
論文 / 著書情報
Article / Book Information

Title Low Area Pipelined Circuits by the Replacement of Registers with
Delay Elements

Authors Bakhtiar Affendi Rosdi, Atsushi Takahashi

Citation IEICE Trans. Fundamentals, Vol. E90-A, No. 12, pp. 2736-2742

Pub. date 2007, 12

URL http://search.ieice.org/

Copyright (c) 2007 Institute of Electronics, Information and Communication
Engineers

Powered by T2R2 (Tokyo Institute Research Repository)

http://search.ieice.org/
http://t2r2.star.titech.ac.jp/

2736
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.12 DECEMBER 2007

PAPER Special Section on VLSI Design and CAD Algorithms

Low Area Pipelined Circuits by the Replacement of Registers with
Delay Elements∗

Bakhtiar Affendi ROSDI†a) and Atsushi TAKAHASHI†, Members

SUMMARY A new algorithm is proposed to reduce the area of a
pipelined circuit using a combination of multi-clock cycle paths, clock
scheduling and delay balancing. The algorithm analyzes the circuit and
replaces intermediate registers with delay elements under the condition
that the circuit works correctly at given target clock-period range with the
smaller area. Experiments with pipelined multipliers verify that the pro-
posed algorithm can reduce the area of a pipelined circuit without degrad-
ing performance.
key words: pipelined circuits, multi-clock cycle paths, clock scheduling,
delay balancing

1. Introduction

Circuit pipelining is one technique that has been used in or-
der to shrink the clock period. Pipelining is a method in
which a circuit is divided into a small number of stages and
intermediate registers are inserted between stages to store
the intermediate data. With this method, extra circuit area is
required to situate the additional intermediate registers and
the size of the clock tree is also increased.

Recently, to overcome this problem, several studies
have been carried out on wave pipelining [2], which is a
method of speeding up the circuit without the insertion of
intermediate registers. However, wave pipelining requires
tighter timing constraints. In wave pipelining, there may
exist a number of ‘waves’ of data in a circuit at any given
time. Therefore, to avoid data collisions, delay balancing is
required, which increases the circuit area.

In [3], they proposed an algorithm to reduce the num-
ber of intermediate registers of a pipelined circuit by using
a combination of multi-clock cycle paths and clock schedul-
ing. A multi-clock cycle path is a path from register to
register where data transmission takes more than one clock
period. Note that in wave pipelining, all paths are multi-
clock cycle paths. Introducing a multi-clock cycle path into
a pipelined circuit allows some intermediate registers to be
removed. Their algorithm removes an intermediate register
without delay balancing. Clock scheduling is a technique
in which the clock skew of a register is intentionally intro-
duced to improve circuit performance by relaxing the timing

Manuscript received March 6, 2007.
Manuscript revised June 14, 2007.
Final manuscript received July 31, 2007.
†The authors are with the Department of Communications and

Integrated Systems, Tokyo Institute of Technology, Tokyo, 152-
8552 Japan.

∗The preliminary version was presented at [1].
a) E-mail: fendi@lab.ss.titech.ac.jp

DOI: 10.1093/ietfec/e90–a.12.2736

constraints. Using clock scheduling, more intermediate reg-
isters can be removed, without the need for delay balancing.
Note that the reduction on the number of intermediate reg-
isters will reduce the complexity of clock tree synthesis.

The algorithm proposed in [3] removes some interme-
diate registers, while the others remain so that the circuit
works correctly at given target clock-period range. How-
ever, there are some possibilities that a remaining intermedi-
ate register can be replaced with some delay elements whose
total area is smaller than the register. In this paper, we pro-
pose a new algorithm that replaces intermediate registers
with delay elements whose total area is smaller than the reg-
isters, under the condition that the pipelined circuit works
correctly at given target clock-period range. By replacing
an intermediate register with delay elements, the number of
intermediate registers in a pipelined circuit is reduced.

An intermediate register is a register that stores one of
the data between stages of the data flow. Here we consider a
pipelined circuit such as adder or multiplier, whose data flow
is in one way without any feedback. However, we believe
that our algorithm can be enhanced so that it can be used to
a pipelined circuit with feedback.

In our proposed algorithm, all intermediate registers
of the pipelined circuit are initially removed same as in
[3]. Then using the algorithm in [4], the obtained circuit
is checked whether it works correctly at given target clock-
period range or not. If the circuit does not work correctly
at given target clock-period range, some timing constraints
are violated. The violated timing constraints can be elim-
inated by intermediate register insertion or delay element
insertion. The algorithm eliminates the violated timing con-
straints iteratively by inserting registers or buffers with small
area cost. As the result, our proposed algorithm replaces an
intermediate register with delay elements whose total area is
smaller than the register.

Our algorithm is an enhancement of the algorithm pro-
posed in [3], since an intermediate register is removed if no
buffer is inserted to the location where the removed inter-
mediate register is located. Delay balancing is implemented
as the replacement of intermediate register with some delay
elements.

Experiments with multipliers verify that, given a par-
ticular target clock-period range, the proposed algorithm can
obtain a circuit with smaller area compared with the circuit
obtained by the algorithm in [3]. The number of intermedi-
ate registers in the circuit obtained by proposed algorithm is
smaller compared with the number of intermediate registers

Copyright c© 2007 The Institute of Electronics, Information and Communication Engineers

ROSDI and TAKAHASHI: LOW AREA PIPELINED CIRCUITS BY THE REPLACEMENT OF REGISTERS WITH DELAY ELEMENTS
2737

in the circuit obtained by the algorithm in [3].

2. Preliminaries

We consider a circuit with a single clock consisting of regis-
ters linked by combinatorial circuits. The clock timing s(v)
of register v is the difference in clock signal arrival time be-
tween v and an arbitrarily chosen (perhaps hypothetical) ref-
erence register. The set of clock timings is called a clock-
schedule.

We make the basic assumption that a circuit works cor-
rectly if the following two types of constraint are satisfied
for each register pair with signal propagation [5],[6]:

Setup Const. : s(u) − s(v) ≤ βu,vT − dmax(u, v)
Hold Const. : s(v) − s(u) ≤ dmin(u, v) − αu,vT

where T is the clock period, dmax(u, v) (dmin(u, v)) is the max-
imum (minimum) propagation delay from register u to reg-
ister v along a combinatorial circuit, and βu,v and αu,v are
given integer constants (βu,v > αu,v ≥ 0). Note that for a
pair of registers with a single-clock cycle path, βu,v and αu,v

are given by 1 and 0, respectively. This formulation is suf-
ficiently general to deal with multi-clock cycle paths and
multi-clocks that have different periods.

If αu,v is 0 for every pair, the feasible clock period has
no upper bound, i.e. if the clock period T is feasible then any
T
′
(where T

′ ≥ T) is feasible. However, the feasible clock
period is bounded above if αu,v is not 0 for some pair (u, v).

From the above constraints, when the clock schedule
and the signal propagation delay are known, the minimum
and maximum feasible clock period, Tmin and Tmax, can
be determined from the setup and hold constraints, respec-
tively.

If the clock timing is not fixed, then Tmin and Tmax de-
pend on each other. Tmin has to be minimized under the con-
straint that the circuit works correctly throughout a certain
clock-period range, in order for the circuit to tolerate clock
jitter and delay variation. The above constraints become:

Setup Const. : s(u) − s(v) ≤ βu,vTmin − dmax(u, v)
Hold Const. : s(v) − s(u) ≤ dmin(u, v) − αu,vδ − αu,vTmin

where δ is the clock-period range, i.e. δ = Tmax − Tmin.
Therefore if δ is given, then, by using the above constraints,
clock timings can be determined so that the circuit works
correctly for a clock period between Tmin and Tmin+δ. In the
following, our target is to minimize Tmin under the constraint
that the circuit is feasible throughout the given clock-period
range δ.

These constraints are represented by the constraint
graph G(V, E) of the circuit, which is defined as follows:
a vertex v ∈ V corresponds to a register; a directed edge
(u, v) ∈ E corresponds to either type of constraint; an
edge (u, v) corresponding to the setup (hold) constraint is
called a Z-edge (D-edge), and the weight w(u, v) of (u, v)
is βv,uT − dmax(v, u)(dmin(u, v) − αu,vδ − αu,vT). A Z-edge
(D-edge) corresponding to a single-clock cycle path, i.e.

βv,u = 1 and αu,v = 0, is called single Z-edge (single D-
edge). While, a Z-edge (D-edge) corresponding to a multi-
clock cycle path is called multi Z-edge (multi D-edge).
The constraint graph G corresponding to clock period t and
clock-period range δ is denoted by Gδ(t). We may denote
Gδ(t) as G(t) if no confusions occur.

Let the weight of a directed cycle in a constraint graph
be the sum of weights of edges on the directed cycle. We
refer to a directed cycle whose weight is negative as negative
cycle. It is known that a circuit can works correctly if and
only if there is no negative cycle in the constraint graph of
the circuit [7].

3. Delay and Register Insertion Effects on the Con-
straint Graph

There is a negative cycle in the constraint graph of a circuit
if the circuit does not work correctly for any clock sched-
ule. To eliminate the negative cycle, a certain amount of
weight needs to be added to edges on the negative cycle by
an operation. However, it is important to make sure that the
operation will not create other negative cycles. This section
discusses about the changes of the weight and topology of
the constraint graph when delay element and intermediate
register are removed and inserted.

In our proposed algorithm, first, all intermediate regis-
ters are removed. When an intermediate register is removed,
the weight of D-edge and Z-edge of the constraint graph are
changed, as well as its topology. As for example, when an
intermediate register v is removed, single-clock cycle paths
(u, v) and (v, w) whose total minimum (maximum) delay is
σ (σ

′
) become two-clock cycle path (u, w) whose minimum

(maximum) delay is σ − ω (σ
′ − ω′), where ω (ω > 0)

and ω
′

are the minimum and maximum delay of the inter-
mediate register v, respectively. In the constraint graph of
the circuit, the single D-edges (u, v) and (v, w) whose total
weight is σ are removed and a multi D-edge (u, w) whose
weight is σ−ω−T is inserted. Similarly, the single Z-edges
(w, v) and (v, u) whose total weight is 2T − σ′ are removed
and a multi Z-edge (w, u) whose weight is 2T − (σ

′ − ω′) is
inserted. The weight of the multi D-edge is smaller than the
corresponding original single D-edges. While the weight of
the multi Z-edge is larger than the corresponding original
single Z-edges.

When the weight and topology of the constraint graph
are changed, there are some possibilities that the constraint
graph contains a negative cycle thus makes the circuit infea-
sible. In order to make the circuit feasible, a negative cycle
should be eliminated by increasing the total weight of the
cycle.

Total weight of a cycle can be increased by increasing
the weight of D-edge or Z-edge. The weight of D-edge can
be increased by increasing the minimum delay between reg-
isters or by recovering back an intermediate register to the
original location. While, the weight of Z-edge can be in-
creased by reducing the maximum delay between registers.

In this paper, we choose to increase the weight of D-

2738
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.12 DECEMBER 2007

edge to increase the total weight of a cycle because it is more
easy to do it.

As for example, let consider a multi D-edge (u, w)
whose weight is σ − ω − T corresponding to a multi-clock
cycle path (u, v, w). When a delay element whose minimum
delay is λ is inserted to the multi-clock cycle path (u, v, w),
the weight of the multi D-edge (u, w) increases by λ from
σ − ω − T to σ − ω − T + λ. While, when an intermedi-
ate register v whose minimum delay is ω is recovered back
to the multi-clock cycle path (u, v, w), the total weight of the
single D-edges (u, v) and (v, w) isω+T larger than the weight
of the corresponding multi D-edge (u, w).

A negative cycle becomes non-negative if a certain
amount of weight is added. For a cycle C in constraint
graph, let weight demand wd(C) be the weight needed to be
added in order to make the total weight w(C) of C becomes
0, that is wd(C) = 0 if w(C) ≥ 0, and wd(C) = −w(C) if
w(C) < 0. As for example, if w(C) = −4, then wd(C) = 4.

The minimum delay of a multi-clock cycle path can
be increased by inserting some delay elements to the path.
However, inserting some delay elements may increases the
maximum delay of the path thus reduces the weight of corre-
sponding multi Z-edge. Especially, if a negative cycle con-
sists of one multi D-edge (u, w) and one multi Z-edge (w, u)
corresponding to the multi-clock cycle path (u, v, w), the cy-
cle remains negative even if wd(C) is added to point v. The
weight of the cycle remains negative since the reduction of
the weight of multi Z-edge (w, u) is larger than or equal to
the increase of the weight of multi D-edge (u, w).

Note that, the adding of the weight to multi D-edge
may reduce the weight of multi Z-edge thus reduces the
weight of other cycles and makes the other cycles become
negative, that we do not consider here. In our experiments,
it is sufficient to make sure a negative cycle does not con-
sist of one multi D-edge (u, w) and one multi Z-edge (w, u)
corresponding to the multi-clock cycle path (u, v, w).

4. Reduction on the Area of Pipelined Circuits

In this paper we consider a problem on how to reduce the
area of a pipelined circuit, subject to the minimum feasible
clock period is lower than or equal to the original circuit’s
clock period Tcomp and the obtained pipelined circuit works
correctly at given target clock-period range.

4.1 Reduction on the Number of Intermediate Registers

In [3], they have proposed an algorithm that reduces the area
of a pipelined circuit by reducing the number of intermedi-
ate registers.

In their proposed algorithm, all intermediate registers
of the pipelined circuit are initially removed. Then the ob-
tained circuit is checked whether it works correctly at Tcomp

by the algorithm shown in [4]. When an intermediate regis-
ter is removed, the obtained circuit may not work correctly
at Tcomp. If the circuit does not work correctly at Tcomp,
a negative cycle is found in the corresponding constraint

graph and it contains a multi D-edge. In [3], the found neg-
ative cycle is eliminated by repeatedly recovering back an
intermediate register to the corresponding multi D-edge un-
til the circuit works correctly at Tcomp.

4.2 Replacement of Registers with Delay Elements

We propose a new algorithm that reduces the area of a
pipelined circuit by the replacement of an intermediate reg-
ister with delay elements whose area is smaller than the reg-
ister.

In the proposed algorithm, all intermediate registers of
the pipelined circuit are initially removed. Then the ob-
tained circuit is checked whether it works correctly at Tcomp

by the algorithm shown in [4]. When an intermediate regis-
ter is removed, the obtained circuit may not work correctly
at Tcomp. If the circuit does not work correctly at Tcomp, a
negative cycle is found in the constraint graph and it con-
tains a multi D-edge. In order to eliminate the found nega-
tive cycle, it is necessary to increase the weight of the found
negative cycle. The weight of the found negative cycle can
be increased by increasing the weight of multi D-edge. The
weight of multi D-edge can be increased either by recov-
ering back the intermediate register or inserting some de-
lay elements such as buffers. In [3], the found negative cy-
cle is eliminated by recovering back an intermediate register
only. Our algorithm repeatedly recovers back an intermedi-
ate register or inserts buffer until the circuit works correctly
at given target clock-period range. For each iteration, the
algorithm chooses the operation that has small area cost.

In our algorithm, the replacement of intermediate reg-
ister with buffers is implemented by inserting the buffers to
the location where the removed intermediate register is lo-
cated. We choose only one type of buffer. The limit of the
number of buffers that can be inserted is set at a certain num-
ber, so that the area of the total inserted buffers is smaller
than the area of a register. Let l be the limit of the number
of buffers that can be inserted to each location. If the area
of a register is m times larger than the area of a buffer, then
l = m − 1. When a negative cycle C is found, if C consists
of one multi D-edge and one multi Z-edge corresponding
to the same multi-clock cycle path, an intermediate regis-
ter is inserted. Otherwise, based on the minimum delay of
the buffer and wd(C), the number of buffers needed to be in-
serted is computed. Let n be the number of buffers needed
to be inserted. If n > l, an intermediate register is inserted.
While, if n ≤ l, n buffers are inserted.

If there is more than one multi-D-edge in the negative
cycle, our algorithm chooses a multi-D-edge corresponding
to a multi-clock cycle path in which the number of allowed
clock cycles to complete the data transmission is large since
its weight tends to be small and the probability that it is
contained in many negative cycles is high. If the chosen
multi-D-edge corresponds to a path with three clock cycles
or more, then more than one register was removed from the
corresponding path. In such cases, the corresponding path
has more than one candidate location to recover back a reg-

ROSDI and TAKAHASHI: LOW AREA PIPELINED CIRCUITS BY THE REPLACEMENT OF REGISTERS WITH DELAY ELEMENTS
2739

Inputs : Constraint graph Gin of a pipelined circuit with intermediate reg-
isters, the minimum clock period Tcomp of the original circuit at zero-
clock skew framework and clock-period range δ.

Outputs : Constraint graph Gout of the obtained circuit, clock timing s(u)
and minimum clock period Tmin(Gout).

Step 0 : Remove all of the intermediate registers. Let Gδ be the constraint
graph of the obtained circuit.

Step 1 : Check whether there are any negative cycles in the constraint
graph Gδ(Tcomp) or not by the algorithm shown in [4]. If a negative
cycle C is found, then based on the area cost, insert an intermediate
register or buffers to the multi-clock cycle path which corresponds to
a multi D-edge contained in C, and update Gδ. Repeat this step until
there are no negative cycles in the constraint graph Gδ(Tcomp)

Step 2 : Let Gout be the constraint graph of the obtained circuit and output
Gout , Tmin(Gout) and the clock timing for all registers.

Fig. 1 An algorithm to reduce the area of pipelined circuits by the
replacement of registers with delay elements.

ister or to insert buffers. If a register is recovered back to the
middle location among candidates, then timing constraints
will be relaxed much since the number of multi-D-edges
corresponding to a multi-clock cycle path in which the num-
ber of allowed clock cycles to complete the data transmis-
sion is large and the number of multi-D-edges are expected
to be reduced much. Therefore, our algorithm recovers back
registers or inserts buffers to the middle location among can-
didates. That is, if the path has n locations then � n

2 �-th loca-
tion is selected.

Our algorithm is heuristic. A different circuit might be
obtained depending on the found negative cycle. Further-
more, if there are more than one multi D-edge with the same
clock cycle path in the negative cycle, our algorithm chooses
one of them randomly. Thus, a different circuit might be ob-
tained depending on the chosen multi D-edge.

The details of our proposed algorithm is shown in
Fig. 1. In Fig. 1, Gin is the constraint graph corresponding
to the pipelined circuit with all intermediate registers, while
Gout is the constraint graph corresponding to the circuit ob-
tained by the algorithm. Note that, in Step 1 of our proposed
algorithm, if there is no more multi D-edge, the algorithm is
stopped and outputs the input constraint graph.

4.3 Example

To explain the behavior of the algorithm, we apply the al-
gorithm to the pipelined circuit shown in Fig. 2. In this
example, our target clock-period range δ is 3 and the tim-
ing of each register is scheduled. Parameters are set as
follows: setup and hold time for registers are 0; the mini-
mum and maximum delay of the intermediate registers are
4 and 8, respectively; the minimum and maximum delay of
the buffers are 1 and 2, respectively; the size of an inter-
mediate register is 4 times larger than the size of a buffer,
that is, the limit number of buffers that can be inserted is
3. For the original circuit with zero clock-skew, the min-
imum feasible clock period Tcomp is 12. The circuit after
removing the intermediate registers v1, v2, v3 is shown in
Fig. 3. G0

3 is the constraint graph of the obtained circuit.

Fig. 2 Pipelined circuit with intermediate registers and the corresponding
constraint graph Gin. Tcomp = 12.

Fig. 3 Pipelined circuit after removing all intermediate registers and the
corresponding constraint graph G0

3. Found negative cycle C0 = (u1, w1, u1)
in G0

3(12).

Fig. 4 Pipelined circuit after inserting the intermediate register v1 and
the corresponding constraint graph G1

3. Found negative cycle C1 =

(u2, w2, v1, u2) in G1
3(12).

Fig. 5 Pipelined circuit after inserting the intermediate register v1 and 2
buffers at v2, and the corresponding constraint graph G2

0. Tmin(G2
0) = 12.

Negative cycle C0 = (u1, w1, u1) where w(C0) = −1 is
found in the constraint graph G0

3(12). Since, the multi D-
edge (u1, w1) and the multi Z-edge (w1, u1) correspond to
the multi-clock cycle path (u1, v1, w1), an intermediate reg-
ister is inserted to point v1. The circuit after inserting the
intermediate register to point v1 is shown in Fig. 4. G1

3 is
the constraint graph of the obtained circuit. Negative cy-
cle C1 = (u2, w2, v1, u2) where w(C1) = −2 is found in
the constraint graph G1

3(12). Since wd(C1) = 2, the num-
ber of buffers that has to be inserted is 2, which is smaller
than the limit number of the buffers that can be inserted.
Therefore, 2 buffers are inserted to point v2 between multi-
clock cycle path (u2, v2, w2) which corresponds to multi D-
edge (u2, w2) in C1. The circuit after inserting the buffers is
shown in Fig. 5. G2

3 is the constraint graph of the obtained
circuit. There are no negative cycles in the constraint graph

2740
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.12 DECEMBER 2007

Table 1 Statistics of multiplier.

Circuit delay [ps]

circuit Total 1st stage 2nd stage 3rd stage

#FF min max min max min max

2-stages 6bit mul 42 884 3691 368 3488 - -

2-stages 16bit mul 120 757 5075 373 4050 - -

2-stages 32bit mul 245 1543 8533 408 5118 - -

3-stages 32bit mul 433 1543 6806 408 2881 408 5118

G2
3(12), so the algorithm stops and outputs the circuit and

clock timings as shown in Fig. 5. Note that in Fig. 5, the
clock timings are computed based on the constraint graph
G2

0. The output circuit works correctly between 12 to 15,
while the original circuit works correctly between 12 to∞.

5. Experiments

The proposed algorithm was written in C++ and imple-
mented on a Pentium 4 (CPU 3 GHz, memory 513764 kb).
Since there are no benchmark examples of pipelined cir-
cuits, four simple examples, briefly described below, were
constructed for our experiments.

• 2-stages 6bit mul: A 2-stages multiplier that multiplies
two 6-bit numbers. The first stage uses a carry-save
adder with Wallace tree structure [8] and the second
stage uses a ripple-carry adder.
• 2-stages 16bit mul: A 2-stages multiplier that multi-

plies two 16-bit numbers. The first stage uses a carry-
save adder with Wallace tree structure [8] and the sec-
ond stage uses a carry-look-ahead adder.
• 2-stages 32bit mul: A 2-stages multiplier that multi-

plies two 32-bit numbers. The first stage uses a carry-
save adder with Wallace tree structure [8] and the sec-
ond stage uses a brent-kung adder [9].
• 3-stages 32bit mul: A 3-stages multiplier that multi-

plies two 32-bit numbers. The first and second stages
use a carry-save adder with Wallace tree structure [8]
and the third stage uses a brent-kung adder [9].

The statistics of the circuits are shown in Table 1. The
ROHM 0.35 µm process library was used for these exper-
iments. In the library, the area of a register is four times
larger than the area of a buffer. Therefore, in our experi-
ments the limit number of the buffer that can be inserted at
a location where the removed intermediate register was lo-
cated is 3. The timing of each I/O pin was scheduled as well
as the timing for each register.

Table 2 shows the results when the algorithm shown in
section 4.2 was applied. Ori. is the original circuit con-
taining the intermediate registers and the clock timing of
all registers are fixed at 0 (zero clock-skew). “δ[ps]” and
“Tmin[ps]” are the target clock-period range and the output
minimum feasible clock period, respectively. “Buff. (#)”
and “FF (#)” are the number of buffers and intermediate reg-
isters, respectively. “Buff. + FF (unit)” is the total area of

Fig. 6 Relation between Tmin [ps] and Area (unit) of the 2-stages 16 bit
multiplier. δ = 400 [ps].

the buffers and intermediate registers that had been inserted.
Note that the area of a FF is 4 times larger than the area
of a buffer. “Buff. + FF (%)” is the percentage of the to-
tal area of the buffers and intermediate registers compared
with the total area of intermediate registers in the original
circuit. “Time[s]” is the computation time of the respective
algorithm.

From the results shown in Table 2, 19 out of 24 types of
experimental conditions, the area of the circuits obtained by
our proposed algorithm is reduced compared with the area
of the circuits obtained by register reduction algorithm in
[3]. It shows the effectiveness of delay balancing on reduc-
ing the area of pipelined circuits.

The relation between the minimum feasible clock pe-
riod and the total area of the buffers and intermediate regis-
ters of the 2-stages 16 bit multiplier is shown in Fig. 6. In the
graph, the label “Proposed Algorithm” indicates results us-
ing the proposed algorithm for insertion of the intermediate
registers and buffers, while “Register Reduction Algorithm”
label indicates results when the algorithm in [3] is applied.
The experiments were conducted on a few target of clock
periods with clock period range 400 [ps].

The graph shows that there is trade off between the
minimum feasible clock period and the size of the circuit ob-
tained by both algorithms. However, with almost the same
minimum feasible clock period, our proposed algorithm ob-
tains a circuit with smaller area.

6. Conclusion

It has been shown that the area of the circuit obtained by our
proposed algorithm is smaller than the area of the circuit
obtained by the algorithm shown in [3] in most cases. The
size of the clock tree will be reduced when the number of
intermediate registers is reduced.

For the future work, a clock tree synthesis that can re-
alize our target clock schedule based on the clustering based
algorithm proposed in [10] is urgent.

The proposed algorithm inserts delay elements only at

ROSDI and TAKAHASHI: LOW AREA PIPELINED CIRCUITS BY THE REPLACEMENT OF REGISTERS WITH DELAY ELEMENTS
2741

Table 2 Experimental results.

Proposed Algorithm Register Reduction

Algorithm in [3]

1st Stage 2nd Stage Total 1st Stage 2nd Stage Total

Circuit δ Tmin Buff. FF Buff. FF Buff. + FF Time Tmin Buff. FF Buff. FF Buff. + FF Time

[ps] [ps] (%) # # # # unit % [s] [ps] (%) # # # # unit (%) [s]

2-stages Ori. 3691 (100) 0 18 - - 72 (100) - 3691 (100) 0 18 - - 72 (100) -

6bit mul 0 3634 (98) 1 2 - - 9 (13) 0.01 3557 (96) 0 3 12 (17) 0.01

200 3615 (98) 1 3 - - 13 (18) 0.02 3426 (93) 0 4 16 (22) 0.03

400 3673 (100) 2 3 - - 14 (19) 0.02 3626 (98) 0 4 16 (22) 0.02

600 3684 (100) 2 4 - - 18 (25) 0.03 3450 (93) 0 6 24 (33) 0.03

800 3650 (99) 5 4 - - 21 (29) 0.03 3650 (99) 0 6 24 (33) 0.03

1000 3677 (100) 3 6 - - 27 (38) 0.04 2812 (76) 0 13 52 (72) 0.05

2-stages Ori. 5075 (100) 0 56 - - 224 (100) - 5075 (100) 0 56 - - 224 (100) -

16bit mul 0 5062 (100) 11 5 - - 31 (14) 0.89 4870 (96) 0 11 - - 44 (20) 0.69

200 5070 (100) 0 11 - - 44 (20) 1.68 5070 (100) 0 11 - - 44 (20) 0.69

400 5047 (99) 10 14 - - 66 (29) 2.40 5069 (100) 0 35 - - 140 (63) 1.93

600 5074 (100) 16 29 - - 132 (59) 3.48 5071 (100) 0 48 - - 192 (86) 2.46

800 3336 (66) 0 49 - - 196 (88) 5.36 3336 (66) 0 49 - - 196 (88) 2.58

1000 3536 (70) 0 49 - - 196 (88) 4.59 3536 (70) 0 49 - - 196 (88) 2.54

2-stages Ori. 8533 (100) 0 117 - - 468 (100) - 8533 (100) 0 117 - - 468 (100) -

32bit mul 0 8484 (99) 3 1 - - 7 (02) 2.36 8441 (99) 0 3 - - 12 (03) 2.43

400 8488 (99) 1 5 - - 21 (05) 8.77 8488 (99) 0 6 - - 24 (05) 3.94

800 8506 (100) 12 7 - - 40 (09) 13.36 8277 (97) 0 16 - - 64 (14) 8.94

1200 8524 (100) 10 15 - - 70 (15) 24.56 8524 (100) 0 23 - - 92 (20) 12.83

1600 8517 (100) 10 25 - - 110 (24) 39.55 8514 (100) 0 32 - - 128 (27) 17.74

2000 8506 (100) 6 38 - - 158 (34) 57.58 8495 (100) 0 44 - - 176 (38) 24.66

3-stages Ori. 6806 (100) 0 188 0 117 1220 (100) - 6806 (100) 0 188 0 117 1220 (100) -

32bit mul 0 6783 (99) 10 35 0 0 150 (12) 335.23 6783 (99) 0 44 0 0 176 (14) 136.53

200 6801 (100) 11 50 0 0 211 (17) 470.96 6801 (100) 0 65 0 0 260 (21) 204.52

400 6805 (100) 16 74 0 0 312 (26) 644.55 6795 (100) 0 88 0 0 352 (29) 277.38

600 6801 (100) 10 173 0 0 702 (58) 1583.14 5314 (78) 0 182 0 0 728 (60) 571.70

800 6722 (99) 6 180 0 0 726 (59) 1196.32 5414 (80) 0 182 0 0 728 (60) 586.94

1000 5514 (81) 0 182 0 0 728 (60) 1130.00 5514 (80) 0 182 0 0 728 (60) 591.55

the location where the removed intermediate register is lo-
cated. We believe that if delay elements can be inserted at
any location, the circuit area can be further reduced. This is
also a topic for future investigation.

Acknowledgements

This work is supported by VLSI Design and Education Cen-
ter (VDEC), the University of Tokyo in collaboration with
Synopsys, Inc., Cadence Design Systems, Inc., and Rohm
Corporation.

References

[1] B.A. Rosdi and A. Takahashi, “Replacement of register with de-
lay element for reducing the area of pipelined circuits,” Proc.
IEEE Asia-Pacific Conference on Circuits and Systems (APCCAS),
pp.802–805, 2006.

[2] W.J. Kim and Y. Kim, “Clocking for correct functionality on wave
pipelined circuits,” Proc. IEEE International ASIC/SOC Confer-
ence, pp.161–164, 2003.

[3] B.A. Rosdi and A. Takahashi, “Multi-clock cycle paths and clock
scheduling for reducing the area of pipelined circuits,” IEICE Trans.
Fundamentals, vol.E89-A, no.12, pp.3435–3442, Dec. 2006.

[4] A. Takahashi, “Practical fast clock-schedule design algorithms,”
IEICE Trans. Fundamentals, vol.E89-A, no.4, pp.1005–1011, April
2006.

2742
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.12 DECEMBER 2007

[5] J.P. Fishburn, “Clock skew optimization,” IEEE Trans. Comput.,
vol.39, no.7, pp.945–951, 1990.

[6] B.A. Rosdi and A. Takahashi, “Reduction on the usage of interme-
diate registers for pipelined circuits,” Proc. Workshop on Synthe-
sis and System Integration of Mixed Technologies (SASIMI 2004),
pp.333–338, 2004.

[7] A. Takahashi and Y. Kajitani, “Performance and reliability driven
clock scheduling of sequential logic circuits,” Proc. Asia and
South Pacific Design Automation Conference (ASP-DAC), pp.37–
42, 1997.

[8] C. Wallace, “A suggestion for fast multiplier,” IEEE Trans. Elec-
tronic Computers, vol.13, no.2, pp.14–17, 1964.

[9] R. Brent and H. Kung, “A regular layout for parallel adders,” IEEE
Trans. Comput., vol.C-31, no.3, pp.260–264, 1982.

[10] M. Saitoh, M. Azuma, and A. Takahashi, “A clustering based fast
clock schedule algorithm for light clock-trees,” IEICE Trans. Fun-
damentals, vol.E85-A, no.12, pp.2756–2763, Dec. 2002.

Bakhtiar Affendi Rosdi received his B.E.,
and M.E. degrees in electrical and electronic en-
gineering from Tokyo Institute of Technology,
Tokyo, Japan, in 1999 and 2004, respectively.
He is currently a D.E. student of Department of
Communications and Integrated Systems in To-
kyo Institute of Technology. His research inter-
ests are in VLSI design automation and combi-
national algorithms.

Atsushi Takahashi received his B.E., M.E.,
and D.E. degrees in electrical and electronic en-
gineering from Tokyo Institute of Technology,
Tokyo, Japan, in 1989, 1991, and 1996, respec-
tively. He had been with the Tokyo Institute of
Technology as a research associate from 1991 to
1997 and has been an associate professor since
1997. He visited University of California, Los
Angeles, U.S.A., as a visiting scholar from 2001
to 2002. He is currently with Department of
Communications and Integrated Systems, Grad-

uate School of Science and Engineering, Tokyo Institute of Technology.
His research interests are in VLSI layout design and combinational algo-
rithms. He is a member of IEEE and IPSJ.

