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Abstract

This paper focuses on numerical function generators
(NFGs) based on k-th order polynomial approximations.
We show that increasing the polynomial order k reduces
significantly the NFG’s memory size. However, larger k
requires more logic elements and multipliers. To quantify
this tradeoff, we introduce the FPGA utilization measure,
and then determine the optimum polynomial order k. Ex-
perimental results show that: 1) for low accuracies (up to
17 bits), 1st order polynomial approximations produce the
most efficient implementations; and 2) for higher accura-
cies (18 to 24 bits), 2nd-order polynomial approximations
produce the most efficient implementations.

1. Introduction

With the introduction of FPGAs, it is possible to put,
on one chip, large logic systems, including general purpose
microprocessors and special system-on-a-chip designs. In
spite of a large amount of available hardware, designers are
often limited in their designs because a specific FPGA re-
source is scarce. That is, FPGAs consist of logic modules,
multiplexers, adders, multipliers, and memory blocks. An
application requiring many arithmetic modules, for exam-
ple, may exhaust the adders and multipliers before exhaust-
ing memory modules. Therefore, the success of a design
depends on achieving a balance on the use of various re-
sources [17]. In this paper, we show a design of a numeri-
cal function generator (NFG) that adapts to the FPGA’s re-
sources; logic, arithmetic units, and memory.

Numerical functions f (x), such as trigonometric, loga-
rithmic, square root, reciprocal, and combinations of these
functions, are extensively used in computer graphics, digital
signal processing, communication systems, robotics, astro-
physics, fluid physics, etc. To compute elementary func-
tions, iterative algorithms, such as the CORDIC (COordi-

nate Rotation DIgital Computer) algorithm [1, 30], have
been often used. Although the CORDIC algorithm achieves
accuracy with compact hardware, its computation time is
proportional to the number of bits used to represent the
number. For a function composed of elementary functions,
the CORDIC algorithm is slower, since it computes each
elementary function sequentially. It is too slow for numer-
ically intensive applications. Implementation by a single
lookup table for f (x) is simple and very fast. For low-
precision computations of f (x) (e.g. x and f (x) have 8 bits),
this implementation is straightforward. For high-precision
computations, however, the single lookup table implemen-
tation is impractical due to the huge table size.

To reduce memory size, polynomial approximations
have been used [3, 5, 6, 7, 12, 14, 22, 27, 28, 29]. These
methods approximate the given numerical functions by
piecewise polynomials, and realize the polynomials with
hardware. For piecewise polynomial approximations, in
many cases, the domain is partitioned into uniform seg-
ments. For elementary functions, such as sin(x) and ex,
by using higher-order polynomial approximations, the num-
ber of uniform segments can be reduced, and therefore the
memory size can be reduced. However, for some numer-
ical functions, such as

√

− ln(x), methods based on uni-
form segmentation yield large memory size for implemen-
tation on conventional FPGAs even if second-order poly-
nomials are used [21]. On the other hand, since our NFG
is based on non-uniform segmentation, for a wide range of
functions, the memory size can be reduced by using second-
order polynomials [21]. However, although second-order
polynomial approximations reduce memory size, more mul-
tipliers and adders are required. To produce the most ef-
ficient FPGA implementation of NFGs, this paper intro-
duces a measure, the FPGA utilization measure, and finds
the polynomial order k that produces the FPGA implemen-
tations with the smallest FPGA utilization measure.

This paper focuses on the implementation of table
lookup NFGs. Fig. 1 shows the synthesis flow of the de-
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Fig. 1. Synthesis flow for NFGs.

sign process, which begins with a Design Specification de-
scribed by Scilab [26], a MATLAB-like software applica-
tion, and ends up with HDL code. The Design Specifica-
tion consists of a function f (x), a domain over x, an accu-
racy, and an order k of the approximation polynomial. This
system first partitions the domain into segments, and then
approximates f (x) by a polynomial function for each seg-
ment. Next, it analyzes the errors, and derives the necessary
precision for computing units in the NFG. Then, it gener-
ates HDL code to be mapped into an FPGA using an FPGA
vendor-supplied design software. The significance of the
design flow is that it provides the context of the implemen-
tations shown here.

2. Preliminaries

Definition 1 A binary fixed-point representation has the
form dl−1 dl−2 . . . d0. d−1 . . . d−m, where di ∈ {0,1}
(−m ≤ i ≤ l − 1), l is the number of bits for the integer
part, and m is the number of bits for the fractional part.
This representation is two’s complement. In this paper, we
use l = 1.

Definition 2 Error is the absolute difference between the
exact value and the value produced by the hardware. Ap-
proximation error is the error caused by a function approx-
imation. Rounding error is the error caused by a binary
fixed-point representation. It is the result of truncation or
rounding whichever is applied. However, both operations
yield an error that is called rounding error. Acceptable er-
ror is the maximum error that an NFG may assume. Accept-
able approximation error is the maximum approximation
error that a function approximation may assume.

Definition 3 Precision is the total number of bits for a bi-
nary fixed-point representation. Specially, n-bit precision
specifies that n bits are used to represent the number. In this
paper, we assume that an n-bit precision NFG has an n-bit
input and an acceptable error of 2−m, where m = n−1.

3. Piecewise Polynomial Approximation

To approximate the numerical function f (x) using poly-
nomial functions, we first partition the domain for x into
segments. For each segment, we approximate f (x) using a
polynomial function g(x) = ckxk + ck−1xk−1 + . . . + c0. In
this case, we seek the fewest segments, since this reduces

Input: Numerical function f (x), Domain [a,b] for x,
Acceptable approximation error εa, and
Polynomial order k.

Output: Segments [s0,e0], [s1,e1], . . . , [st−1,et−1].
Process:

1. Let s0 = a and i = 0.
2. Find a value p (≥ si) where εk(si, p) = εa.
3. If p > b, then let p = b.
4. Let ei = p and i = i+1.
5. If p = b, then let t = i, and stop.
6. Else, let si = p, and go to step 2.

Fig. 2. Nonuniform segmentation algorithm for the
domain.

the memory size needed for storing the coefficients of the
polynomial functions.

Piecewise polynomial approximations have been applied
to a domain that has been partitioned into uniform seg-
ments [3, 5, 6, 7, 22, 27, 28, 29]. Such methods are sim-
ple and fast, but for some kinds of numerical functions,
too many segments are required, resulting in large mem-
ory. Further, for such functions, methods based on uniform
segmentation cannot always reduce the memory size, even
if the higher-order polynomials are used. For example, the
reduction in the number of segments may not be sufficient
to compensate for the increase in word width due to an in-
crease in the number of stored coefficients needed for the
higher-order polynomials.

For a given error, non-uniform segmentation of the do-
main uses fewer segments than uniform segmentation [12,
13, 25]. To reduce the memory size for a wide range of
functions as the polynomial order increases, we use non-
uniform segmentation.

3.1. Non-uniform Segmentation Algorithm

The number of non-uniform segments depends on the ap-
proximation polynomial. Specifically, fewer segments are
required when the approximation polynomial is more accu-
rate. In this paper, we use kth-order Chebyshev polynomials
to approximate f (x).

For a segment [s,e] of f (x), the maximum approxima-
tion error εk(s,e) of the kth-order Chebyshev approxima-
tion [16] is given by

εk(s,e) =
2(e− s)k+1

4k+1(k +1)!
max
s≤x≤e

| f (k+1)(x)|, (1)

where f (k+1) is the (k + 1)th-order derivative of f . From
(1), εk(s,e) is a monotone increasing function of segment
width e− s. From this property, it follows that a greedy al-
gorithm in which each segment width is maximized for the
given approximation error produces the optimum segmen-



tation. Fig. 2 shows the (nonuniform) segmentation algo-
rithm. The inputs for this algorithm are a numerical func-
tion f (x), a domain [a,b] for x, an acceptable approximation
error εa, and a polynomial order k. Then, this algorithm
approximates f (x) with acceptable approximation error εa,
and produces t segments [s0,e0], [s1,e1], . . ., [st−1,et−1]. For
step 2 in Fig. 2, the accurate computation of the value p,
where εk(si, p) = εa, is difficult. We obtain the maximum
value p′ satisfying εk(si, p′)≤ εa by scanning values of n-bit
input x. However, it has time complexity O(2n). Therefore,
we compute the maximum value p′ by setting the bits of p′

to 0 or 1 from the most significant to the least significant
bits such that εk(si, p′) ≤ εa, as in a binary search. This
has time complexity O(n). In the computation of εk(si, p′),
the value of maxsi≤x≤p′ | f (k+1)(x)| is computed by nonlin-
ear programming [10].

3.2. Computation of Approximate Value

For each segment [si,ei], f (x) is approximated by the
corresponding polynomial function g(x, i). That is, the ap-
proximated value y of f (x) is computed as y = g(x, i) =
ck(i)xk + ck−1(i)xk−1 + . . . + c0(i), where the coefficients
ck(i), ck−1(i), . . . ,c0(i) are derived from the kth-order
Chebyshev approximation polynomial [16]. Substituting
x−qi +qi for x yields the transformation

g(x, i) = ck(i)(x−qi)
k + c′k−1(i)(x−qi)

k−1

+ . . .+ c′0(i), (2)

where

c′j(i) =
k− j

∑
l=0

(

j + l
j

)

c j+l(i)q
l
i ( j = 0,1, . . . ,k−1).

This transformation reduces the multiplier size (see Sec-
tion 4.2). Instead of computing g(x, i) in the form (2), we
apply Horner’s method [18] to derive (3) below:

g(x, i) = ((ck(i)(x−qi)+ c′k−1(i))(x−qi)

+ . . .)(x−qi)+ c′0(i). (3)

This reduces the number of multipliers from approximately
k2

2 to k.

4. Architecture for NFGs

Fig. 3 shows the architecture realizing (3). It consists of
the segment index encoder, the coefficients table, multipli-
ers, and adders.

4.1. Segment Index Encoder

A segment index encoder converts an input x into a seg-
ment index i of corresponding segment [si,ei]. It real-
izes the segment index function seg f unc(x) : {0,1}n →

Segment Index Encoder
(LUT Cascade)

Coefficients Table
(ROM)

x

y

i

c’k-1 c’0

Multiplier

ck

Adder

-q i

(i)

Adder

(i) (i)

Multiplier Adder

c’k-2 (i)

AdderMultiplier

Fig. 3. Architecture for NFGs.
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Fig. 4. Segment index encoder.

{0,1, . . . , t − 1} shown in Fig. 4 (a), where x has n bits,
and t denotes the number of segments. NFGs based on
uniform segmentation in which the most significant bits di-
rectly drive the address inputs of a coefficients table need
no segment index encoder. On the other hand, NFGs based
on non-uniform segmentation require this additional circuit.
Potentially, this is a complex circuit.

To simplify the segment index encoder, a special non-
uniform segmentation [12, 13] has been proposed. This
method produces a simple circuit by restricting the segmen-
tation points, and results in fewer segments, as well as faster
and more compact NFGs than produced by uniform seg-
mentation. In this method, the user has to select a segmenta-
tion appropriate to the given function. Thus, it is difficult for
non-experts to obtain optimum segmentation for the given
function.

For a fast and compact realization of any non-uniform
segmentation, we use an LUT cascade [11, 23] shown in
Fig. 4 (b). By using an LUT cascade, for the given function,
we can use the optimum non-uniform segmentation gener-
ated by the algorithm of Fig. 2. To obtain the LUT cascade,
we consider seg f unc(x) as a multiple-output logic func-
tion, and represent the logic function using a binary deci-
sion diagram (BDD) [2, 4]. By functional decompositions
using the BDD, we obtain the LUT cascade. To produce



compact NFGs for a wide range of functions, it is impor-
tant to guarantee that the size of LUT cascade is reasonable
for any non-uniform segmentation. In [24], we have shown
that the size of an LUT cascade depends on the number of
segments, and by using an LUT cascade, we can generate
compact NFGs for a wide range of functions. In this pa-
per, we reduce the number of non-uniform segments using a
high-order polynomial approximation, and thereby we sig-
nificantly reduce the memory sizes of the coefficients table
and the LUT cascade. Therefore, our NFGs can be imple-
mented using remaining hardware resources in an FPGA.
To the best of our knowledge, this paper presents the first
NFG that uses kth-order approximating functions in opti-
mum non-uniform segments, for k > 2.

4.2. Size Reduction of Multiplier

The number of bits representing x − qi determines the
sizes of all the multipliers. Therefore, to reduce multiplier
size, we reduce the number of bits representing x−qi. Re-
ducing the value of x − qi reduces not only the sizes of
the multipliers, but also the error [8]. From (2), we can
choose any value for qi. To reduce the value of x− qi, for
a segment [si,ei], we set qi = (si + ei)/2. Then, we have
|x − qi| ≤ (ei − si)/2. Thus, reducing the segment width
ei − si reduces the value for x− qi. However, this also in-
creases the number of segments, and results in increased
memory size. We show a reduction method of segment
width that does not increase memory size.

Assume that the coefficients table in Fig. 3 has 2u words,
where u = dlog2 te, and t is the number of segments. There-
fore, we can increase the number of segments up to t = 2u

without increasing the memory size. The size of an LUT
cascade also depends on the value of u. However, increas-
ing the number of segments to t = 2u rarely increases the
size of the LUT cascade. We reduce the size of segments
by dividing larger segments into two equal sized segments
increasing t up to the next power of 2.

5. FPGA Utilization Measure

Modern FPGAs consist of various components, such as
logic elements, memory blocks, and embedded multipli-
ers. It is important to use these hardware resources effi-
ciently. To generate the most efficient NFGs depending on
the available hardware resources in an FPGA, we introduce
the FPGA utilization measure.

Definition 4 Given available hardware resources in an
FPGA, the FPGA utilization measure U is the sum of uti-
lizations for those hardware resources. In this paper, we as-
sume that in an FPGA, there are four hardware resources:
logic element (LE), embedded multiplier (DSP), and two

Table 1. Numbers of uniform and non-uniform
segments for

√

− ln(x) and arcsin(x).

Function Domain k Uniform Non-uniform
f (x) [a,b] segments segments

√

− ln(x) (0,1) 1 8,388,607 8,230 (0.0981%)
2 8,388,607 698 (0.0083%)
3 8,388,607 213 (0.0025%)
4 8,388,607 111 (0.0013%)
5 8,388,607 75 (0.0009%)

arcsin(x) [0,1) 1 8,388,608 3,067 (0.0366%)
2 8,388,608 256 (0.0031%)
3 8,388,608 81 (0.0010%)
4 8,388,608 45 (0.0005%)
5 4,194,304 31 (0.0007%)

types of RAM block (M4K and M512). That is,

U =

(

R LE

A LE
+

R DSP

A DSP
+

R M4K

A M4K
+

R M512

A M512

)

×100%,

where R LE and A LE denote the number of required LEs
and available LEs, respectively. For DSP, M4K, and M512,
we use a similar notation.

Using this measure, we find a polynomial order that pro-
duces the most efficient NFGs depending on the unused
hardware resources in an FPGA. Specifically, we seek the
smallest FPGA utilization measure across the various or-
ders. Note that we can find a polynomial order that produces
a feasible FPGA implementation by using a large penalty
for the measure (e.g. U = ∞) when a required resource
is larger than the available resource (e.g. A LE < R LE).
However, our experimental results show that the smallest
FPGA utilization measure results in a feasible and efficient
FPGA implementation even if such penalty is not used.

By using NFGs with the smallest FPGA utilization mea-
sure, we can leave more hardware resources for other mod-
ules. This is useful in an incremental design of modules,
such as occurs when a final design is the result of a sequence
of specification changes.

6. Experimental Results

In this section, we find the optimum polynomial order for
a given precision to approximate a function using the FPGA
utilization measure discussed in the previous section.

6.1. Number of Segments and Memory Size

Table 1 compares the numbers of uniform and non-
uniform segments for 24-bit precision NFGs of

√

− ln(x)
(0 < x < 1) and arcsin(x) (0 ≤ x < 1). From this table, we
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Fig. 5. Number of non-uniform segments versus
precision.

can see that the number of non-uniform segments signifi-
cantly decreases as the polynomial order k increases, while
the number of uniform segments does not always decrease.
The number of segments determines the size of coefficients
table. Many existing methods are based on uniform seg-
mentation. Thus, for these functions, the existing methods
cannot always reduce the memory size even if the polyno-
mial order increases. On the other hand, our method can
reduce the memory size by increasing the polynomial order
for a wide range of functions.

In the following, we conduct experiments using three nu-
merical functions: cos(πx) (0 ≤ x ≤ 1/2),

√
x (1/32 ≤ x <

2), and 1/x (1 ≤ x < 2). The experimental results shown in
Fig. 5–13 are averages for these functions.

Fig. 5 shows the relation between the number of non-
uniform segments and precision. Note the increase in the
number of segments with precision, especially for 5th-order
approximations. Further, there is a significant decrease in
the number of segments as the order k of the polynomial
increases. For example, for 24-bit precision, a 5th-order
polynomial yields an approximation that uses only 0.37%
of the segments needed in a 1st-order polynomial.

Fig. 6 shows the relation between total memory size and
precision. That is, our NFGs require memory in the segment
index encoder, as well as in the coefficients memory. Total
memory size is the sum of these two. Fig. 6 shows that the
total memory size increases exponentially with the preci-
sion. From Fig. 5 and Fig. 6, we can see that the total mem-
ory size strongly depends on the number of non-uniform
segments. Thus, we can reduce the total memory size by
increasing polynomial order. Especially, for high-precision,
the increase of polynomial order reduces the memory size
significantly. For 24-bit precision, the 5th-order polynomi-
als require only 0.27% of total memory size needed for the
1st-order polynomials.

However, for low-precision, an increase of polynomial

 100

 1000

 10000

 100000

 1e+006

 8  10  12  14  16  18  20  22  24

T
ot

al
 m

em
or

y 
si

ze
 [b

its
]

Precision

1st-order
2nd-order
3rd-order
4th-order
5th-order

Fig. 6. Total memory size versus precision.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 8  10  12  14  16  18  20  22  24

N
um

be
r 

of
 L

og
ic

 E
le

m
en

ts

Precision

1st-order
2nd-order
3rd-order
4th-order
5th-order

Fig. 7. Number of logic elements versus precision.

order does not always reduce the total memory size be-
cause, while it reduces the length of the coefficients table
(i.e. the number of words of the coefficients table), it also
increases the width of coefficients table (i.e. the bit-width of
the coefficients table because more coefficients are needed
in higher-order polynomials). In fact, for an 8-bit preci-
sion NFG for

√
x, the 5th-order polynomial requires more

memory than the 4th-order polynomial (both polynomials
require the same number of segments).

6.2. FPGA Resources

We implemented fully pipelined NFGs on the Altera
Stratix EP1S80F1020C5 FPGA using the Quartus II ver. 5.0
development tool. We used the speed optimization option
and set the required operating frequency to 200 MHz..

Fig. 7 shows the relation between the number of logic el-
ements (LEs) and precision. This graph shows that the num-
ber of LEs increases approximately linearly with the preci-
sion. Further, increasing the polynomial order increases the
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number of LEs. The 8 to 15-bit precision 5th-order poly-
nomials and 8 to 11-bit precision 4th-order polynomials re-
quire fewer LEs, since they require only one segment for
cos(πx) and therefore no memory address registers for the
LUT cascade and the coefficients table. Note that when the
number of segments is one, coefficients of the polynomial
are implemented as constant values, not memory. Since the
22 to 24-bit precision 1st-order polynomials require large
LUT cascades due to the large number of segments, the
number of pipeline stages for the LUT cascade increases,
and therefore the number of pipeline registers (LEs) in-
creases excessively.

Fig. 8 shows the relation between the number of DSPs
(9×9-bit multipliers) and precision. This graph shows that
the number of DSPs increases as the precision increases.
Further, increasing the polynomial order increases the num-
ber of DSPs. For 24-bit precision, 5th-order polynomials
require 20 times more DSPs than needed for 1st-order poly-
nomials.
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Fig. 10. FPGA utilization measure on the Stratix
EP1S80F1020C5 versus precision, where all the
resources are available.

Fig. 9 shows the relation between the number of RAM
blocks and precision. The FPGA (EP1S80F1020C5) in-
cludes two types of RAM block, M4K and M512. But,
we show only the number of M4Ks because few M512s
were used for the implementations. From Fig. 9, we can
see that the number of RAM blocks increases exponentially
with precision. Further, increasing the polynomial order can
reduce the number of RAM blocks. For 24-bit precision, a
5th-order polynomial requires only 3% of the RAM blocks
required by a 1st-order polynomial.

From these results, we can see that by changing the poly-
nomial order, we can change the amount of FPGA resources
required by NFGs.

6.3. FPGA Utilization Measure

We determine the optimum polynomial order given the
precision and the available hardware resources using the
FPGA utilization measure.

Fig. 10 shows the relation between FPGA utilization
measure and precision when all the resources on the Stratix
EP1S80F1020C5 are available for a single NFG. This
FPGA consists of 79,040 LEs, 176 DSPs, 364 M4Ks, and
767 M512s. From Fig. 10, we can see that for low-precision
(up to 17 bits), the 1st-order polynomials yield the smallest
FPGA utilization measure, and for high-precision (18 to 24
bits), the 2nd-order polynomials yield the smallest FPGA
utilization measure. We view this result as very surprising,
especially since the number of segments decreases signifi-
cantly, when the order of the polynomial increases.

We assume a situation in which only 10% of LEs, M4Ks,
and M512s, and 100% of DSPs are available. Fig. 11 shows
the FPGA utilization measure for this case. From Fig. 11,
it follows that, for precisions of 13 bits or less, 1st-order
polynomials yield the smallest FPGA utilization measure.
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Fig. 11. FPGA utilization measure on the Stratix
EP1S80F1020C5, where 10% of LEs and RAM
blocks, and 100% of DSPs are available.
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Fig. 12. FPGA utilization measure on the Stratix
EP1S80F1020C5, where 10% of LEs and DSPs,
and 100% of RAM blocks are available.

For 14 to 23-bit precision, 2nd-order polynomials yield the
smallest FPGA utilization measure. And, for 24-bit preci-
sion, 3rd-order polynomials yield the smallest FPGA uti-
lization measure. Note that for precisions higher than 20
bits, the 1st-order polynomials cannot be implemented in
the FPGA due to insufficient RAM blocks. Fig. 12 shows
the FPGA utilization measure, where only 10% of LEs
and DSPs, and 100% of RAM blocks are available. From
Fig. 12, we can see that for up to 23-bit precision, the 1st-
order polynomials; and for 24-bit precision, the 2rd-order
polynomials yield the smallest FPGA utilization measure.
Note that the 3rd, 4th, and 5th-order polynomials cannot be
implemented in the FPGA due to insufficient DSPs.

In order to understand how a reduction over all resources
affects the realization, we implemented the NFGs on a low-
cost FPGA, the Cyclone II (EP2C5F256C6, the smallest
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Fig. 13. FPGA utilization measure on the smallest
Cyclone II EP2C5F256C6 versus precision.

device in the Cyclone II family: 4,608 LEs, 26 DSPs, 26
M4Ks, 0 M512s). Fig. 13 shows results for the Cyclone II.
For high-precision, the 1st-order polynomials deplete the
RAM blocks in the Cyclone II. On the other hand, the 4th
and 5th-order polynomials deplete the DSPs. Fig. 13 shows
that, for up to 15-bit precision, 1st-order polynomials yield
the smallest FPGA utilization measure. On the other hand,
for 16 to 24-bit precision, 2nd-order polynomials yield the
smallest FPGA utilization measure.

These experiments show that there is limited use for 4th
and 5th-order polynomials. However, from Fig. 6, we con-
jecture that for higher-precision than 24-bit, 4th and 5th-
order polynomials will be useful to reduce the memory size.
Unfortunately, we could not verify that because of the pre-
cision of our NFG synthesis tool developed by C language.

7. Conclusion and Comments

We have presented NFGs based on k-th order polyno-
mial approximation for (k + 1)-times differentiable func-
tions. To generate the most efficient NFGs, we introduced
the FPGA utilization measure. Experimental results showed
that: 1) For some kinds of numerical functions, the existing
methods based on uniform segmentation cannot always re-
duce the memory size, even if the higher-order polynomials
are used. On the other hand, our method can flexibly change
the amount of hardware resources required by NFGs for a
wide range of functions by changing the polynomial order
k. 2) When all hardware resources in an FPGA can be used
for a single NFG, for low accuracies (up to 17 bits), 1st
order polynomials produce the most efficient FPGA imple-
mentation. On the other hand, for high accuracies (18 to
24 bits), 2nd order polynomials produce the most efficient
FPGA implementation. Even if the amount of hardware re-
sources is constrained, we can find the optimum polynomial
order for the precision of NFG and the resource constraints.



Currently, we are developing the synthesis system that
automatically generates an NFG based on the optimum
polynomial order k from a given amount of hardware re-
sources. In this system, an accurate estimate of hardware
resources required by NFG is important.
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