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DDMF: An Efficient Decision Diagram Structure for Design 
Verification of Quantum Circuits under a Practical Restriction 

Shigem YAMASHITAla), Shin-ichi 

SUMMARY Recently much attention has been paid to quantum circuit 
design to prepare for the future "quantum computation era." Like the con­
ventional logic synthesis, it should be important to verify and analyze the 
functionalities of generated quantum circuits. For that purpose, we pro­
pose an efficient verification method for quantum circuits under a practical 
restriction. Thanks to the restriction, we can introduce an efficient verifi­
cation scheme based on decision diagrams called Decision Diagrams for 
Matrix FUllctions (DDMFs). Then, we show analytically the advantages of 
our approach based on DDMFs over the previous verification techniques. 
In order to introduce DDMFs, we also introduce new concepts, quantum 
jilllctiol1s and matrix jilllctions, which may also be interesting and useful 
on their own for designing quantum circuits. 
key words: quantum circlIit, l'erification, decision diagram 

1. Introduction 

Recently quantum computing has attracted great attention 
by its potential abilities [1]. To realize a quantum algorithm, 
it is necessary to design the corresponding quantum circuit 
as small as possible. Thus, it should be very important to 
study quantum circuit design methods even before quantum 
computing is physically realized. Indeed, there has been a 
great deal of research [2]-[9J for quantum circuit design. 

Typical quantum circuit design methods are based on 
matrix decomposition [8], [9] since a quantum algorithm is 
expressed by a matrix. They can treat any kind of quantum 
circuits, but they cannot treat large (hence, practical) size 
problems since they need to express matrices explicitly and 
thus they need exponential time and memory. (Note that a 
matrix for an n-bit quantum circuit is 2/1 x 2/1, which will be 
explained later.) 

There is a different approach for quantum circuit design 
[2]-[7]. The approach is to focus on quantum circuits cal­
culating only (classical) Boolean functions by the following 
observation [2]: Standard quantum algorithms usually con­
sist of two parts, which we call common parts and unique 
parts below. Common parts do not differ for each prob­
lem instance. On the other hand, unique parts differ for 
each problem instance. For example, Grover search algo­
rithm [10], one of the famous quantum algorithms, consists 
of so called an oracle part and the other part. An oracle 
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part calculates (classical) Boolean functions depending on 
the specification of a given problem instance, while the other 
part consists of some quantum specific operations and does 
not change for all the problem instances. When we devel­
oped a new quantum algorithm, we should have designed 
the common part. Therefore, we do not need to design the 
common part for individual problem instances. On the other 
hand, since the unique part of a quantum algorithm differ 
for each problem instance, we need to have efficient de­
sign and verification methods for that part. Since unique 
part calculates classical Boolean functions, by focusing on 
only unique parts, we may have a design method to handle 
practical size problems based on (classical) logic synthesis 
techniques, especially reversible logic synthesis techniques. 
Indeed there has been a great deal of research focusing on 
quantum circuits to calculate classical Boolean functions in 
the conventional logic synthesis research community [2]­
[7]. We also focus on this type of quantum circuits in this 
paper. It should be noted that there are many different points 
between our target quantum circuits and the conventional 
logic circuits (as will be explained later) although our target 
quantum circuits calculate only classical Boolean functions. 
This is because we need to implement circuits with quantum 
specific operations (as will be explained later). Therefore, 
we definitely need quantum specific design and verification 
methods even for our target quantum circuits. 

Recently a paper [11] discussed a problem of the equiv­
alence check of general quantum circuits and quantum 
states considering the so-called phase equivalence property 
of quantum states. Even for quantum circuits calculating 
only Boolean functions, it should be very important to ver­
ify and analyze the functionalities of designed circuits as in 
the case of classical logic synthesis. For example, we may 
consider the following situation: One of the possible realiza­
tions of quantum computation is considered to be so called 
a linear-nearest-neighbor (LNN) architecture in which the 
quantum bits (qubits) are arranged on a line, and only oper­
ations to neighboring qubits are allowed. Thus, we need to 
modify a designed quantum circuit so that it uses only gates 
that operate to two adjacent qubits. In such a case, we may 
use some complicated transformations by hand, and thus it 
is very convenient if we have a verification tool to confirm 
that the original and the modified quantum circuits are func­
tionally equivalent. 

If we consider only the classical type gates, it is enough 
to use the conventional verification technique such as Binary 
Decision Diagrams (BDDs) [12] for the verification. How-
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ever, even if we consider quantum circuits calculating only 
Boolean functions, it is known that non-classical (quantum 
specific) gates are useful to reduce the circuit size [5]-[7], 
[13]. Thus we need to verify quantum circuits with non­
classical gates. In such cases, a classical technique is obvi­
ously not enough. 

As for simulating quantum circuits, efficient techniques 
using decision diagrams such as Quantum Information De­
cision Diagrams (QuIDDs) [14] and Quantum Multiple­
valued Decision Diagrams (QMDDs) [15] have been pro­
posed. By using these efficient diagrams, we can express 
the functionalities of two quantum circuits, and then verify 
the equivalence of the two circuits. However, they are orig­
inally proposed to simulate general quantum circuits, and 
thus there may be a more efficient method that is suitable 
for verifying the functionalities of quantum circuits only for 
Boolean functions. 

Our contribution described in this paper. Consider­
ing the above discussion, we introduce a new quantum cir­
cuit class: Semi-Classical Quantum Circuits (SCQCs). Al­
though SCQCs have a restriction, the class of SCQCs covers 
all the quantum circuits (for calculating a Boolean function) 
designed by the existing methods [7]. Moreover, because of 
the restriction of SCQCs, we can express the functionalities 
of SCQCs very efficiently as in the case of conventional ver­
ifications by BDDs. For that purpose, we introduce a new 
decision diagram structure called a Decision Diagram jor a 
Matrix Function (DDMF). Then, we show that the verifica­
tion n'lethod based on DDMFs are much more efficient than 
the above mentioned methods based on previously known 
techniques. We provide an analytical comparison between 
DDMFs and QuIDDs, and reveal the essential difference: 
(1) We show that their ability to express the functionality of 
one quantum gate is essentially the same, but (2) we also 
show that our approach based on DDMFs is much more ef­
ficient for the verification of SCQCs than a method based 
on QuIDDs. (Note' that this does not mean that DDMFs are 
better than QuJDDs: DDMFs are only for SCQCs, whereas 
QuJDDs can treat all kinds of quantum circuits.) Moreover, 
we show by preliminary experiments that DDMFs can be 
used to verify SCQCs of practical size (60 inputs and 400 
gates). In order to introduce DDMFs, we also introduce new 
concepts, quantum junctions and matrix junctions, which 
may be interesting and useful on their own for designing 
quantum circuits with quantum specific gates. 

2. Semi-Classical Quantum Circuits and Their Repre­
sentations by Decision Diagrams 

This section introduces new concepts: SCQCs together with 
quantum functions, matrix functions and DDMFs. 

2.1 Quantum States and Quantum Gates 

Before introducing our new concepts, let us briefly explain 
the basics of quantum computation. 

In quantum computation, it is assumed that we can use 
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a qubit which is an abstract model of a quantum state. A 
qubit can be described as 0' 10) + [311 ), where 10) and 11) are 
two basic states, and 0' and [3 are complex numbers such 
that 10'12 + 1f312 = 1. It is convenient to use the following 

vectors to denote 10) and 11), respectively: 10) = (~) and, 

11) = (~). Thus, 0'10) +[311) can be described as a vector: 

0: 10) + [311) = ~) . Then, any quantum operation on a qubit 

can be described as a 2 x 2 matrix. By the laws of quantum 
mechanics, the matrix must be unitary. We call such a quan­
tum operation a quantum gate. For example, the operation 
which transforms 10) and 11) to 11) and 10), respectively, is 
called a NOT gate whose matrix representation is as shown 
in Fig. I. 

In addition to the above NOT gates, we can also use 
any quantum specific unitary matrix in quantum circuits. 
For example, rotation gates denoted by R(B) are often used 
in quantum computation. The matrix for the gates is as 
shown in Fig. 1. Although the functionality of rotation gates 
is not classical, they are useful to design quantum circuits 
even for (classical) Boolean functions [5]. Another quantum 
specific gate called V gate is also utilized to design quan­
tum circuits for Boolean functions [6], [7]. The matrix for 
the gate is as shown in Fig. 1. This gate has the interesting 
property that V2 = NOT. 

In the following, our primitive gates are (generalized) 
controlled-U gates which are defined as follows: 

Definition 1: A controlled-U gate has (possibly many) 
positive and negative control bits, and one target bit. It ap­
plies a 2 x 2 unitary matrix U to the target qubit when the 
states of all the positive control bits are the states 11) and 
the states of all the negative control bits are the state 10). A 
controlled-U gate may not have a control bit. In such a case, 
it always applies U to the target qubit. 

See an example of a quantum circuit consisting of two 
controlled-N OT gates in Fig. 2. This circuit has three qubits, 

NOT = (~ ~ j v = 

R(8)=( cos( 8/2) 
- i sine 8/2) 

1 +i 

2 l-i 
2 

l;i] 
l+i 

2 

- i sine 8/2) 1 
cos( 8/2) ) 

Fig. 1 Unitary matrices. 

Fig. 2 A quantum circuit. 
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Fig. 3 A quantum circuit for half-adeler (SCQC). 

Fig. 4 A nOll-SCQC. 

IXI), IX2) and IX3), each of which corresponds to one line. In 
quantum circuits, each gate works one by. one from the left 
to the right. For the first gate, the target bit is x} and the 
symbol EEl means the NOT operation. The positive control 
bits are XI and X2 denoted by black circles. This gate per­
forms NOT on IX3) only when both IXI) andlx2} are the state 
10. Consider the second gate in the same figure. The white 
circles denote negative controls, which means the gate per­
forms NOT only when both IXI} andlx2) are the states 10). 

In addition to controlled-NOT gates which are essen­
tially classical gates, we can consider any (quantum spe­
cific) unitary operation for controlled gates. For example, 
the functionalities of controlled gates in Figs. 3 and 4 are 
various (e.g., NOT, V, V-I, R(~7T) and R(~7T». 

2.2 Semi-Classical Quantum Circuit (SCQC) 

Consider Fig. 2 again. This circuit transforms the state of 
the third bit IX3) into IX3 EEl f(x!, X2», where f~I' X2) = 
XI . Xl + XI . Xl. (Throughout the paper, we use F to mean 
the logical negation of F.) Thus, we can use this circuit 
(as a part of a quantum algorithm) to calculate the Boole~n 
function f(x!, X2) = XI . Xl + X! . Xl. As mentioned before, 
although our goal is to construct such a quantum circuit that 
calculates a Boolean function, quantum specific gates (such 
as R(B) and V) are useful [5]-[7], [13] to make the circuit 
size smaller. For example, the circuit as shown in Fig. 3 (re­
ported in [7]) utilizes controlled-V and controlled-V-I gates 
to become much smaller than the best one with only classi­
cal type gates, i.e., controlled-NOT gates. (That was con­
firmed by an essentially exhaustive search [7].) 

In order to characterize such a quantum circuit that 
calculates a classical Boolean function with non-classical 
gates, we introduce a Semi-Classical Quantum Circuit 
(SCQC) whose definition is as follows. 

Definition 2: A Semi-Classical Quantum Circuit (SCQC) 
is a quantum circuit consisting of controlled-U gates with 
the following restriction. 

Restriction. If all the initial input quantum states of 
the circuit are 11) or 10) (i.e., just classical values), the quan­
tum states of the control qubits of all the gates in the circuit 
should be II) or 10} at the time when the gate is being oper-
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ated. 

The circuit in Fig. 3 is an SCQC. This is because the 
quantum states of the control qubits of all the gates are either 
II) or 10) when the gate is being operated if the initial input 
states IXI), IX2} andlx3} are either II} or 102. It is not trivial to 
see the condition for the quantum state of the control qubit 
of the last gate (i.e., IX3}) in Fig. 3. However, by using our 
new concepts (explained in the next section), it is easy to 
verify that the state is indeed the classical value if the input 
states of the circuit are classical values. 

On the contrary, the circuit as shown in Fig. 4 is not an 
SCQC. Again, by using our new concept it is easily verified 
that the condition is not satisfied for the quantum state of the 
control qubit of the last gate (i.e., IX3}) in Fig. 4. 

Our motivation to introduce SCQCs is based on the fol­
lowing observations. 

Cil Although SCQCs are in a subset of all the possible 
quantum circuits, quantum circuits (for calculating a 
Boolean function) designed by the existing methods are 
all SCQCs to the best of our knowledge [7]. 

ill Even in the future, it is very unlikely that we come up 
with a tricky design method that produces a non-SCQC 
to calculate (classical) Boolean functions. The reason 
is as follows. If the circuit is not an SCQC, there is a 
gate such that the quantum state of its control bit is not 
a simple classical value (10) nor II}). In such a case, the 
quantum states of the control bit and the target bit after 
the gate cannot be considered separately: their states 
are not only non-classical values but also correlated 
with each other. Such a situation is called quantum 
superposition and entanglement [1]. Since the whole 
circuit should calculate a classical Boolean function, 
all of the final output quantum states should be again 
restored to simple classical values (i.e., 10) or 11» if all 
the initial input quantum states of the circuit are sim­
ple classical values. The reverse operations of creating 
quantum superposition and entanglement seems to be 
the only method to restore to a simple classical value. 
Thus, it seems nonsense to consider non-SCQC circuits 
when we consider practical design methods of quantum 
circuits to calculate Boolean functions. 

Important Note: The restriction of SCQCs means that 
we cannot make entanglement if all the initial input quantum 
states of an SCQC are just classical values. It is well-known 
that quantum computation without entanglement has no ad­
vantage over classical computation. However, this does not 
mean that SCQCs are meaningless by the following reason: 
As mentioned, an SCQC is used as a sub-circuit to calculate 
a Boolean function for some quantum algorithms. Thus, in 
the real situation where an SCQC is used as a sub-circuit, 
the inputs to the SCQC are not simple classical values, and 
so it indeed creates entanglement which should give us the 
advantage of quantum computation. In other words, the re­
striction of SCQCs in the definition is considered when we 
suppose the inputs of SCQCs are just classical values, which 
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Table 1 A truth tables for quantum, classical and matrix functions. 

.¥t, X2 q/l qi2 mil 11112 CM(l) CM(R( 17f)) 

0,0 10) II) I NOT I R( 17f) 

0, I V-I 10) 10) -v- I I I R( 17f) 

1,0 10> 10) 1 I I R(1 7f) 

I, I V-I 10) II) V-I NOT I R(1 7f) 

is not a real situation where SCQCs are really used. 
Therefore, SCQCs should be enough if we consider de­

signing a quantum circuit to calculate a Boolean function 
from the practical point of view. Moreover, the restriction 
of SCQCs provides us an efficient method to analyze and 
verify quantum circuits as we will see in Sect. 3. That is our 
motivation to introduce the new concept in this paper. 

2.3 Quantum Functions and Matrix Functions 

Before introducing our new representation of the function­
alities of SCQCs, we need the following definitions. 

Definition 3: A quantum function with respect to 11 

Boolean variables Xl, X2, ... ,XII is a mapping from to, l}" 
to qubit states. 

See the third bit after the first gate in the circuit in 
Fig. 3 again. If the initial state of IX3) is 10), the resultant 
state of the third bit can be seen as a quantum function de­
scribed as qII (XI, X2) in the second column of Table I. For 
example, the resultant quantum state becomes V- 1 1°) when 
Xl = 0, X2 = I. Thus, qil (0, I) is defined as V- 1 1°) as shown 
in the table. 

Note that a Boolean function can be seen as a special 
case of quantum functions. For example, the third column 
(q,h) of Table 1 shows the quantum function of the resultant 
third qubit after the two gates of the circuit in Fig. 2 when the 
initial state of IX3) is 10). This can be considered as the out­
put of a Boolean function when 10) and II) are considered as 
Boolean values ° and I, respectively. (As mentioned before, 
the circuit is considered to calculate the Boolean function: 
XI . X2 + Xl . X2, which we consider essentially the same as 
(q.fi) in Table I.) 

The value of a quantum function q(XI, X2, ... ,xll ) 

can always be expressed as mf(xl, X2, ... ,xll ) 10), where 
mI(xl, X2, ... ,xll ) is a mapping from to, I}" to 2x2 unitary 
matrices. 1t is convenient to consider mf(xl, X2, ... ,XII) in­
stead of q(XI, X2, ... ,XII) itseif, thus we introduce the fol­
lowing definition. 

Definition 4: A matrix function with respect to n Boolean 
variables Xl, X2, ... ,XIl is a mapping from to, I}" to 2x2 
(unitary) matrices. 

The fourth and the fifth columns of Table I show the ma­
trix function m.lI and m.fi for the quantum function qII and 
q,h, respectively, in the same table. In this paper, we treat a 
matrix function whose output values are only I or NOT as 
a classical Boolean function by considering that NOT and I 
of the matrix function correspond to I and 0, respectively, 
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Table 2 Operators Ell and *. 

XI,X2 mil m./2 m.l! EIlI11.fz m.t":. I f*l1lf} 

0,0 R( ~ 7f) R( 17f) R(7f) R(1 7f) I R(1 7f) 

0, I I I I 1 0 I 

1,0 I R(*7f) R(*7f)- R(7f) I R(7r) 

I, J Rd:7f) R( * 7f) R(i 7f) R(7f) 0 I 

of the Boolean function. In other words, we represent a 
Boolean function by a matrix function as a special case. 

We define a special type of matrix function called con­
stant matrix function as follows. 

Definition 5: A matrix function mf(xl, X2, ... ,XIl ) is 
called a constant matrix function if mf(xl, X2, ... ,x,J are 
the same for all the assignments to Xl, X2,'" ,XII' CM(M) 
denotes a constant matrix function that always equals to the 
matrix M. 

The sixth and the seventh columns of Table 1 show the truth 
tables for constant matrix functions, CMU) and CM(R( ~lf), 
respectively. -

By using the matrix function mfl in the fourth col­
umn of Table I, we can easily see how the first gate in 
Fig. 3 transforms the third qubit Iw): Iw) is transformed to 
mIl (XI, X2) Iw). For example, when XI = 0, X2 = I, Iw) is 
transformed to V-I Iw). 

We would like to stress again the following point: The 
above means that the representation (and so the analysis) by 
matrix functions works even when Iw) is any general quan­
tum state. Indeed, we can use an SCQC even when the input 
states are not simple classical values, i.e., the restriction of 
SCQCs does not say that SCQCs cannot be used when the 
inputs are not classical. (If so, we may not be able to use an 
SCQC for a part of a quantum algorithm.) 

For matrix functions, we introduce two operators "$" 

and "*," which are used to construct DDMFs for a quantum 
circuit in the following sections. 

Definition 6: Let m./'J, /11./2 and m.f3 be matrix func­
tions with respect to Xl to XII' Then m.lI $ m.f2 is de­
fined as a matrix function Tnf such that mf(xl, ... ,XII) = 
mfl (XI, .. , ,XII) . 1I1.f2(XI , ... ,XII) where· means normal ma­
trix multiplication. Let also I be a Boolean function with 
respect to XI to XII' Then I * m.f3 is a matrix function which 
equals to m.f'o,(xl, X2,' .. ,XII) when I(xl, X2,'" ,XII) = I, 
and equals to I when f(XI, X2,' .. ,xll ) = 0. 

Note that the operator * is defined as asymmetric, i.e., 
the first argument should be a Boolean function whereas the 
second argument can be any matrix function. This is due 
to the restriction of SCQCs such that the state of a control 
bit should be II) or 10) (i.e., just classical value) whereas the 
state of a target bit can be any quantum state. 

See examples in Table 2. Note that if both of mIl and 
m.fl are considered to be Boolean functions like 111/2 in Ta­
ble 1, the operator $ corresponds to the EXOR of the two 
Boolean functions. Note also that if m/3 is essentially a 
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Boolean function like m12 in Table I, the operator * cor­
responds to the AND of the two Boolean functions. 

2.4 Decision Diagrams for Matrix Functions 

A matrix function for a quantum function can be expressed 
etliciently by using an edge-valued binary decision diagram 
structure, which we call a DDMF whose definition is as fol­
lows: 

Definition 7: A Decision Diagram for a Matrix Function 
(DDMF) is a directed acyclic graph with three types of 
nodes: (1) A single terminal node corresponding to the iden­
tity matrix I, (2) a root node with an incoming edge having a 
weighted matrix M, and (3) a set of non-terminal (internal) 
nodes. 

Each internal and the root node are associated with a 
Boolean variable Xi, and have two outgoing edges which are 
called I-edge (solid line) leading to another node (the 1-
child node) and O-edge (dashed line) leading to another node 
(the O-child node). Every edge has an associated matrix. 

The matrix function represented by a node is defined 
recursively by the following three rules. 

(l) The matrix function represented by the terminal 
node is the constant matrix function C M(I). 

(2) The matrix function represented by an internal node 
(or the root node) whose associated variable is Xi is defined 
as follows: Xi * (CM(Mt> E9 mjd E9 Xi * (CM(Mo) E9 mj"o), 
where mfl and mii) are the matrix functions represented by 
the I-child node and the O-childnode, respectively, and MI 
and Mo are the matrices of the I-edge and the O-edge, re­
spectively. (See an illustration of this structure in Fig. 5.) 

(3) The root node has one incoming edge that has a ma­
trix M. Then the matrix function represented by the whole 
DDMF is C M(M) E9 mf, where 111f is a matrix function rep­
resented by the root node. 

Fig. 5 An internal DDMF node. 

X7 

• MM- 1 
: 

I 0 \ 

X " 3 '," , 

~
' , " , 

N \.:,~ 
[1] 

Fig. 6 Conversion to the canonical form. 
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Like conventional BDDs, we achieve the canonical 
form for a DDMF if we impose the following restriction on 
the matrices on all the edges. 

Definition 8: A (DDMF) is canonical when ( I) all the ma­
trices on O-edges are I, (2) there are no redundant nodes: 
No node has O-edge and I-edge pointil1g to the same nocle 
with I as the I-edge matrix, ane! (3) common sub-graphs are 
shared: There are no two identical sub-graphs. 

Any DDMF can be converted to its canonical form by using 
the following transformation from the terminal node to the 
root node: Suppose the matrices on incoming edge, O-edge 
and I-edge of a node be M, Mo and M I , respectively. Then, 
if Mo is not I, we modify these three matrixes as follows: (1) 
The matrix on the incoming edge is changed to be M Mo. (2) 
The matrix on the I-edge is changed to be M I Mr; I. (3) The 
matrix on the O-edge is changed to be I. It is easily verified 
that this transformation does not change the matrix function 
represented by the DDMF. See the example in Fig. 6 where 
the matrix on O-edge of the node X2 is converted to I. In the 
example, the matrices I on edges are omitted. 

Note: The concepts of quantum functions and matrix 
jilllctions may be used implicitly in the design method of 
[5], and the decision diagram structure is similar between 
DDMFs and the quantum decision diagrams used in [5]. 
However, the quantum decision diagrams in [5] are used to 
represent conventional Boolean functions whereas DDMFs 
are used for representing matrix functions: the terminal 
node of a DDMF is a matrix 1. Also a weight on an edge 
in DDMFs is generalized to any matrix. Thus, DDMFs can 
be considered as a generalization of quantum decision di­
agrams to treat matrix functions rather than Boolean func­
tions. (As we have seen in Table I, Boolean functions can 
be seen as a special case of quantum functions.) 

We will use the same operators, E9 and *, for DDMFs 
as for matrix functions: 

Definition 9: Let D D M FIIIII ' D D M Fm/i and D D M FmJ) be 
DDMFs that represent matrix functions mfl' 11112 and m13, 
respectively. Then DDMFmfl E9 DDMFmh is defined as a 
DDMF that represents a matrix function mfl E9 m12. Let 
also DDM F f be a DDMF that represents a Boolean function 
f. Then DDM F f * DDM Fmh is defined as a DDMF that 
represents a matrix function f * mf3. 

3. Verification of SCQCs by Using DDMFs 

See two SCQCs in Fig. 7 and Fig. 8. It is easy to see that 
their functionalities are the same. However, the problem is 
how to verify the equality for much larger circuits. Thanks 

Fig. 7 An SCQC (I ). 
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Fig. 8 An SCQC (2). 

to the introduction of DDMFs, we propose a method to ver­
ify the equality of given two n-qubit SCQCs in the follow­
ing. 
Step 1. We construct a DDMF to represent the matrix func­
tion that expresses the functionality for each qubit state at 
the end of each circuit. 
Step 2. We compare two DDMFs for the corresponding 
qubits of the two circuits. The comparison of two DDMFs 
can be done in 0(1) time as in the case of BDDs. 

Step. I is peIformed in a similar manner of constructing 
BDDs to represent each Boolean function in a logic circuit: 
(I) We first construct a DDMF for each primary input Xi, 

and then (2) we pick a gate one by one from the primary 
inputs, and construct a DDMF for the output function of 
the gate from DDMFs for the input functions of the gate. 
The construction of a DDMF from two DDMFs can be done 
recursively as exactly the same as the construction of a BDD 
from two BDDs [12]. In the below, we use a notation Df 
to express the DDMF for the i-th quantum qubit state right 
after the j-th gate. We also use a notation F(D) to denote the 
matrix function (or the Boolean function in a special case) 
represented by a DDMF D. 
Initialization. For each input Xi, we construct a D~ as a 
DDMF for Xi. This is the DDMF for the matrix function (in 
fact, essentially a Boolean function) which is NOT when 
Xi = 1. 
Construction of the DDMFs right after the j-th gate. 
From the first gate to the last gate, we construct Df from 

D;-I as follows. If the i-th bit is not the target bit of the j-th 

gate, Df = D;-I. If the i-th bit is the target bit of the j-th 
. . I 

gate D{ = D;- EEl Dqa1e where Dqa1e is constructed by the 
following two steps. 

(1) For the j-th gate, let us suppose that the positive 
control bits be the PI, P2, ... ,Ih-th bits, and the negative 
control bits be the 111,112, ... ,111-th bits. Then, by the re-
striction of SCQCs, all the matrix functions F(D~~ I) for 
111 = PI, P2, ... ,Pk, 111 , 112, ... ,nl are essentially classical 
Boolean functions. (Therefore, in the following expression, 
we treat F(D~~I) as Boolean functions, and perform logi­
cal operations on them.) Thus we can calculate a logical 

AND of them: 9 = F(D;)~I). F(D;)~I)".F(D;)~I). F(D~~I). 

F(D!t;I)"·F(D~~I). Note that this Boolean function can be 
obtained by DDMF operations since a DDMF represents a 
Boolean function in a special case. 

(2) We construct D(j{/Ie = (DDM F for g) *(DDM F for 
CM(U», where U is a unitary matrix associated with the 
j-th gate. 

Note that all the DDMF operations in the above should 
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Fig. 9 DDMFs after the initialization. 

Table 3 A truth table for F(D!}(I!e)' 

Xl, X2, x3 F(D!}(lle) 

0,0,0 / 

0,0,1 V 

0,1,0 / 

0,1,1 V 

1,0,0 I 

1,0,1 I 

1,1,0 I 

1,1,1 / 

Table 4 A truth table for F(Di). 

DI 
I 

XI,X2,X3 

0,0,0 

0,0,1 

0,1,0 

0,1, I 

1,0,0 

LO,1 

1,1,0 

I, I, I 

D~ 

F(Di) 

I 

V 

N 

VN 

I 

I 

N 

N 

Fig.1O DDMFs after a gale. 

D~ 

be performed efliciently by using Apply operations and op­
eration and node hash tables as the conventional BDD op­
erations [12]. 

We show an example of DDMFs for the quantum cir­
cuit as shown in Fig. 7. At the initialization step, we con­
struct DDMFs for functions, XI, X2 and X3, which are D?, 
Dg and D~, respectively, as shown in Fig. 9. Then we con­
struct the DDMFs for the quantum states right after the first 
gate. Since the target bit is the second bit for the first gate, 
D: = D?, and Dl = D~. To construct D~, we first calculate a 

Boolean function g = F(D?)' F(D~) = XI ·X3. This is because 
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the first bit and the third bit are negative and positive con­
trols, respectively. Then we construct DO"le (DDM F for 
g) *(DDM F for CM(V», whose matrix function is shown in 
Table 3. Finally, we construct D~ = D~(fJD"w whose matrix 
function is as shown in Table 4~ the constr~lcted DDMFs af­
ter the first gate are shown in Fig. 10. 

4. Comparison with the Previous Methods 

In this section we compare our method with the previoLls 
methods to show the advantage of our method. 

4.1 Verification Method Based on Previous Techniques 

A gate (or a circuit) of n qubits can be described by a 2" x 2" 
unitary matrix. For example, the unitary matrix that ex­
presses the functionality of the last gate in Fig.4 can be 
shown as in Fig. II. (We will explain this briefly in Ap­
pendix.) 

Since the same structure (sub-matrices) are often re­
peated in sLlch a 2/1 X 2" unitary matrices (like Fig. 11), clata 
compression schemes based on decision diagram structures 
have been proposed: QuIDDs [14] based on multi-terminal 
binary decision diagrams, and QMDDs [15] based on 
multiple-valued decision diagrams (MTBDDs) [16]. Here 
we explain how the data compression works for QuIDDs. 
QMDDs have a slightly different approach: They use multi­
valued logic instead of binary logic, and the strategy of 
selecting decision variables is a bit different. However, it 
should be 'noted that the two approaches are essentially the 
same when (I) the target circuit is binary logic (10) or II» 
valued (which is our case), and (2) the variable ordering is 
appropriately chosen for QuIDDs (as explained below). 

A QuIDD for the matrix in Fig. 11 can be constructed 
as shown in Fig. 12. In a QuIDD representing a matrix, 
we have decision variables to specify rows (Ro, R I, R2) and 
columns (Co, C" C2) of the matrix as shown in Fig. 11. For 
example, the variable assignment to Ro = 0, RI = 1, R2 = 
1, Co = 0, C I 0, C2 = I) leads to the fOUlih row and the 
second column element, I;i. We can construct a binary de­
cision diagram where each variable assignment corresponds 
to one element of the matrix as shown in Fig. 12. If there 

RoRIR2 

000 1 0 0 0 0 0 0 0 

0 
1+ i 

0 
\- i 

0 0 0 0 o 0 1 
2 2 

010 0 0 1 0 0 0 0 0 

0 
1- i 

0 
1 + i 

0 0 0 0 o 1 1 
2 2 

1 0 0 0 0 0 0 1 0 0 0 

1 d 1 0 0 0 0 0 1 0 0 

1 1 0 0 0 0 0 0 0 1 0 

1 1 1 0 0 0 0 0 0 0 1 

000 001 010 011 100 101 110 III 

COC1C 2 

Fig.n A Unitary Matrix for a 3-qubit gate. 
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are some repeated structures in a matrix, this diagram can 
reduce the necessary memory space to store the matrix in­
formation. 

It is known that interleaving the row and the column 
variables (i.e., the order of Ro,Co,RI,C 1,"') would be a 
good variable order [17]. In such a case:, the variable order 
becomes the same as in the case of QMDDs. In this paper, 
we also consider such a variable order. 

As the conventional decision diagrams, we can imple­
ment any operations (such as addition and multiplication) 
between two QuIDDs based on Apply operations and opera­
tiOIl and node hash tables. Usually, QuIDDs can reduce the 
necessary memory, and the necessary computational time 
for matrix operations for quantum circuit simulations r 14]. 

4.2 Advantages of the Proposed Approach 

First we compare the number of nodes to represent the func­
tionality of a single gate between DDMFs and QuIDDs. Let 
us Llse the last gate in Fig. 4 for our explanation. As ex­
plained before, the QuIDD shown in Fig. 12 represents the 
matrix corresponding to the gate. A DDMF for the same 
purpose can be shown as in Fig. 13. In the DDMF, V is at­
tached on the path corresponding to the variable assignment 
XI = 0"X3 = 1. This is because the gate applies V only when 
.. ll = 0, X3 = 1. 

From the two figures, DDMFs seem to be better than 
QuIDDs. However, this is a bit unfair because the DDMF 

Irig.12 A QuIDD (l). 

!J crt 
Fig. 13 A DDME 
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G2\ 

! 
i 

Fig. 14 A QulDD (2). 

implicitly utilizes the fact that X2 is the target bit. (Thus, 
X2 does not appear in the DDMF.) On the other hand, the 
QuIDD does not use such knowledge. Although the expla­
nation is omitted (see the details in a standard text such as 
[I D, (R I , C I ) corresponds to the input (and the output) line 
on X2 in the original quantum circuit. Thus, if we know that 
X2 is the target bit, we can also choose the appropriate vari­
able order for the QuIDD such that the pairs of variables 
(R I, C I) are put on the bottom. Then, the QuIDD becomes 
smaller as shown in Fig. 14. 

Although there still seems to be a big difference be­
tweelHhe two diagrams in Figs. 13 and 14, the essential 
difference is only a constant factor since we can decrease 
the number of nodes of the QuIDD in Fig. 14 if we consider 
the following two issues. 

(1) If we choose the appropriate variable ordering of 
(R i , C i ) as described above, the corresponding matrix can be 
considered as one such that there are only 2 x 2 matrices 
on the diagonal. (Again we omit the explanation.) Thus, 
for each group of nodes, (R, Ci ), which is not on the bottom 
(e.g., G I, G2 , G3 in Fig. 14), the two paths corresponding to 
(Ri = 1, Ci = 0) and (Ri = 0, Ci = I) always go to 0 terminal 
node. (This is because the matrix is a diagonal matrix, and 
thus the elements in the right upper and the left lower parts 
of the matrix are all 0.) Thus, we can essentially omit such 
paths, and then only two paths are essentially necessary for 
the group of nodes, which means that we can replace each 
group of nodes by one node. (Of course, to do so, we need 
more operations than the standard QuIDD operations.) 

(2) If we liote that the terminal nodes of a DDMF are 2 
x 2 matrices (which has 4 elements), the last group of nodes 
(G4 and Gs in Fig. 14) should not be counted for the fair 
comparison. 

To sum up, in this example, G2, G4 and G5 should not 
be counted since each group leads to only the elements of a 
single 2 x 2 matrix (I or V), and each of G I and G3 should 
be considered as one node; thus there is no essential dif­
ference between the two diagrams. Of course, it is appar­
ent that DDMFs are much more straightforward and easy to 
implement (hence should be faster) than QuIDD based ap-
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proaches for our purpose. However, the above discussion 
makes it clear that there is only a constant factor difference. 

Nevertheless, there is a good reason for us to introduce 
DDMFs: If we consider the verification of the two quan­
tum circuits, the difference may beceme exponential in some 
cases, which will be explained below. 

As mentioned in Sect. 3, when we construct Di from 
I 

the previous step, we always implicitly choose the appro-
priate variqble order: We implicitly put the target bit (the 
i-th bit) on the bottom (more precisely, we ignore the target 
bit) when we calculate Dl. On the other hand, we cannot 

I 

choose an appropriate variable ordering for the QuIDD ap-
proach since the verification by QuIDDs are performed as 
follows: We can verify the equality of the two quantum cir­
cuits by comparing the two QuIDDs representing the two 
quantum circuits. To construct the QuIDD for a circuit, we 
simply multiply matrices cOlTesponding to gates in the cir­
cuit from the left to the right. This can be done by repre­
senting each matrix into a QuIDD. For the first gate, we can 
choose the appropriate variable order. However, if the tar­
get bits are different between the first and the second gates, 
we cannot choose the appropriate variable ordering when 
we construct the QuIDD for the second gate. This is be­
cause the same variable order should be applied for the two 
QuIDDs when we perform the multiplication. Thus, at least 
one of the QuIDDs may become much larger compared to 
the DDMF approach. 

Another important observation is that the resultant 
QuIDD after the multiplication may be larger than the cor­
responding DDMF approach by the following reason. We 
construct each DDMF for each qubit, and thus we can im­
plicitly choose the best variable order (i.e., putting the target 
bit to the bottom) for each qubit. This can be done because 
of the restriction of SCQCs. On the other hand, unitary ma­
trix based approaches (such as QuIDD and QMDD based 
verifications) do not assume such a restriction, and thus they 
do not treat each qubit separately. Accordingly, they repre­
sent the functionalities for all qubits at the same time as one 
unitary matrix corresponding to a part of quantum circuit. 
Therefore, we cannot choose a nice variable order if the ap­
propriate variable order differs for different qubits. (This 
occurs when we mUltiply several matrices corresponding 
to quantum gates with different target bits.) Thus, in the 
worst case, QuIDDs become much larger than DDMFs dur­
ing the verification procedures. It is obvious that the nec­
essary memory and the necessary time for Apply operations 
become smaller if the number of nodes becomes smaller. 
Thus it is apparent that our approach is much more efficient 
than previolls approaches for the purpose of the verification 
of SCQCs. 

It should be noted that there is also an apparent advan­
tage of DDMFs in terms of operation and node hash tables 
as follows. The variables for DDMFs during the verification 
is always the inputs of the circuits (i.e., XI to XII)' In other 
words, we always represent matrix functions with respect to 
the inputs of the circuits. Thus we are always working on 
the the input variables ()i'the ('ircuits. On the other hand, the 
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Table 5 Experimental result. 

rt variables rt gates rt nodes time (sec.) 
30 100 418 0.0050 
30 200 2509 0.035 
30 400 16681 16.23 

c--- 60 100 ~ 1568 0.017 
60 200 12984 10.7664 
60 400 24681 99.58 

variables for QuLDDs differs depending on the gates. More 
precisely, a unitary matrix corresponding to a gate (or a part 
of the circuit) represents a relation between the inputs of the 
gate (or the part of the circuit) and the outputs of that. That 
is, the variables for a QuIDD are always local: The meaning 
of variables Ri and C for a QuIDD changes during the ma­
trix multiplication. (Even though we work on the same vari­
ables Ri and Ci, the logical meaning of the variables changes 
depending on the corresponding quantum gates.) This ap­
parently makes it difficult to share the previously computed 
results in the hash tables. Thus, it is apparent that hash tables 
work much better for DDMFs. 

The above discussion reveals why our verification 
method based on DDMFs should work more efficiently than 
the previous approaches. 

We have implemented a DDMF library by C++, and 
performed a preliminary experiment. Unfortunately, there 
is no large SCQC benchmark, and thus we randomly gener­
ated SCQCs and constructed DDMFs for the generated cir­
cuits. Then the average (of 10 trials) of the total number 
of used nodes and the CPU time (on a Linux system run­
ning at 3.0 GHz with 256 MB memory) for various settings 
(i.e., the numbers of inputs and the gates) are reported in Ta­
ble 5. From the table, we can expect our verification method 
should work for quantum circuits of practical size. 

5. Conclusions and Future Work 

In this paper, we introduced new concepts: SCQCs together 
with DDMFs. As described, they should be useful for the 
analysis and the verification of quantum circuits with a prac­
tical restriction. It should be noted that DDMFs are prov­
ably useful even for quantum circuit design methods since 
DDMFs can be considered as a generalization of the data 
structure used in the design method in [5J. 

We also revealed the essential difference between 
DDMFs and QuIDDs for representing the functionalities of 
SCQCs. From our comparison, we can conclude that our 
approach is much more efficient for the verification of SC­
QCs than a method based on known techniques. Note that 
this does not mean that DDMFs are better than QuIDDs: 
DDMFs are only for SCQCs, whereas QuIDDs can treat all 
kinds of quantum circuits. In other words, in some sense, 
our approach stands in the middle of classical Boolean func­
tions (BDDs) and general quantum circuit specifications 
(QuIDDs or QMDDs). As described, this standpoint can 
be considered as a good trade-off point if we consider de­
signing and analyzing quantum circuits from the practical 
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view point, i.e., when we focus on sub-circuits to calcu­
late Boolean functions for quantum algorithms. Lastly we 
would like to add one more issue: Since DDMFs are edge­
valued decision diagrams, it may be easier to verify quantum 
phase-equivalence checking of SCQCs by DDMFs than the 
method based on QuIDDs r I J 1. Thus, we consider that it is 
an interesting future work to study how efficiently DDMFs 
work for quantum phase-equivalence checking of SCQCs. 

In conclusion, we can expect the introduction of SC­
QCs and DDMFs would promote research toward practical 
and efficient quantum circuit design methodologies. 
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Appendix: A Unitary Matrix for a 3-Input Quantum 
Gate 

As mentioned in Sect. 2.1, one qubit state can be described 
as a 2-dimensional vector. If we consider the quantum state 
of n qubits, the state can be described as a 2"-dimensional 
vector. For example, if we consider three qubits, IXI) = 
a l 10) +13 1 II), IX2) = a2 10) +132 11 ) and IX3) = a3 10) +133 11), 
at the same time, the entire state of the three qubits can 

be described as a 8(= 23)-dimensional vector 

a l0'2a 3 
al0'2f33 
a 11320'3 
a 1132133 
f310'2 a 3 
f31 a 2f33 
f31f32 a 3 
13 1132133 

For example, the first element 0' 1 a2a3 and the second ele­
ment a l 0'2133 correspond to the basis state (lx l) IX2) IX3) =) 
10) 10) 10) and 10) 10) 10, respectively. This vector can be ob­
tained from the tensor product of the three 2-dimensional 
vectors corresponding to IXI ) , IX2) and IX3). See more de­
tails in a standard text such as [I ]. 

Thus, an operation to n qubits at the same time can be 
described by a 2" x 2" unitary matrix. For example, the 
matrix in Fig. I I shows the unitary matrix that describes 
the operation by the last gate in Fig. 4. The second and 
the fourth rows (and columns) correspond to 10) 10) II) and 
10) 11) 11), respectively, and thus we can see that this oper­
ation outputs the state ( I ;i 10) 10) II) + I ~i 10) II) 11 ») if the 
input state is 10) 10) II). This corresponds to the fact that 
the controlled-V gate applies V to IX2) (i.e., IX2) = 10) is 
changed to V 10) = ( I; i 10) + 12i II») when IXI ) IX3) = 10) I I). 
Therefore, we can see that this matrix indeed expresses the 
functionality of the last gate in Fig. 4. 

Shigeru Yamashita is an associate pro­
fessor of Grad uate School of Informat ion Sci­
ence, Nara Institute of Science and Technology. 
He received his B.E. , M.E. and Ph.D. degrees 
in information science from Kyoto Univers ity, 
Kyoto, Japan, in 1993, 1995 and 200 I, respec­
tively. In 1995, he joined NIT Communication 
Science Laboratories, where he engaged in re­
search of computer aided design of dig ita l sys­
tems and new type of computer arch itectures . 
During 2000 to 2005 , he was also a researcher at 

Quantum Computation and Info rmation, ERATO, Japan Science and Tech­
nology Agency. He received the 2000 IEEE Circuits and Systems Society 
Transactions on Computer-A ided Design of Integrated Circuits and Sys­
ter11S Best Paper Award. He is a member of IEEE andlPSJ. 

IEICE TRANS. FUNDAMENTALS, VOL.E91-A, NO.12 DECEMBER 2008 

Shin-ichi Minato received the B.E., M.E., 
and D.E. degrees in Information Science from 
Kyoto University in 1988, 1990, and 1995, re­
spectively. From 1990 to 2004, he was a re­
searcher of NIT Laboratories, and he was a 
Visiting Scholar at Stanford University in 1997. 
Since 2004, he ha's been an associate profes­
sor of Hokkaido University. His research inter­
ests include data structures and algorithms for 
manipulating large-scale logic data. He pub-
lished "Binary Decision Diagrams and Applica­

tions for VLSI CAD" (Kluwer, 1995). He is a member of IEEE, IPSJ, and 
JSAI. 

D. Michael Miller rece ived a B.Sc . in 
Mathematics and Physics from the University 
of Winn ipeg in 197 1 and a M.Sc. and Ph.D. in 
Computer Science from the University of Man­
itoba in 1973 and 1976. respectively. From 
1975 to 1980, he was a facu lty member in the 
School of Computer Science, Universi ty of New 
Brunswick. He moved to the University of Win­
nipeg in 1980 and then to the.University of Man­
itoba in 1982. He joined the Department of 
Computer Science at University of Victoria in 

1987 as Chair. His primary research interests at the moment include the 
synthesis of reversible ancl quantum logic circuits, and dec ision diagrams 
applied to the design of binary and multiple-valued logic systems using 
both conventional and spectral techniques. He is a member of ACM and 
IEEE. 


