 Encryption and Decryption Oracles
Suppose that both of {e}, and {E}u are available to the dis-

tinguisher. We now discuss the indifferentiability between
H® and A.

. Theorem 2: Suppose that both of {e}, and {d}, are avail-

able to the distinguisher. The BCS compression function
of Eq.(6) is (c0,1,4,0) indifferentiable from A where ¢ <
min(2%*, g) and g < 2%/(2"**! + 1). The space complexity of
the simulator is O(g).

One must construct a simulator ({eﬁ hes {dﬂ }.) such that
interacting (H®-, ({2},, {d}u)) is indifferentiable from inter-
acting (4, ({e!}., {d¥},). Our simulator ({ef1},, {@7},) is de-
fined as follows. Our simulator has plaintext-ciphertext ta-
bles of eH(w ) for Vi € {0,1,...,u} and Yw € {0, 1}", as
well as the simulator of Sect. 5. 2 1 (Fig.3). Suppose that
the table ¢;(w) is shared by eH (w, ) and dH W, ).
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step 1: Initially, j;,, < O for Vi € {0,1,...,u} and Yw €
{0, 1}". All tables are initialized with blank.

step 2: When the simulator received a query (e, i, w, x), the
simulator checks whether x € X, or not.

step 2.1: If x is equal to x, € X, then the simulator
returns y,.

step 2.2: If x does not exist in X, then j;,, < jip+1
and x;, < x. Afterv « H(w, i), the simulator
determines y;, as follows:

yji,w —v 1fl =X,
Yiiw & {0,1)" = Y;, — {v} otherwise.

The simulator replaces (blank, blank) in the table
ei(w) with (x;,,,y;,,) and returns y;, .

step 3: When the simulator received a query (d, i, w, y), the
simulator checks whether y € Y, or not.

step 3.1: If y is equal to y, € V;,, then the simulator
returns x,.

step 3.2: If y does notexistin Y, then ji, < jiw+1
and y;,, « y. After v « H(w, i), the simulator
determines x;, as follows:

xji,w — i lfy =0,
Xjiw & {0,1)" - X;,, — {i} otherwise.

The simulator replaces (blank, blank) in the table
e;(w) with (x;,,,y;,,) and returns x;, .

This simulator can perfectly emulate ({e},,, {d},). For Ye;(w),
x € X, corresponds to unique y € yi,w, i.e., there is no
X,%3 € Xy such that e? (w,x) = elH (w, x;) and there is
no y,yYa € Y;, such that dfl (w,y,) = df’ (w, y,). Further-
more, y,, in step 2.2 (or x;,, in step 3.2) is randomly se-
lected from {0, 1}* avoiding the collision. This behavior is
identical to that of the ideal block cipher &;(w, -). Hence, we
have Advy(g) = 0, which is substantially better than that of
the Davies-Meyer compression function.

The time complexity of the simulator depends on the
number of queries to H. Keeping H(w,i), the simulator
makes at most min(g, 2*) queries to H. The size of tables
is O(g). The distinguisher can make at most 2**! queries to
(@}, {d},) and at most 22" queries to H. Hence, the number
g of queries is not larger than 222(27+1 + 1),

5.3 Implementation

When the compression function based on the block cipher
is implemented, the ideal block cipher is probably replaced
with an actual block cipher such as AES [19]. Since usual
SBL-1 compression functions require only one block cipher,
its implementation is easy. In contrast, it seems impractical
to implement the BCS compression function because it re-
quires 2" actual block ciphers. '

However, we have a possible method, which has been
proposed by Lai and Massey [20], to implement the BCS
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compression function. For example, the 256-bit key is avail-
able to AES, i.e., AES™® : {0, 1}2% x {0, 1}'% — {0, 1}'%5.
For w, x € {0,1}'®, ¢;,(w, x) is implemented as AES™( ||
w, x) where || denotes the concatenation operator on strings.
Using this method, we can obtain 2128 plock ciphers in
E128,128. Since a long-length key is usually available to ac-
tual block ciphers, this method is applicable to many actual
block ciphers. '

We notice that the discussion is separately needed to
make a formal determination whether the set of block ci-
phers obtained by this method can be considered as the set
of ideal block ciphers. In fact, Lai and Massey have ana-
lyzed this method in terms of preimage resistance, collision
resistance, etc., but have not done it in terms of indifferen-
tiability. Futhermore, the abobe implementation allows an
attaker to know a part of a key of a block cipher. In such a
case, it is open that an actual block cipher can be considered
as independent ideal ciphers.

6. Concluding Remarks

In this paper, we have shown that the 12 single-block-length
and rate-1 (SBL-1) compression functions, which are secure
in the sense of collision resistance, are not secure in the
sense of indifferentiability. Notice that the Davies-Meyer
compression function is one of the 12 SBL-1 compression
functions. From results of [12], [13] and those of this paper,
we concluded that all the 64 SBL-1 compression functions
have the security drawback in terms of preimage resistance,
second-preimage resistance, collision resistance, or indiffer-
entiability.

We have proposed the block-cipher-selection (BCS)
compression function, which is secure in terms of indif-
ferentiability. Although the BCS compression function is
formally the SBL-1 compression function, the negative re-
sult above is inapplicable to the BCS compression function.
Unlike the 64 SBL-1 compression functions, the BCS com-
pression function selectively uses one block cipher among
many block ciphers. We have proved that if the simulator
has reasonable computational resources, then the BCS com-
pression function can perfectly emulate the random func-
tion, that is, the BCS compression function is optimal in the
sense of indifferentiability. The BCS compression function
could be implemented by the Lai-Massey method. However,
it is open that our analysis is applicable to the implementa-
tion.
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