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Abstract-In recent years, there has been an increased focus on 
the mechanics of information transmission in spiking neural 
networks. Especially the Noise Shaping properties of these 
networks and their similarity to Delta-Sigma Modulators has 
received a lot of attention. However, very little of the research 
done in this area has focused on the effect the weights in these 
networks have on the Noise Shaping properties and on post-
processing of the network output signal. This paper concerns 
itself with the various modes of network operation and beneficial 
as well as detrimental effects which the systematic generation of 
network weights can effect. Also, a method for post-processing of 
the spiking output signal is introduced, bringing the output 
signal more in line with conventional Delta-Sigma Modulators. 
Relevancy of this research to industrial application of neural 
nets as building blocks of oversampled A/D converters is shown. 
Also, further points of contention are listed, which must be 
thoroughly researched to add to the above mentioned 
applicability of spiking neural nets. 
 

I. INTRODUCTION 

In biology, neural nets are able to transmit signals very 
rapidly and faithfully, even if these signals have spectral 
components well above the mean firing rate of the net, which 
is inconsistent with the notion of a rate coding [3]. Also, 
biological evidence indicates that in the majority of cases 
information is transmitted by groups of neurons rather than a 
single one. This has led researchers to investigate possible 
group-based information transmission mechanisms such as 
relative phase coding, correlation coding, etc. Recordings 
from neuron groups as well as simulation results point to the 
use of Noise Shaping as a transmission mechanism [2,3,4]. 
Noise Shaping is well known from Delta-Sigma-Modulator 
theory [1].  

In its basic form, a Delta-Sigma-Modulator (DSM) consists 
of one or more cascaded integrators, a 1-bit quantizer (ADC) 
and a feedback loop, with the whole loop operating at a much 
higher frequency than the signal to be converted. In addition 
to the input signal, there is a high noise level present in the bit 
stream at the output because of the low number of quantizer 
levels in the ADC. Because this quantizer noise is entered into 
the feedback loop at a different point from the signal, it is 
subjected to a different filter function. The coefficients in a 
DSM are chosen in such a way that input signals in its base 
band are transmitted undisturbed, while the quantizer noise is 
filtered out of the base band towards higher frequencies. This 
behaviour is called Noise Shaping. 

The makeup of the usual technical model of a spiking 
neuron, i.e. the Eckhorn neuron, is very close to a first-order 
DSM, containing an integrator, thresholded spike-generator 
(comparable to the ADC), and a feedback network. A number 

of researchers have shown that biological as well as technical 
spiking neural networks exhibit the same Noise Shaping 
behaviour as a DSM [2,3,4].  
The main advantage of neural nets compared to DSMs stems 
from the difference in modes for achieving a high 
quantization rate, i.e. the oversampling ratio (OSR). While a 
conventional DSM contains only a single loop, which must 
operate at a frequency 10 to 100 times greater than the highest 
signal frequency, a neural net contains numerous modulators 
operating in parallel, with the combined pulse rate of the 
whole net constituting the oversampled signal (Fig. 1). These 
nets can even transmit, with high fidelity, signals well above 
the mean firing rate of a single neuron [2,3]. 

A possible application of these neural nets (including the 
pulse post processing proposed in this paper) in analog-digital 
converters and structural comparison with conventional 
DSMs is given in Fig. 1.  

 
Fig. 1. DSM and spiking neural net for analog-digital 

conversion 

The single loop structure of the DSM and the multiple 
modulator structure of the neural net is clearly evident. What 
has been omitted in the above illustration is the feedback of 
all pulsed outputs to all integrator inputs (Fig. 2), adding an 
additional degree of freedom to the Noise Shaping behavior 
when compared to simple parallel modulators, which would 
only contain a feedback to their own integrator. One 
important parameter defining the behaviour of these nets is 
the makeup of this feedback weight matrix (comparable to the 
coefficients of a DSM loop), which, as shown in [2] acts 
through inhibitory connections to decorrelate the individual 
neuron pulses, thus achieving a ratio of increase in SNR 
(Signal to Noise Ratio) to increase in the number of neurons 
well in excess of a simple parallel connection [8]. This 
behaviour is closer to the performance reported for parallel 
conventional DSMs in [7], where Galton et al. decorrelate 
input and output signals in a similar manner. In section II of 
this paper, we will attempt to show, that in analogy to DSM 
Theory mentioned above, the makeup of the weight matrix 



also influences the amount and size of the Noise Shaping 
exhibited by the network. 

A second important aspect when comparing spiking neural 
networks to DSMs is the shape of the output signal, 
constituting the concatenated spikes for a neural net, and the 
state of the ADC for the DSM. In the former case, signal 
transmission with respect to absolute levels of noise and 
signal is very non-linear, depending on spike length, network 
frequency, variation of spiking frequency among single 
neurons, etc. Also, due to the unipolar nature of the spikes, 
there is always a varying DC offset present. In the latter case, 
the interplay between feedback coefficients and the bipolar 
nature of the ADC acts to very faithfully reproduce the input 
signal with respect to amplitude and offset, no spurious offset 
is introduced into the signal, and signal amplitude is the same 
as at the input. 

Since spike generation is inherent to spiking neural nets, 
the mode of operation of the net can’t be altered. However, to 
be able to apply Noise Shaping in spiking neural nets to real-
world problems, the output signal has to closer reproduce the 
input signal. This can be achieved by post-processing of the 
output signal, as will be shown in section III. After post 
processing, the signal treatment would be essentially the same 
as in the DSM, with a digital filtering and decimation stage 
generating the high-resolution digital representation of the 
analog input signal [1] (Fig.1). 

II. SYSTEMATIC WEIGHT GENERATION 

The weight matrices of spiking neural nets used for Noise 
Shaping can be optimized empirically, with good results. 
However, this necessitates a great deal of knowledge about 
both neural networks and DSMs, as well as being by its 
nature a time consuming process. This obstructs the technical 
use of neural networks as analog-digital converters and limits 
the number of network permutations that can be tested in a 
given time span. The goal has to be, then, to automate this 
weight generation process to increase its speed, improve 
performance, and make it independent of knowledge owned 
by the user.  

A. Motivation of Genetic Algorithms 

The essential parameters to be optimized for a given 
network (network defined by topology and mean firing rate of 
single neurons) are the SNR for a given input signal and the 
spectral shape of the Noise Shaping (noise reduction in the 
baseband, no spikes or intermodulatory residues), so as to 
avoid detrimental network modes like oscillations. Because 
these performance characteristics can not be computed 
directly from the weight matrix, ordinary gradient-based 
optimization algorithms can not be used. Stochastic, 
unsupervised search methods like genetic algorithms are more 
suited to the task. Genetic algorithms perform their search 
through a mixture of stochastic search (mutation), different 
types of gradient search needing no information about the 
direction of the gradient (mating, crossover), and parallelism 
(large number of individuals, subpopulations). These 
algorithms are therefore ideally suited for optimizing an 
objective function which contains no direct relationship 
between network performance and network parameters and 
about whose hypersurface (shape and range) little a priori 
knowledge can be gathered [5,6]. For the simulations 
described herein, the Genetic Algorithm Toolbox for Matlab 
by Chipperfield et al. has been employed [5]. Individuals in 
the population utilized by the genetic algorithm were 

composed of a linear representation of the weight matrix. For 
a discussion of the effects of such a representation on the 
performance of the genetic algorithm, see Stanley at al. [9]. 
To give a short description of the GA employed for 
optimizing the network weights: A multi-population GA was 
utilized, containing 10 populations with 30 individuals, 
mutation rate of 0.004 per single gene, elitism activated, i.e. 
the top 15 percent parents are copied unchanged in each 
generation. Crossover is done on a gene by gene (i.e. weight 
by weight) basis, with a probability of 0.3. This probability is 
further equally subdivided into two modes of crossover. The 
first mode of crossover exchanges the gene (weight) between 
the two individuals, the second mode of crossover computes 
the average of the two genes and inserts this average in 
exchange for the original gene in both individuals. Individuals 
are selected for crossover, i.e. producing offspring, with 
stochastic universal sampling, meaning they are allowed to 
produce progressively more offspring based on their own 
fitness (value of the objective function). Migration between 
subpopulations is done every 20 generations on a ring 
structure basis, i.e. a subpopulation would exchange 15 
percent randomly selected individuals with each of its two 
neighbors. 

The algorithm starts out with randomly generated 
individuals, whose weight ranges are chosen to be between 0 
and –0.2 because of theoretical considerations [2]. The fitness 
of each individual is computed according to (1) - (2) or (3). 
Individuals are selected for crossover based on their fitness, 
and the offspring produced by this crossover is subsequently 
mutated. The fitness of the offspring is computed, and the 
subpopulations are newly assembled from the best of the 
offspring and the best 15 percent of the parents. Every 20 
generation, migration would be done at this point. The 
algorithm then loops back to the crossover selection, since the 
fitness values are already known, consisting of the old fitness 
values of the parents and the newly computed fitness values 
of the offspring. Usually, populations converged somewhere 
around the 400th generation, so the algorithm was terminated 
after 500 generations. The longest run was carried out for 
1200 generations, without appreciable further improvements.  

The settings and algorithm for the GA have been adapted 
from a multi-population GA example contained in the 
toolbox. For further toolbox information, e.g. a description of 
stochastic universal sampling, see the documentation 
provided with [5]. 

The structure of the integrate-and-fire neural network is 
given in Fig. 2, it is composed of the spiking neurons, a 
weight matrix linking all pulse outputs with all integrator 
inputs, as well as a weight vector feeding the input signal to 
the neuron integrators. The neurons are ordinary non-leaky 
integrate-and-fire neurons, containing an integrator (receiving 
the summed input signal), comparator, and a pulse generator 
which produces the output pulse if the integrator has reached 
a certain threshold and which also resets the integrator. There 
is no refractoriness period implemented in this model, i.e. the 
integrator is open to input again immediately after being reset 
by the pulse. The combined output of the network is 
composed of a sum of all the pulse outputs.  



 
Fig. 2. Structure of the integrate-and-fire neural network 

The weight matrices represented by the individuals were 
fed into this integrate-and-fire neural network in each 
generation, simulated, and the performance characteristics 
required by the objective function computed.  

B. Detrimental Effects 

The design of a proper objective function plays a large role 
in the performance of the genetic algorithm, i.e. its 
convergence and final result. As mentioned above, 
optimization criterions were the SNR and form of the Noise 
Shaping. Additionally, the mean firing rate of the neurons has 
to be constrained, since otherwise, the SNR would simply be 
increased by decreasing the average value of the weights, 
thereby increasing the mean firing rate and accordingly the 
OSR. Due to the constraints of the toolbox, there is only a 
single objective function, which is minimized by the 
algorithm. A possible objective function to achieve the above 
mentioned criteria is (1). 

 
 

(1) 
 
With Kσ defined as: 
 
 

(2) 
 
 
 
The first addend acts to increase the SNR, the second to 

constrain the mean firing rate f̄ Neuron (averaged over all 
neurons) to 2 kHz, and the third acts to keep a check on the 
variations in firing frequency between the individual neurons, 
but only above a threshold as defined by Kσ. This ensures that 
there is a certain variation between neurons (to randomize the 
timing of individual pulses), but not too much (so that each 
neuron contributes about the same to the overall output 
signal). The factors weighting the addends were chosen in 
such a way that each of the above mentioned criteria has 
about the same contribution to the overall objective function, 

thus ensuring a balanced optimization process. The Decibel 
levels used with the SNR expect a SNR for final optimization 
of about 20-30 dB (specific for the chosen network topology 
and mean firing rate), this way also ensuring an equal 
weighting relative to the other addends.  To ensure an equal 
frequency response over the whole base band, the properties 
(SNR, Noise Shaping) were computed with a random signal 
frequency for each individual in every generation.  

However, this objective function did not achieve the desired 
results. The weight matrix generated by the genetic algorithm 
led, in all 20 trials of it, to a PLL (Phase locked Loop)-like 
mode of the network. This means that if there is no input 
signal present, the quantizer noise is approximately Noise-
Shaped (Fig. 3, upper caption), with certain spurious 
elements, whereas in the presence of an input signal, the 
network locks onto the input signal and oscillates, thereby 
apparently increasing the SNR, but this SNR does not 
represent a true signal transmission characteristic of the 
network (Fig. 3, lower caption). 

 
Fig. 3. Frequency spectrum of the summed output signal of 

the network, detrimental ‘PLL-Mode’ (Upper caption without 
input signal, lower with input signal present.) 

 
This PLL-like mode can be seen in Fig. 3 from the sloping 

borders to the left and right of the input signal peak at 900 Hz. 
A true Noise Shaping behavior would only produce one peak 
directly at the signal frequency. The strong similarity between 
this diagram and the simulation results presented in [4] 
suggest that the network discussed in that paper has also 
entered a PLL-mode, thus the SNR results from the 
simulation reported by Marienborg et al. have to be 
questioned. This paper also offers an explanation for the 
apparent difference in results between simulation and 
hardware implementation in [4]. 
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Apart from the difficult to formulate objective function and 
its effect on the performance of the algorithm, another 
detrimental effect is the stochastic variation in the 
performance characteristics due to the random initialization of 
the integrators contained in the neurons at each simulation. 
While these variations obviously affect the characteristics 
only to a slight degree, they do have impact on the final 
convergence of the genetic algorithm. As outlined in Fig. 4, at 
the start of the optimization (upper caption), the difference in 
performance between individuals is great enough to mask the 
stochastic variations due to initialization and a definite 
direction for optimization is present, but with almost 



converged populations (lower caption), the stochastic 
variations from generation to generation completely obscure 
the possible direction of optimization. 

 

 
Fig. 4. Genetic Algorithm: Zoom on performance of first and 
last generations, displaying objective function value for best 

performing individual in each subpopulation. 
 

This behavior has been partially counteracted by increasing 
the number of simulations in accordance with the progress of 
the optimization and averaging over these simulations, with 
the resultant penalty of a strong increase in computing time. 

C. Enhancement of Noise-Shaping Properties 

The objective function arrived at after numerous trials, 
which shows true Noise Shaping behavior and a definite 
increase in performance compared to randomly initialized 
weight matrices, is given in (3). 

 
 

(3) 
 

The first two addends are identical to (1), acting to increase 
SNR and constrain the average neuronal firing frequency to 2 
kHz. The last addend envelops each individual mean neuronal 
firing frequency f̄ j  with a bell-shaped curve of extension fnorm 
and offset Coff and takes the product of the value of the bell 
curve of all neurons (NN number of neurons), finally summing 
up this product for all baseband frequency bins Nfmax. C is a 
factor weighting this measure of frequency separation to 
ensure equal contribution to (3) relative to the other two 
addends. C is of course strongly dependent on the number of 
neurons, frequency bins, fnorm, and on Coff. It has to be chosen 
in such a way that a reasonably good frequency separation (as 
estimated from the presence/absence of spurious frequency 
spikes in the spectrum of the output signal) can be obtained, 
i.e. that the last addend has about a value of 1 for an 
optimized network. The principle behind this new measure of 

frequency separation for the individual neurons is illustrated 
in Fig. 5. Coff can be used for adjusting the separation 
measure, low Coff (e.g. 0.1) enforces more stringent separation 
of the individual frequencies. By adjusting fnorm, the distance 
between separated frequencies can be controlled. 

 
Fig. 5. ‘Gaussian’ Measure of frequency separation 

The effect of this is to have a ‘soft’ measure of 
nearness/separation of the neuronal frequencies from each 
other, which is more effective in separating individual 
frequencies as a measure based on standard variation (2). The 
spectral behavior of two of these networks evolved for 
different mean neuronal firing frequencies is given in Fig. 6. 
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Fig. 6. Frequency spectrum of the summed output signal of 
the network, exhibiting true Noise Shaping behavior. 

 
As can be seen from Fig. 6, the networks evolved according 

to (3) exhibit true Noise Shaping behavior, with a 
corresponding increase in noise attenuation when the network 
frequency is increased. Performance characteristics for the 
two networks are given in table 1. 

TABLE I 
PERFORMANCE CHARACTERISTICS OF THE FINAL NETWORK 

 Network 1 Network 2 
Mean firing frequency of individual neurons 2,14 kHz 20,3 kHz
Standard deviation 0,83 kHz 7,26 kHz
Oversampling ratio (OSR) 10,7 101,5
Signal to noise ratio (SNR) (10 Hz-1 kHz) 22,1 dB 52,9 dB



Table 1 clearly shows that for a increase in mean firing 
frequency of factor 10, the corresponding SNR increases by 
more than 30 dB. This is well in excess of the performance 
reported in [2,4] and represents a definite advancement in 
employing spiking neural nets for Noise Shaping. Previously, 
authors have argued [2], that due to their one-integrator 
structure, neurons can not achieve Noise Shaping beyond first 
order (20 dB/dec OSR increase). However, by carefully and 
thoroughly optimizing the feedback loop (i.e. the inhibitory 
weight matrix), one can achieve a Noise Shaping behavior 
significantly higher than first order. 

D. Future Developments 

While a significant increase in the order of the Noise 
Shaping has been achieved beyond those previously reported 
[2,3,4], the objective functions used herein have only 
concerned themselves with optimizing OSR and the proper 
spectral operation of the network. Still, these objective 
functions have reached the limit of the genetic algorithms 
used for optimization [5]. To be able to use this network as 
part of an analog-digital converter on a VLSI-IC, there are a 
number of other directives one must optimize, e.g. sparsity of 
the connection matrix, emphasis on easy to implement local 
connections, ability to handle various mixtures of input 
signals or robustness to mismatch or statistical variations of 
the components on the IC.  

A number of genetic algorithms have been developed for 
multiobjective function optimization [6], which could be 
tested and/or modified to extend the weight optimization to 
the above mentioned directives, computing the pareto optimal 
fronts of the various optimization criteria, along which the 
circuit designer can choose a suitable point with a 
corresponding tradeoff between these criteria. 

Also, in this section, only the weight optimization of a 
given network topology has been researched. Topology and 
weight adjusting neural networks, as presented in [9], could 
offer a further increase in performance or at least 
applicability, with the circuit designer e.g. defining the width 
of the base band, the SNR, and the mean firing rate of the 
single neurons, and the genetic algorithm deciding on the 
number of neurons, network topology, and the connection 
weights. 

Additionally, as can be seen from Fig. 6, the signal 
transmission in a spiking neural net is very non-linear, with an 
increase in OSR resulting not in a lowering of the noise floor 
(comparable to conventional DSMs), but in an increase of 
output signal amplitude, while the input signal to the network 
was the same for both simulations. Some of the Noise 
Shaping may be lost due to the noise floor caused by the 
random pulses. This behavior may also be influenced by the 
composition of the inhibitory weight matrix, and thus 
represents an additional optimization criterion. 

III. POST-PROCESSING OF SPIKING OUTPUT SIGNAL 

As has been mentioned in the introduction, to be able to 
better handle the output signal of a spiking neural net, i.e. 
apply ordinary decimation filters, it has to undergo some form 
of post-processing [1]. This post-processing must achieve two 
main directives, minimize spurious DC-contributions and 
establish an improved relationship between signal amplitude 
at the input and output of the network, which is ideally 
independent of network parameters such as spike duration and 
mean firing frequency.  

Previous implementations [4] simply computed the 
frequency spectrum of the output signal while only catching 
the leading edge of each pulse, thereby implicitly setting the 
pulse duration to the minimum time step of their measuring 
equipment. This avoids generating any valleys or peaks in the 
spectrum at the 1/T pseudofrequency (T being the pulse 
duration), but has the additional effect of making the output 
signal and noise amplitudes dependent on the minimum time 
step of the measuring equipment (Fig. 7). 

 
 
Fig. 7. Time base dependent amplitudes at the network output 

(from top to bottom, time bases of : 10µs, 1µs, 0.1µs, 
respectively). 

 
In order to establish a simulation- or measurement-

timebase-independent relationship between input and output 
signal, the individual pulse contributions to the output signal 
have to have a fixed duration. Concurrently, the pulse 
durations in the output signal have to be varied to avoid the 
above mentioned spurious effects at the 1/T pseudofrequency 
and harmonics. One possible way of achieving this is to 
convert the summed amplitude of the output spikes (upper 
caption Fig. 8) to a pulse duration signal, i.e. accumulating 
input spikes and releasing them at a constant rate. By doing 
this, a large number of amplitude levels (depending on the 
number of overlapping pulses) is transferred into a signal with 
two discrete amplitudes and a variable duration, coming 
closer to the PWM (Pulse Width Modulation)-signal of the 
output ADC in a DSM. This is done by applying the 
following three equations consecutively during each 
simulation time period. 

 

∑
=

+−=
NN

i
i tFtAtA

1
)()1()( (4) 

 
 
 





<
≥−

=
1)(for   )(

1)(for    1)(
)(

tAtA
tAtA

tA (5) 
 
 
 





<
≥

=
1)(for   0
1)(for    1

)(
tA
tA

tAO
(6) 

 
 
In (4), all neuron output time functions Fi(t) are summed 

and added to the accumulator state from the previous 
simulation time step A(t-1). The neuron output time functions 
Fi(t) are discrete-valued, 0 if no pulse is present, and 1 



starting at the moment the integrator reaches the threshold and 
continuing for a set number of time steps, the fire pulse 
duration. Following this, in (5), the accumulator is decreased 
by a constant amount (in this case 1), until it reaches zero, 
with t being the number of discrete simulation time steps. The 
output signal of the accumulator AO(t) is given as the 
thresholded accumulator state A(t) (6). The effect of this 
algorithm in shaping the output signal is illustrated in the 
lower caption of Fig. 8. To elaborate on this algorithm, take 
e.g. the pulse accumulation immediately following time step 
6.15 ms in the upper caption of Fig. 8. The output of the 
accumulator AO(t) (lower caption Fig. 8) immediately 
switches to high and stays high to about 6.18 ms, when the 
accumulated pulses in A(t) have been decreased enough by (5) 
to fall below the threshold expressed in (6). 

 
Fig. 8. Amplitude-summed output spikes and amplitude-

duration converted network output signal. 
 
By applying this algorithm, an increase in SNR of 2-3 dB 

for the given example can be achieved. This is mainly due to 
raising the output signal amplitude, thereby increasing 
distance to the background noise level of the network. 
However, the algorithm has not been fully successful in 
suppressing spurious effects at the 1/T pseudofrequencies 
(Fig. 9). This is caused by the fact that the algorithm acts 
primarily to increase pulse width, leaving the minimum pulse 
width unchanged if only a single pulse is present at a given 
time (e.g. time step 6.2 ms in Fig. 8). Pulses are only 
decreased in duration if they happen to overlap each other.  

A new algorithm was developed that not only lengthens the 
duration of the pulses like the previous one, but also shortens 
them if they are situated in a time slot of very limited network 
output activity. 

 
Fig. 9. Spurious effects in the network output spectrum at the 
1/T pseudofrequencies due to the fixed minimum pulse width. 

 
The following equation illustrates the new algorithm: 
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With u(t) being the heaviside function, (7) has the effect of 

adding a variable pulse length to the accumulator, starting at 
the beginning of the original pulse u(t) and ending at a time 
u(t+εnorm*Nfp) dependent on the number of pulses at the 
starting time Nfp, normalized for best performance by the 
normalization factor εnorm. The accumulator decrement and 
computation of the accumulator output AO(t) are still 
computed unchanged according to equations (5) and (6). The 
difference between equations (4) and (7) lies in the temporal 
extension of the factor added to the accumulator. In (4), the 
fixed duration of the fire pulse, represented by Fi(t), is added 
to the accumulator, whereas in (7), if a fire pulse occurs, the 
current number of fire pulses Nfp is computed and the 
increment of the accumulator is accordingly adjusted in 
duration, by increasing accumulator increment length with 
increasing number of pulses. This increase in duration is 
adjusted with εnorm so as to achieve the best SNR and 
similarity to conventional DSM output of the output signal, 
while preventing accumulator overflow. Basically, the 
equation acts to weight the pulse durations by a factor 
dependent on a moving average of the pulse intensities. By 
keeping the temporal length of the accumulator addend 
variable in this way, pseudo-frequency-effects as in Fig. 9 can 
be avoided. Fig. 10 illustrates the output behavior of the 
modified accumulator: 

 
 

Fig. 10. Comparison of final duration-adjusted accumulator 
output signal and ADC-Output of conventional DSM with 

same input signal (sine wave) 
 
In Fig 10, one can see a close resemblance between the 

accumulator output signal and the ADC-Output of a 
conventional DSM [1]. The unipolarity of the pulse output 
has been successfully converted to a bipolar pulse-duration 
signal, incorporating the same aspects of signal information as 
a conventional DSM and facilitating further signal processing 



according to intellectual property (IP) derived from DSM 
theory. 

IV. CONCLUSION 

We have presented a scheme for automatic weight 
generation to be used in the application of networks of 
Integrate-and-Fire Neurons to Noise Shaping. As well, we 
have shown that appropriate post-processing of the output 
signal can improve output SNR, establish a better relationship 
between input and output signals, and align the network 
output signal with the ADC output of conventional DSMs. 
While the research discussed herein represents only a small 
step towards an eventual technical application of these 
networks as part of an oversampling analog-digital-converter, 
we have shown that reusing parts of the IP accumulated in 
DSM design, supplemented by appropriate newly developed 
algorithms, can significantly improve the overall performance 
of these nets. 

Additional work is underway concerning several other 
aspects of neuronal Noise Shaping, e.g. various modifications 
in the feedback structure are being researched to significantly 
raise the order of noise shaping beyond the 30 dB/dec 
reported in this article, because this noise attenuation still falls 
far short of those reported for ordinary DSMs [1]. The 
eventual goal is some form of hybrid between DSMs and 
spiking neural nets, incorporating useful elements from both 
domains to form a new kind of analog-digital converter. 
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