
Title
Effectiveness of an Integrated Case Tool for
Productivity and Quality of Software
Developments

Author(s) Tsuda, Michio; Ishikawa, Sadahiro; Ohno, Osamu
et al.

Citation Transactions on Information and Systems. 2006,
E89-D(4), p. 1470-1479

Version Type VoR

URL https://hdl.handle.net/11094/50956

rights copyright©2006 IEICE

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University



1470
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.4 APRIL 2006

PAPER

Effectiveness of an Integrated CASE Tool for Productivity and
Quality of Software Developments

Michio TSUDA†,††a), Member, Sadahiro ISHIKAWA†††, Nonmember, Osamu OHNO†††,
Akira HARADA†,†††, Members, Mayumi TAKAHASHI††, Nonmember,

Shinji KUSUMOTO†, and Katsuro INOUE†, Members

SUMMARY This is commonly thought that CASE tools reduce pro-
gramming efforts and increase development productivity. However, no pa-
per has provide quantitative data supporting the matter. This paper dis-
cusses productivity improvement through the use of an integrated CASE
tool system named EAGLE (Effective Approach to Achieving High Level
Software Productivity), as shown by various data collected in Hitachi from
the 1980s to the 2000s. We have evaluated productivity by using three
metrics, l) program generation rate using reusable program skeletons and
components, 2) fault density at two test phase, and 3) learning curve for the
education of inexperienced programmers. We will show that productivity
has been improved by the various facilities of EAGLE.
key words: CASE, productivity, quality, reuse

1. Introduction

Software systems are becoming larger and more complex
day by day. Demand to reduce the development cost and
time is greatly increasing. To overcome this problem, it
is essential to increase the productivity of individual engi-
neers. Since the early the 1980s, it has been expected that
the use of CASE (Computer Aided Software Engineering)
will improve software productivity and quality. Many com-
panies and researchers have been studying CASE tools ex-
tensively [3], [6], and have developed CASE tools with sub-
stantial effort. These tools are used for developing various
software not only inside the companies, but also outside the
companies, i.e. for outside customers. The following are
some features of those CASE tools.

(1) They support standardized development methods pro-
vided by each company.

(2) They intend to integrate tools for system design, pro-
gramming and testing.

(3) They have a program generation facility with software
reuse techniques.

As mentioned above, increasing productivity is ex-
pected by introducing these CASE tools. However, to date,
precise and quantitative analysis of the effects of the use of
CASE tools has been scarcely reported [2]. In this paper, we
will discuss the effects of the use of CASE tools on produc-
tivity, using various data which were collected in Hitachi

Manuscript received June 17, 2005.
Manuscript revised October 7, 2005.
†The authors are with the Graduate School of Information Sci-

ence and Technology, Osaka University.
††The authors are with the Hitachi Systems & Services, Ltd.
†††The authors are with the Hitachi, Ltd.
a) E-mail: m-tsuda@hitachi-system.co.jp

DOI: 10.1093/ietisy/e89–d.4.1470

through many projects for developing business application
systems [9].

Hitachi, as other computer manufacturers have done,
has been studying and developing CASE tools, especially
integrated CASE tools.

Hitachi has a company-wide standardized system de-
velopment method, named HIPACE (Hitachi High-Pace).
Based on this method, an integrated CASE system named
EAGLE [8] has been developed which is discussed in detail
in Sect. 2. The EAGLE project started at the beginning of
the 1980s with facilities still being enhanced.

Not only the EAGLE system has been developed, but
they have started education on its use. Approximately 30
percent of the system engineers and programmers have com-
pleted the education and they develop business application
systems using EAGLE.

The aim of this paper is to describe the improvement
of productivity through the use of various metrics, i.e., pro-
gram generation using reusable program skeletons and com-
ponents, fault density at two test phases, and learning curve
(which shows the degree of effort needed for an inexpe-
rienced developer based on the elapsed time for develop-
ment). We will compare various data collected from the
early the 1980s through the 2000s. An early version of EA-
GLE was used in the 1980s and the two enhanced versions
of EAGLE was used in the 1990s and the 2000s. From these
comparisons, we will show that enhancements of EAGLE
facilities improve productivity. For example, generation rate
has improved from 60% in the 1980s to 80% in the 1990s.
Fault density has also improved in the sense that more faults
have been detected at an earlier phase of program devel-
opment. Furthermore, advance in the learning curve in the
1990s indicates the less effort for learning the enhanced sys-
tem than the previous one. It also shows less elapsed time
for development.

This paper consists of the following sections. Section 2
describes the features of EAGLE, comparing data collected
during the 1980s, the 1990s and the 2000s. In Sect. 3, we
analyze the program generation rate of standard program
skeletons and components. Section 4 discusses the faults
found at the test phase. In Sect. 5, the learning curve for
programmers are defined, and two sets of project data are
presented. We conclude our discussion and consider future
research in Sect. 6.

Copyright c© 2006 The Institute of Electronics, Information and Communication Engineers



TSUDA et al.: EFFECTIVENESS OF AN INTEGRATED CASE TOOL FOR PRODUCTIVITY AND QUALITY OF SOFTWARE DEVELOPMENTS
1471

Table 1 Summary of HIPACE and EAGLE for system development.

2. Overview of EAGLE

HIPACE is a company-wide standardized software develop-
ment method in Hitachi. It was based on the waterfall model
in the 1980s. In the 1990s, it was added on object oriented
model. In the early the 1980s, we began to develop EAGLE
as an integrated CASE tool system based on HIPACE.

As seen in Table 1, facilities supported by EAGLE have
been enhanced. The enhanced facilities in the right column
of Table 1 are additional ones developed in the 1990s, so
that they can be explicitly distinguished. The early version
of EAGLE in the 1980s is called EAGLE1 and the enhanced
one is called EAGLE2 in the 1990s and we have developed
EAGLE3 in the 2000s by adding new features to EAGLE2.

EAGLE1 and EAGLE2 target the large-scale busi-

ness application systems on Hitachi mainframe computers.
EAGLE3 targets client/server systems and Web applica-
tions [4].

Here we describe each phase of HIPACE and EAGLE
in detail.

System Design:

The design phase consists of 3 sub-phases, data analysis,
system specification design and program design. Each sub-
phase is as follows.

• Data analysis: The data items used in the application sys-
tems are collected and defined in the data dictionary. A
data item consists of the data attribute such as data name
(e.g. English name, Japanese name), data type (e.g. nu-



1472
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.4 APRIL 2006

meric, character, real), and data length. In EAGLE2,
not only data attribute but also constraints and procedures
are defined and are associated with each data item in the
data dictionary. For example, data item classified as ‘date
type’ has constraints of the values such as the range of
year, month, and day. This data item is associated with
a procedure which converts from Japanese date into the
Christian Era date. The role of the data dictionary is to
integrate and manage information resources for business
application systems.
• System specification design: Data bases, screens, reports,

files/records are designed and the specifications contain-
ing these designs are created, EAGLE manages these
specifications in the specification libraries and controls
access to these specifications. Designers can define these
specifications interactively according to EAGLE’s system
design menus.
• Program design: Program structure and interfaces be-

tween programs are defined at this phase. The design is
generally accomplished so that as many as possible pro-
gram components in the library are reused. Also the new
program components designed at this phase are stored in
the library, so that these components can be reused for
other projects in the future. Some program components
were conventionally designed as functional procedures
(e.g. file I/O procedures, error handling). In addition to
these, program components that interact with associated
data items have been added in EAGLE2, and business
logic components have been added in EAGLE3. These
program components are described in Sect. 3.
EAGLE3 supports developing programs that have 3-tier
architecture. A common segmentation of functionality
within a 3-tier architecture is: (1) the Presentation Tier,
which contains the user interface logic, (2) the Applica-
tion Tier, which contains the business and system rules
logic, and (3) The Database Tier, which contains the data
and database logic. 3-tier architecture can ensure scala-
bility and availability of the system.

Program Development:

The program development phase consists of 3 sub-phases,
program coding, test case design, unit test.

• Program coding: EAGLE generates most parts of the
programs using the data dictionary, the system specifica-
tions, and the program components. The remaining parts
are hand-coded at this phase. EAGLE provides effective
diagrams, named problem analysis diagrams (PAD) [5].
PAD is a tree structure chart for programming and test-
ing.
• Test case design: Test conditions, test data, and expected

results are prepared in advance. In the early the 1980s,
test cases were designed by hand using standard forms
(work-sheets) defined in HIPACE. In the 1990s, some
test cases have been generated automatically by EAGLE2
based on standard program components used for the pro-

gram generation. Details of test case generation tech-
niques are described in Sect. 4.
• Unit test: Program modules are executed according to the

test cases. If faults are detected in the program, they are
corrected at this phase. The quality of the program can
be validated through this testing process. EAGLE ana-
lyzes source programs generated by itself and provides
command sequences through the unit test tool. Follow-
ing these command sequences, programmers have to add
test data/ conditions to the test commands, and proceed
with the unit test interactively. The test coverage rate is
calculated by EAGLE automatically.

Test:

The test phase is divided into the integration test and the
system test phases. Limited facilities are supported for this
test phase by EAGLE2.

3. Reuse Analysis

3.1 Program Skeleton and Component

It has been reported that software reuse is one of the effec-
tive strategies to improve program productivity [1]. We have
measured the automatic generation rate of software to evalu-
ate productivity. EAGLE offers facilities for software reuse
at the programming phase.

A partial code collection representing the overall pro-
gram structure is called a skeleton. A unit of a complete
and reusable procedure is called a program component or
simply component. Various skeletons and components are
standardized and stored in the library and are provided by
EAGLE for reuse. Figure 1 shows the flow of generating
source code by EAGLE’s. EAGLE1, EAGLE2 and EA-
GLE3 deal with phases 1, 2 and 3 in Fig. 1, respectively.

Skeletons are not complete code by themselves. Pro-
grammers have to insert appropriate code into the skele-
tons. For example, a file update skeleton consists of file
open code, record search code, record update code and file
close code. This program structure can be widely applica-
ble to most file update programs. Programmers only insert
record search/update code into this skeleton to obtain com-
plete programs. Those skeletons are mostly 500–1000 lines
long. We classify these skeletons into batch program type
and on-line program type as shown in Table 2.

The structure of the batch program skeletons have not
changed basically. But the structure of the on-line program
skeletons have changed by the change in the architecture.
We developed the 3-tier architecture skeletons in EAGLE3.

Function process components are procedures com-
monly used in various programs. They are classified into
those for general purpose and those for specific application
domains. In the 1990s, in addition to function process com-
ponents to execute common procedures, data process com-
ponents to access commonly used data items were added:
For example, there is a program component associated with



TSUDA et al.: EFFECTIVENESS OF AN INTEGRATED CASE TOOL FOR PRODUCTIVITY AND QUALITY OF SOFTWARE DEVELOPMENTS
1473

Fig. 1 Flow of generating source code by EAGLE’s.

Table 2 Types of standard skeletons. data item “birthday”, which decomposes “birthday” into
“year”, “month” and “day” and displays them on a screen.
This program component is very useful to the systems hav-
ing access to data item “birthday”. Table 3 shows the types
of standard components. We prepared the 200 standard data
process components. The name of data process components
is specified in a data dictionary. Table 4 shows the structure
of a data item in the data dictionary. In the 1980s only the
attribute of the data was defined. In the 1990s, the program
component names were added to them.



1474
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.4 APRIL 2006

Program components for input/output data conversion
define how to process the data items. In the case of Table 4,
the input for the data item “BIRTHDAY” is converted from
Japanese date to Christian Era, and also the output is con-
verted vice versa.

The generation program example using “LX06” is
shown below.
MOVE BIRTHDAY TO D06-I-YMDWA

CALL ‘LX06’ USING D06-TBL

MOVE D06-YMD TO BIRTHDAY

The data check processing parts and the input/output
processing parts occupy on average 40% of the data pro-
cessing parts in the data input program. We think that the
generation of these processing parts is very important and
effective. A high program generation rate can be attained
by using the input and output processing components and
skeletons.

In the 2000s, in addition to data process components,
business logic components were added in EAGLE3. That is,
several business logics are registered to business logic dic-
tionary as components and reuse the component according
to the requirements. Here, the business logic means com-
mon calculation, counting, checking formulas and so on.
“Calculation of price” and “Checking the existence of cus-
tomer phone number” are actual examples of the business
logic.

3.2 Program Generation with Standard Skeletons and
Components

To promote reuse of program skeletons and components,
the facility to generate programs with skeletons and com-

Table 3 Types of standard components.

Table 4 Example of data dictionary, birthday.

ponents was enhanced. The developer needs only select
skeletons, components and screen/report/file specifications,
so that they can generate fairly large parts of entire pro-
grams. In addition, EAGLE2 automatically generates check
procedures and conversion procedures for data items which
are defined in the screen/report/file specifications.

The program generation rate is defined as:

Program generation rate=
Lg

Lt

Lg: Lines of skeleton and component code
generated by EAGLE1 or EAGLE2.

Lt: Total lines of program code including
programmer’s hand code.

3.2.1 Program Generation in EAGLE1 and EAGLE2

We collected two sets of data from 43 and 44 programs
generated by EAGLE1 and EAGLE2, respectively. In both
cases, the generated programs were integrated systems for
local city offices. There is no significant distinction between
their feature. The average generation rate of 43 programs
by EAGLE1 was 60% and that of other 44 programs by
EAGLE2, 81%. Furthermore, we classified the programs
according to program types such as batch programs and on-
line programs. We further classified them, and averaged the
generation rate for each type. Table 5 shows the difference
of program generation rate between EAGLE1 and EAGLE2.

In most cases, the generation rate has improved approx-
imately 20% by EAGLE2. This improvement is mostly due
to the enhancement for generating program components as-
sociated with a data item. The generation rate for the data
checking programs is low (73%), compared with other pro-
grams of batch types (report generation: 98%, file process-
ing: 97%), since not enough program components for them
are provided even in EAGLE2.

In the past, program components were developed and
designed by extracting reusable blocks from each program.
These were performed from the view point of individual de-
signers. In the 1990s, the components for data access to
each data item were developed and stored in the data dictio-
nary. These components are automatically reusable to every
project.

Also we can see that the generation rate for on-line pro-
grams is less than that for batch programs. Each batch pro-
cessing system mostly uses one of the 31 types of skeletons
without making any modifications. For on-line systems,
however, it is difficult to reduce programmer’s hand code
since each screen operation is different for each project.

Table 5 Program generation rate (%).



TSUDA et al.: EFFECTIVENESS OF AN INTEGRATED CASE TOOL FOR PRODUCTIVITY AND QUALITY OF SOFTWARE DEVELOPMENTS
1475

Table 6 Program generation rate by EAGLE3.

3.2.2 Program Generation in EAGLE3

Programs in the Presentation and Application tiers are gen-
erated by using skeletons and components provided by the
functionalities of EAGLE2. Programs in the Database tier
are automatically generated from system specification.

We collected some data from two projects A and B.
Both projects are large system developments for public sys-
tems (Each project includes more than 2000 programs) but
the business logics are completely different. Table 6 shows
program generation rate in the projects. The average gener-
ation rate of Project A was 74% and that of Project B, 75%.
The generation rate in EAGLE3 for batch program is less
than one in EAGLE2. This is because the configuration of
batch jobs has changed in 2000’s. Batch jobs in 1990’s are
mainly consisted of file processing. For example, in the up-
date processing of index sequential file, the followings are
processed: Input of transaction file, checking the data, sort-
ing, matching of master file and error processing. Program
for each processing is constructed. However, in 2000’s, in
addition to the conventional batch processing, processing
for data base have increased. Though redundancy of job
flows decreased and performance of processing mass data is
improved, it is difficult to pattern the program control. To
cope with the problem, we have developed two skeletons:
(1) data base checking up skeleton and (2) data base free
skeleton. Data base free skeleton provides with processing
of calling modules in D-Tier and re-run and entire control
should be described by developers.

Also, program generation rate in P-Tier and F-Tier be-
comes low. Currently, there are a lot of implementation
methods of browsing and transition of screen for programs
in P-Tier. It is necessary to standardize the implementation
of P-Tier. With respect to programs in F-Tier, utilization of
business logics are insufficient in the projects. We are going
to educate the utilization of business logics in EAGLE3.

4. Fault Density Analysis

Fault density at a phase of development is defined as the
number of faults detected at the phase normalized (divided)
by the program size. We use here the fault density for 1000
lines at the unit test phase and the integration test phase.
As described in Sect. 3, EAGLE does not generate complete
programs so that the developers have to add the code by
hand. Compared with the generated parts of the code which
were sufficiently tested before, these hand-made code could
easily contain many faults. These faults are generally found
by exhaustive testing.

4.1 Test Case Generation

It is important to detect faults in the early phases of a de-
velopment so as to minimize the troubles at the following
phases. From this viewpoint, it is strongly suggested that
the programmers perform sufficient unit test at the program
development phase. (In HIPACE, the unit test is involved
in the program development phase, not in the test phase.) In
the 1980s, programmers had to design a large number of test
cases for unit test and write them on work-sheets. There was
no supporting tool for this. To increase the efficiency of the
testing and to improve the productivity, we have introduced
a facility of automatic generation of the test cases into EA-
GLE2. Now, standard test case skeletons are automatically
generated by EAGLE2, according to the standard program
skeletons. Programmers can complete the test cases only by
adding some values to the test case skeletons.

As for unit test phase, EAGLE automatically gener-
ates test commands needed for the test tool by analyzing the
source programs. For example, file I/O simulation, break
points setting, and results displaying are examples of the
test commands. The programmers have only to input data
interactively according to generated test commands. Test
coverage CO (the percentage of exercised statements) and
C1 (the percentage of exercised logical segments) are auto-
matically calculated. By using these facilities of EAGLE,
the effort needed for unit test have been reduced greatly.

4.2 Comparison of Fault Density

Table 7 shows the difference of the fault density between
two projects, A and B. These two projects were proceeded
under the EAGLE2 environment; however, project A did not
use the standardized test case. In project A, each program-
mer designed test cases by hand, and in project B, EAGLE2
provided standardized test cases (When these projects were
carried out, the generation facility of EAGLE2 had not been
completed, so that the programmer had to perform some
customization and data input by hand.). Both project A and
B are the development of integration systems for local city
offices. The same development group developed both. Both
systems are almost 10 K lines long and the generation rate
of the code are approximate 50% in both projects.

We see here the distinction of the fault rates at the unit
test phase and the integration test phase.

From Table 7 followings could be stated

(1) In Project B, more faults are found at the unit test phase
(4.8 faults/klines), compared with those in Project A
(3.7 faults/klines).

(2) At the integration test phase, less faults are de-
tected in Project B (2.2 faults/klines in Project A and
2.9 faults/klines in Project B).

(3) Project B has a few more faults detected in total
(6.6 faults/klines in Project A and 7.0 faults/klines in
Project B).



1476
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.4 APRIL 2006

Table 7 Comparison of fault density.

Fig. 2 Faults detected at the integration test.

From these, we could think that providing many stan-
dardized test cases will shift fault detection from the inte-
gration test phase to the unit test phase.

To confirm this hypothesis, we further analyzed the
faults detected at the integration test. We classified them
into 3 types. Type 1 is the fault which had to be detected
at the unit test. For example, faults relating to input/output
procedures, loop and branching procedures, and procedure
specification are examples of this type. Type 2 is the fault
which has to be essentially detected at the integration test.
Faults of program interface and program specification are
those examples. Other faults are classified into the type 3.

Figure 2 shows the classification of fault types for both
projects A and B at the integration test.

From Fig. 2, we observe the following.

(1) In Project B, the number of Type 1 faults decreased.
(From 53% in Project A to 45% in Project B).

(2) The numbers of Type 2 faults are almost the same.
(0.68 faults/klines in Project A and 0.66 faults/klines in
Project B).

This analysis shows that in the case of Project B, where
the standardized test cases are provided, the number of faults
removed at the unit test before the integration test has in-
creased.

An adequate number of the test cases is essential to
removing faults detectable at the unit test phase. By using
the facility of EAGLE2, we can generate those test cases
very efficiently.

Since the cost of preparing experimental setting like
Project A and B was very high, we were unable to increase
the number of projects for the comparison. Therefore, we
did not get the statistically meaningful conclusions. How-
ever, the company thinks that EAGLE2’s test case gener-
ation is a practically useful and important facility, so this
facility is widely used in the company day by day.

5. Learning Curve Analysis

In addition to the facility enhancement of CASE tools, ed-

ucation of effective use was considered very important to
the productivity and quality. We have started an educational
course of EAGLE system, and we measured the elapsed
time of program development by students, with EAGLE 1
and EAGLE2 environment.

5.1 Learning Curve and Improvement Rate

It is naturally considered that the elapsed times for develop-
ing similar programs will decrease with the experiences of
a developer. A model to express the decrease of the effort
has been proposed [7]. We use this model to describe the
learning curve of the program development. Eq. (1) defines
the learning curve.

Y = aX−n (1)

X: number of experience times to develop
an application program,

Y: time required to develop the (X)th
program (hours/1 klines)
(normalized by the program size),

n: improvement coefficiency.

To see the decreasing rate intuitively, we also introduce
improvement rate defined in Eq. (2) [7]. The improvement
rate expresses the ratio of two required times YX and Y2X ,
where YX = aX−n and Y2X = a(2X)−n.

Improvement rate =
Y2X

YX
(2)

Y2X : time required to develop the (2X)th
program (hours/1 klines),

YX : time required to develop the (X)th
program (hours/1 klines),

For example, if improvement rate with X = 3 is 80%,
then this means that a programmer has developed the 6th
program in 80% of the time of the 3rd program.

5.2 Data Collection Method

To calculate the learning curve and improvement rate, we



TSUDA et al.: EFFECTIVENESS OF AN INTEGRATED CASE TOOL FOR PRODUCTIVITY AND QUALITY OF SOFTWARE DEVELOPMENTS
1477

Fig. 3 Learning curve of program development.

use data collected from the educational course on EAGLE.
Students are inexperienced, newly hired employees. Al-
though most of them were graduated from universities, they
are mostly not computer science major. We compared the
data of 1983 where the EAGLE1 environment was used and
the data of 1990 where the EAGLE2 environment was used.
We do not see any significant difference programming capa-
bility in these two groups of the students. During a 4 week
period, the students were required to develop business ap-
plication programs of 400–600 lines in COBOL, using EA-
GLE1 and EAGLE2. The programs developed by students
were batch programs and the programs developed in 1990
are similar to those in 1983. The following lists the feature
of the educational course.

• 1983 data (Jul. 1982–Jul. 1983)
36 students in the EAGLE1 education course
• 1990 data (Sep. 1990–Mar. 1991)

90 students in the EAGLE2 education course

The following data were collected.

(1) Times elapsed for the various phases in the program de-
velopment such as, from program specification editing
to program compilation, test case design and testing,
and documentation.

(2) Lines of program code.
(3) Number of test cases
(4) Number of experiences of program development with

EAGLE1 or EAGLE2.

5.3 Improvement of Learning Curve

Figure 3 shows the learning curve based on the total of the
program development phase in 1983 and 1990. The elapsed
time to develop the first program in 1990 was reduced to
77% of the time required in 1983. The difference of the two
curves suggests the effectiveness of EAGLE2 related to the
elapsed time even for inexperienced developers. From this,

Table 8 Improvement rates Y6/Y3 of each phase.

we would say that in 1990, the productivity for the inex-
perienced developer, in the sense of lines of code produced
in a certain time period, has improved by 1.3 times (77%)
from that in 1983. For the 10th program, the difference of
the elapsed times, (i.e., productivity in the sense mentioned
above) was expected to increase to 2.3 times more (44%).

Table 8 shows the improvement rate of X = 6 compared
with X = 3 for each phase of the program development in
1983 and 1990. The improvement rate is defined as Y6/Y3.
The improvement rate of the total of all phases improved
from 86% in 1983 to 72% in 1990. In each phase of the de-
velopment, the improvement rate improved approximately
15% between 1983 and 1990.

It is easily observed that in the case of 1990 the curve
drops sharply and it becomes stable at the lower level.

From Fig. 3 we can also say that elapsed time does not
reduce greatly after 4th-5th program developments in 1990.
But elapsed time still reduce after 8th-9th program develop-
ments in 1983. It reveals that most programmers can mas-
ter program development with less experience under EA-
GLE2 environment than under EAGLE 1 environment. It
also shows that the programmers under EAGLE2 require
only several experiences of the development with CASE
tools before the elapsed time becomes stable. We would
consider that this improvement is caused by the following.

• The elapsed time to develop the program was reduced by
improving the program generation rate as shown in Ta-
ble 8. Moreover, the elapsed time to test was reduced by
improving the program quality. Students do not have to



1478
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.4 APRIL 2006

Fig. 4 Time required to develop a program.

know the detail about database/file scheme. Therefore,
the remaining program to be coded by hand is rather sim-
plified
• The quality level of the program was maintained by pro-

gram generation using data process components. The
purpose of the education is not to develop the program
according to individual technology, but the purpose is to
develop the constant quality program in the organization.
We think that this purpose was achieved.
• The test tool and the test case generation are effective

in the study of the unit test. Because student’s learning
outcome can be measured by the test coverage, effective
feedback is possible.
• User interface has been improved in EAGLE2. For ex-

ample, operations can be given by menu selection. Thus
the students do not have to memorize them, and they can
learn quickly.
• There were minor refinements of the course curriculum

and text book in 1990. For example, sample programs
are shown in the text book in 1990. Educational section
personnels working full-time are taking charge of the ed-
ucation. The know-how of a past education has been ac-
cumulated.

6. Conclusions

In this paper, we analyzed the program generation rate of
three versions of EAGLE (EAGLE1, EAGLE2 and EA-
GLE3), fault density, and learning curve of two versions
of EAGLE (EAGLE1 and EAGLE2). From the compari-
son analysis of them, we found that the productivity has im-
proved greatly through EAGLE enhancements.

(1) The enhancement of standard components and the
skeletons in EAGLE2 improved the program genera-
tion rate by almost 20%.
The generation rate has been improved from 60% in
EAGLE1 to 75% in EAGLE3.
From the above results, we can say that improvement
of the productivity is expected greatly through EAGLE
enhancements.

(2) More program faults were detected during the
unit test by providing many standardized test
case (4.8 faults/klines using standardized test case;
3.7 faults/klines designing test case by hand). This re-
duces the efforts at the integration test.

(3) The enhancement of EAGLE reduced the effort for

learning program development very much. For exam-
ple, improve rate has been reduced from 86% to 72%.
Users inexperienced with CASE require 4–5 works to
efficiently develop programs with EAGLE.
Elapsed time for developing program was reduced by
EAGLE2 to 77% for inexperienced developers and to
44% for experienced ones.

As described in previous sections, various enhance-
ments of EAGLE have improved productivity. However, the
following problems still remain:

(1) Automating test phase
The testing process is not automated yet and is ineffi-
cient. Figure 4 shows the time required for each phase
of program development. We compared the data of the
first program development and the 10th program devel-
opment in 1990 project.
It is easily seen that the time for the test phase does
not decrease greatly with experiences and it occupies a
large part of the total development, although the time
for the program coding and test case design reduces
greatly.
EAGLE2 generates the standard test cases and EA-
GLE3 generates the standard check list; however, it
does not generate test data and commands completely.
Since programmers still have to modify and add their
own commands by hand, they can easily make errors
on the command and they have to do retest. Thus, in
the future version of EAGLE, we plan that

• Not only the test cases but the test data and com-
mands for unit tests will be generated based on the
source programs, specifications and data dictionar-
ies.
• User interface of test support tools and performance

analysis tools will be enhanced.

The program static verification tools in addition to
the test support tools have been developed in EA-
GLE3. This tool can detect the bug code, the resource
consumption code, and the performance deterioration
code. The observance of the coding rule is achieved.
The detection of the security hole will be enhanced in
the future.

(2) Increasing generation rate
Program generation rate has been improved but there
still remains room for further improvement. We are
going to develop reusable specification component, as
well as the program components.



TSUDA et al.: EFFECTIVENESS OF AN INTEGRATED CASE TOOL FOR PRODUCTIVITY AND QUALITY OF SOFTWARE DEVELOPMENTS
1479

References

[1] B.W. Boehm, “Improving software productivity,” Computer, vol.20,
no.9, pp.43–57, Sept. 1987.

[2] E.J. Chikofsky and B.L. Rubenstein, “CASE reliability engineering
for information system,” IEEE Softw., vol.5, no.2, pp.11–12, March
1988.

[3] M.A. Cusumano, Japan’s Software Factories, Oxford University
Press, New York, 1991.

[4] H. Komuro, O. Ohno, Y. Furuhata, K. Yasuda, A. Harada, and Y.
Makuta, “Improving accuracy of estimation in a software develop-
ment project with a specific program development automation,” Proc.
International Conference on Project Management, pp.461–469, 2002.

[5] H. Maezawa, M. Kobayashi, K. Saito, and Y. Futamura, “Interac-
tive system for structured program production,” Proc. 7th Interna-
tional Conference on Software Engineering, Orlando, FL, pp.162–
171, 1984.

[6] Y. Matsumoto, An Overview of Japanese Software Facto-
ries, Japanese Perspectives in Software Engineering, pp.303–320,
Addison-Wesley, Massachusetts, 1989.

[7] K. Morooka, Dynamic Analysis, Kenpakusha, Tokyo, March 1985.
[8] O. Ohno, Y. Furuhata, H. Komuro, T. Imajo, and S. Komiya, “Au-

tomated software development based on composition of categorized
reusable components — Construction and sufficiency of skeletons for
batch programs —,” IEICE Trans. Inf. & Syst. (Japanese Edition),
vol.J83-D-I, no.10, pp.1055–1069, 2000.

[9] M. Tsuda, Y. Morioka, M. Takadachi, and M. Takahashi, “Productiv-
ity analysis of software development with an integrated CASE tool,”
Proc. 14th International Conference on Software Engineering, pp.49–
58, 1992.

Michio Tsuda received the BE degree in
electrical engineering from Doshisha University
in 1970. He was a systems engineer of indus-
trial field and developer for software engineer-
ing, Hitachi, Ltd., from 1970 to 1999. He is cur-
rently a senior chief engineer of Software En-
gineering Department, Hitachi Systems & Ser-
vices, Ltd. He is a member of the IPSJ.

Sadahiro Ishikawa received the BE de-
gree in Industrial and Systems Engineering at
Aoyama Gakuin University in 1984. He is
currently a department manager of Engineering
Support Division, Hitachi, Ltd. He has been en-
gaged in technological support of enterprise in-
formation system development since 1989.

Osamu Ohno graduated from Ube National
College of Technology in 1969. He received the
DE degree from Saitama University. He is cur-
rently a general manager at Information Tech-
nology Division, Hitachi, Ltd.

Akira Harada received the BS degree from
Saitama University and the MS degree from Na-
goya University. He had worked for Hitachi,
Ltd. from 1975 to 2005. Currently, he serves in
Japan Information Processing Service CO., Ltd.
His research interests include project manage-
ment and software development methodology.
He is a member of the IPSJ and the SPM.

Mayumi Takahashi received the BE de-
gree in psychology from Tokyo Metropolitan
University in 1975. She has worked for Hi-
tachi Systems and Services, Ltd. and devel-
oped the Computer Aided Software Engineering
products. Currently Her research interests in-
clude business performance management, busi-
ness modeling, and strategy. She is a member of
the IPSJ.

Shinji Kusumoto received the BE, ME,
and DE degrees in information and computer
sciences from Osaka University in 1988, 1990,
and 1993, respectively. He is currently an as-
sociate professor at Osaka University. His re-
search interests include software metrics, soft-
ware maintenance, and software quality assur-
ance techniques. He is a member of the IEEE,
the IEEE Computer Society, the IPSJ and the JF-
PUG.

Katsuro Inoue received the BE, ME, and
DE degrees in information and computer sci-
ences from Osaka University, Japan, in 1979,
1981, and 1984, respectively. He was an as-
sistant professor at the University of Hawaii at
Manoa from 1984–1986. He was a research as-
sociate at Osaka University from 1984–1989, an
assistant professor from 1989–1995, and a pro-
fessor from 1995. His interests are in various
topics of software engineering such as software
process modeling, program analysis, and soft-

ware development environment. He is a member of the IEEE, the IEEE
Computer Society, and the ACM.


