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ABSTRACT
This paper discusses a new structure ofM-channel IIR per-
fect reconstruction filterbanks. A novel design implementa-
tion for the new building block defined as a product of an
IIR building block and an FIR building block is presented.
The IIR building blocks are written by state space represen-
tation, in which we can easily obtain a stability of the filter-
bank by placing its eigen values inside the unit circle. Due
to cascading of building blocks, we can get more free pa-
rameters. We introduce the condition how we obtain the new
building blocks without increasing of the filter order. Addi-
tionally, by showing the simulation results, we show that our
proposed FBs have better stopband attenuation than a con-
ventional method.

Index Terms—M-channel Infinite Impulse Response Per-
fect Reconstruction Filterbanks, State Space Representation,
FIR-IIR hybrid building blocks

1. INTRODUCTION

Recently, many researchers have been studying multirate sig-
nal processing. One of the most efficient techniques for pro-
cessing wideband digital signals in communication systems
and compressing audio, image and video signals is called as
filter bank (FB). A perfect reconstruction (PR) FB design in-
volves its analysis and synthesis polyphase matricesE(z) and
R(z) [1]. These matrices consist of polynomials ofzwhich is
called delay. There are two types of transfer function (TF) of
FBs, called finite impulse response (FIR) and infinite impulse
response (IIR). In an FIR case, the denominator of TF is 1,
so we do not need to consider its stability. On the contrary,
in an IIR case, the denominator involves delays. Thus, it is
necessary to consider its stability. Meanwhile, IIR FBs have
superiority in terms of the order of the TF. In other word, they
can be realized in lower order (much fewer multipliers and
adders) than FIR FBs to obtain the desired response specifi-
cations [2]. While there are many well-developed FIR FB de-
sign theories, there are few satisfactory implementations for
IIR FB design because of the problem of its stability. Several
design methods for the case of IIR PRFBs whose analysis
FB is causal stable (poles ofE(z) are inside the unit circle)
and the synthesis FB is anti-causal stable (poles ofR(z) are
outside the unit circle) have already been introduced. For ex-
ample, [3] proposed using all pass filters instead of delays in
lossless matrices to design IIR PRFB, approximately linear-
phase filters using complex all pass sections is proposed in
[4], and orthogonal IIR 2-channel PRFBs are designed using
all pass filters in [5]. For such FBs, synthesis filtering needs
to be performed in anti-causal fashion by introducing time re-
versal [6], which increases the storage cost of the system and
may only be acceptable for image processing applications.

Although some design methods have been proposed for
the causal and stable case [7], they mostly treated the 2-
channel FB cases. Recently, anM-channel real IIR FB [8]
was presented, but the design method includes a complicated
stabilization procedure of the synthesis filters.

In this paper, we introduce a class of IIR causal sta-
ble PRFBs obtained by cascading of FIR and IIR building
blocks. Firstly, we present the conventional method for IIR
PRFB by using state space representation [9] and the struc-
ture of FIR degree-1 building blocks in section 2. In section
3, we show the condition how we obtain the new building
block without increasing the order for the case of order-1 and
2. Frequency responses of the proposed FBs are presented
and compared with the conventional method in section 4.

Notations: Boldface small and capital letters represent
vectors and matrices, respectively.det(), ad j() andtrace()
denote determinant, adjoint and trace of a matrix.

2. REVIEW

2.1 Polyphase Structure for Filterbanks

Fig. 1 shows a typical structure of anM-channel maximally
decimated FB, whereHk(z) andFk(z) are thek-th (for k =
0· · ·M−1) analysis and synthesis filter, respectively. In Fig.
2, the analysis and synthesis filters are shown by using the
polyphase matricesE(z) andR(z) represented as follows:

[H0(z) H1(z) · · · HM−1(z)]
T = E(zM)e(z)T

[F0(z) F1(z) · · · FM−1(z)] = e(z)R(zM)
e(z) = [1 z−1 · · · z−(M−1)].

(1)

It is clear that the condition for PR isR(z)E(z) = cI (c∈
R) (PR condition [1]).
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Figure 1: AnM-channel filterbank.
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Figure 2: The polyphase representation of FBs.

2.2 IIR Filterbanks Using State Space Structure

The PR condition for generalM × M polyphase matrices
E(z) andR(z) are

R(z) = E−1(z) =
ad j(E(z))
det(E(z))

(2)

where obviouslyE(z) is nonsingular. For IIR FBs, causal
stable synthesis filters are obtained if det(E(z)) is minimum
phase withE(z) being causal. The problem of constraining
E(z) with minimum phase determinant is resolved by consid-
ering the minimal factorization ofE(z) in state space struc-
ture.

As it is known, any rational functionE(z) can be ex-
pressed in state space structure [9],

E(z) = D+C′(zI−A)−1B′

whereD, A, B′andC′ areM×M, m×m, m×M andM×m
matrices respectively(m≤ M). A is called the state tran-
sition matrix. Then to simplify, we can rewrite the above
equation

E(z) = D(I+C(zI−A)−1B) = DE′(z) (3)

And the synthesis polyphase matrixR(z) is given by

R(z) = (I−C(zI−A∗)−1B)D−1 = R′(z)D−1 (4)

where
A∗ = A−BC. (5)

SinceR(z)E(z) = I, this impliesR′(z)E′(z) = I. It is suffi-
cient to focus on factorization ofE(z) andR(z). The struc-
ture of the building block is shown in Fig. 3 (a) and (b).
BecauseR(z) can be calculated by matricesA, B, C andD
of E(z) uniquely, in this paper, we focus on only the structure
of the building block inE(z)
• Free parameters

There is no restriction of every matrixA, B, C andD.
These are all nonsingular matrices. Thus, the number of
parameters isM2 +2mM+m2.

2.3 Controllability and Observability

In designing FBs using state space representation, we have to
impose the both conditions observability and controllability
to obtain minimal systemE(z)[10].

B Cz-1I

A

(a)

B -Cz-1I

A*
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Figure 3: A realization of the conventional filterbanks
(a)E′(z) (b)R′(z)

• Controllability condition
Them×Mk matrix

C (A,B) = [B AB A2B · · · AkB]

must be of rankm; this condition is calledcontrollability
condition.

• Observability condition
Them×Mk matrix

O(C,A) = [CT (CA)T (CA2)T · · · (CAk)T ]

must be of rankm; this condition is calledobservability
condition.

To keepE(z) minimal, additional constraints have to be im-
posed in the present design. It can be seen that ifm≤ M,
full rank matricesB andC are enough to satisfy both min-
imality conditions discussed above, irrespective of the rank
of A. So, in the present design methods we assumem≤ M
(the dimension of the matrixA never exceeds the number of
channelsM) andrank(B) = rank(C) = m.

2.4 FIR Degree-1 Building Block

A class of causalM-channel FIR biorthogonal (BO) FBs of
order-L are factorized into [11]

E(z) = WL(z) · · ·W1(z)E0 ( j = 1,2, · · ·m) (6)

whereE0 is anM×M nonsingular matrix and which have an
FIR, anticausal inverse. In the above equation, eachWm(z)
is a first-order BO building block given by

Wm(z) = I−UmV†
m+z−1UmV†

m (7)

where·† denotes conjugate transpose and theM× γm param-
eter matricesUm andVm satisfy

V†
mUm =


1 × ·· · ×
0 1 · · · ×
...

...
.. .

...
0 0 · · · 1


γm×γm
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Figure 4: The structure of Order-1 IIR-FIR hybrid building
blocks:(a) analysis filter (b) synthesis filter.

for some integer 1≤ γm ≤ M, where× indicates possibly
nonzero elements. This is a generalization of the paraunitary
order-one factorization given in [12] whereUm = Vm, and
has been used for factoring the biorthogonal lapped trans-
form (BOLT) [13].

• Since the rank ofV†
mUm is γm, the McMillan degree of

Wm(z) as in (7) isγm.
• The structure in (6) completely spans all causal FIR

PRFBs having anticausal FIR inverses. The spanned
analysis filters have filter lengths no greater thanM(L +
1), and the McMillan degree ofE(z) ranges fromL to
ML, whereL is the order of the FB.

• The Type-II synthesis polyphase matrixR(z) is given by

R(z) = E−1
0 W−1

1 (z) · · ·W−1
L (z) (8)

whereW−1
m (z−1) = I−UmVm+ zUmVm, which is an-

ticausal and satisfiesR(z)E(z) = I for PR. Due to the
possibly nonzero off-diagonal elements ofV†

mUm, the
order of W−1

m (z−1) can be greater than one, and thus
the synthesis bank can have filter lengths different from
M(L+1).

3. PRFBS WITH IIR-FIR HYBRID BUILDING
BLOCKS

In this section, we introduce a novel building block obtained
by product of the conventional IIR building block and the
FIR BO building block. This paper considers the cases where
the number of degrees of the new building block is one or
two.

3.1 Design of Order-1 PRFBs

We consider the condition for the case of order-1 (m= 1) in
this part. Analysis matrixE′(z) can be rewritten by

E′(z) = I+c(z−λ )−1b

=
I−z−1(cb−λI)

1−λz−1 (9)

whereb andc are a row and a column vector respectively.
Sinceλ is pole, we obtain the stable filterbank ifλ is placed
inside unit circle. Our proposed building block is represented

as product of (7) and (9) as

G(z) =
I−z−1(cb−λI)

1−λz−1 · (I−UV† +z−1UV†)

=
I−UV† +z−1G1−z−2G2

1−λz−1

where the size ofU andV is M×1 and

G1 = UV†−cb+λI+(cb−λI)UV†,

G2 = (cb−λI)UV†.

So as not to increase the order of the building block, the con-
dition is

(cb−λI)U = 0.

Then it is rewritten by{
λ = bc
U = c . (10)

Polyphase matricesE(z) andR(z) using proposed building
blocks are expressed as

E(z) = D
I−UV† +z−1(UV† +cb†−λI)

1−λz−1 (11)

R(z) = [I−UV†−cb+zUV†]D−1. (12)

As shown in (11) and (12), the systems of FB are IIR system
for E(z) and FIR system forR(z). Fig. 4 (a) and (b) show
the structures of Order-1 IIR-FIR Hybrid building blocks.
• Free parameters

In the conventional method, there are(M + 1)2 parame-
ters for the case of Order-1. In our method, a restriction
imposed forλ which is same as matrixA in (3). There
are no restrictions of matricesD, b andc. Thus, the total
number of free parameters isM2 +3m−1.

3.2 Design of Order-2 PRFBs

In this subsection, we introduce the new design for the case
of order-2 (m= 2) similar to order-1. We denote the proposed
building block of analysis polyphase matrix as follows:

G(z) = [I+C(zI−A)−1B][I−UV† +z−1UV†]

where the size ofU andV is M × 2. ThenG(z) can be
rewritten as

G(z) =
I+z−1G1 +z−2G2

1− trace(A)z−1 +det(A)z−2 [I−UV†+z−1UV†]

where

G1 = CB− trace(A)I,

G2 = det(A)(I−CA−1B).

The constraints can be expressed as

det(A)(I−CA−1B)UV† = 0.

then it is rewritten by {
A = BC
U = C . (13)
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Figure 5: The structure of IIR-FIR hybrid building blocks:
(a) analysis filter (b) synthesis filter.

Hence, our proposedE(z) andR(z) are represented as

E(z) = D
E′

0 +z−1E′
1 +z−2E′

2

1− trace(A)z−1 +det(A)z−2 (14)

R(z) = [E′
0−CB+zUV†]D−1 (15)

where

E′
0 = I−UV†

E′
1 = {CB− trace(A)I}E0 +UV†

E′
2 = det(A)(I−CA−1B)−{CB− trace(A)I}.

As it is mentioned above, filterbanks of the proposed method
have both IIR and FIR filters. By cascading these new build-
ing blocks with order-1 and 2, we can obtain a higher order
filterbank. Fig. 5 shows the structure of analysis and synthe-
sis IIR-FIR hybrid building blocks.
• Free parameters

In the conventional method, the number of free parame-
ters isM2 +4M +4 for the case of Order-2. In proposed
method, there is some restrictions same as the case of
Order-1. Thus, we haveM2+6M−3 parameters totall1y.

4. RESULTS

In this section, we present the design examples of proposed
IIR PRFBs. In this paper, we optimize the cost functionΦ to
design FB which is calculated as the weighted linear combi-
nation of these filters as follows:

Φ =
M−1

∑
i=0

(
E(i)

pass+E(i)
stop

)
,

E(i)
pass =

∫
Wp(ω)(1−|Hi(ω)|)2dω

E(i)
stop =

∫
Ws(ω)|Hi(ω)|2dω

wherei ∈ {0,1] andH(ejω) is an impulse response of theith

filter. E(i)
pass andE(i)

stop are called passband energy and stop-
band energy respectively.Wp andWs are positive weighting
function.

(a) (b)

Figure 6: Frequency responses of 4-channel order-2 prop. FB:
(a) analysis bank (b) synthesis bank.

(a) (b)

Figure 7: Frequency responses of 4-channel order-2 conv. FB
[9]: (a) analysis bank (b) synthesis bank.

In Fig. 6, we show the frequency responses of 4-channel
order-2 proposed IIR PRFBs. These frequency responses
have better stopband attenuation than the conventional FB
in Fig.7. Also Table 1 compares stopband attenuations of
the filterbanks. It is obvious that the proposed FBs have bet-
ter performance than the conventional one in the same or-
der. Also Fig. 8 shows frequency responses of the 8-channel
order-2 proposed IIR PRFB.

5. CONCLUSION

In this paper, a new design approach ofM-channel IIR
PRFBs based on the IIR-FIR hybrid building blocks are pre-
sented. we impose the restriction in the building blocks to
keep their order despite cascading of building blocks. Since
our method has more free parameters than the conventional
one, the proposed FBs have better stopband attenuation. As
a feature, our IIR PRFBs have IIR analysis filters and FIR
synthesis filters and the order of the synthesis filters are con-
sistently.
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