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Abstract. We propose an approximation algorithm for the problem of
finding a maximum stable matching when both ties and unacceptable
partners are allowed in preference lists. Our algorithm achieves the ap-
proximation ratio 2 — c% for an arbitrarily positive constant ¢, where
N denotes the number of men in an input. This improves the trivial
approximation ratio of two.

1 Introduction

The stable marriage problem is a matching problem first introduced by Gale and
Shapley [4]. An instance of this problem consists of N men, N women and each
person’s preference list. A preference list is a totally ordered list including all
members of the opposite sex depending on his/her preference. For a matching
M between men and women, a pair of a man m and a woman w is called a
blocking pair if (i) m prefers w to his current partner and (ii) w prefers m to her
current partner. A matching with no blocking pair is called stable. The stable
marriage problem is to find a stable matching for a given instance. Gale and
Shapley showed that every instance admits at least one stable matching, and
they also proposed so-called the Gale-Shapley algorithm to find one, which runs
in O(N?) time [4].

However, considering an application to a large-scale assignment system, it
is unreasonable to force agents to write all members of the other party in a
strict order. Hence two natural relaxations are considered: One is to allow for
indifference [6,11], in which each person is allowed to include ties in his/her
preference. When ties are allowed, the definition of stability needs to be extended.
A man and a woman form a blocking pair if each strictly prefers the other to
his/her current partner. A matching without such a blocking pair is called weakly
stable (or simply “stable”) and the Gale-Shapley algorithm can be modified to
always find a weakly stable matching [6]. The other one is to allow participants
to declare one or more unacceptable partners. Thus each person’s preference
list may be incomplete. Again, the definition of a blocking pair is extended, so
that each member of the pair prefers the other over the current partner or is
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currently single and acceptable. In this case, a stable matching may not be a
perfect matching, but all stable matchings for a fixed instance are of the same
size [5]. Hence, finding a maximum cardinality stable matching is trivial.
However, if both ties and incomplete lists are allowed, one instance can admit
stable matchings of different sizes, and it is known that the problem of finding a
maximum stable matching, which we call MAX SMTI (MAXimum Stable Mar-
riage with Ties and Incomplete lists), is NP-hard [14, 17]. For approximability,
it is easy to see that two stable matchings for the same instance differ in size
by at most a factor of two (see Theorem 5 of [17], for example). Since a stable
matching can be found in polynomial time by a modified Gale-Shapley algo-
rithm, existence of an approximation algorithm with a factor of two is trivial.
Very recently, [9] shows several approximability upper bounds which are signif-
icantly better than two for restricted inputs, such as a factor of (wa for
instances where length of ties is at most L and ties appear in only one sex.

Our Contribution. In this paper, we give the first nontrivial approximability
result for general MAX SMTI. Namely, our new algorithm, based on local search,
achieves an approximation factor of 2 — 28X where ¢ is an arbitrarily positive
constant. From an initial stable matching, our algorithm successively improves
the size of the solution. While the size of the current solution is at most % +
clog N where OPT is the size of an optimal solution, we can increase the size
by at least one. Hence, we finally obtain a stable matching of size greater than
# + clog N.

Related Results. There are several examples of using the stable marriage
problem in assignment systems. Among others, one of the most famous appli-
cations is to assign medical students to hospitals based on the preference lists
of both sides. For example, more than 30,000 applicants are enrolled in the hos-
pitals/residents matching system in the U.S., which is known as NRMP [6, 16].
In Japan, this kind of matching system came into use since 2003, where more
than 95 % of 8,000 applicants obtained their positions in its first year. Other
examples are CaRMS in Canada and SPA in Scotland [12,13]. Another famous
application is to assign students to schools in Norway [3] and Singapore [20].

Up to now, there have been a lot of efforts to obtain approximability and
inapproximability results for MAX SMTI. For inapproximability, MAX SMTI
was shown to be APX-hard [7], and subsequently, a lower bound 21/19 on the
approximation ratio (under the assumption that P£ANP) was presented [9]. This
lower bound holds for restricted instances where ties appear in only one sex, the
length of ties is two, and each person writes at most one tie. For approxima-
bility, there are some approximation algorithms with factor better than two for
restricted inputs, in which mainly restrictions are done in terms of occurrence
of ties and/or lengths of ties [17,8, 9], as mentioned previously.

There are several optimization problems that resemble MAX SMTI, where
designing a 2-approximation algorithm is trivial but obtaining a (2—¢) — approx-
imation algorithm for a positive constant € is extremely hard, such as Minimum
Vertex Cover (MIN VC for short) and Minimum Maximal Matching (MIN MM
for short). As is the case with MAX SMTI, there are a lot of approximability
results for these problems by restricting instances. For example, MIN VC is ap-
proximable within 7/6 if the maximum degree of an input graph is bounded



by 3 [2], or within 2/(1 + €) if every vertex has degree at least €|V| [15]. For
MIN MM, there is a (2 — 1/d)-approximation algorithm for regular graphs with
degree d [21], and PTAS for planar graphs [19]. For general inputs, (2 — o(1))-

approximation algorithms are presented for MIN VC, namely, (2— M) and

2log |V]
(2 (1 o(1))2E) 18,1, 10].

2 Preliminaries

In this section, we formally define MAX SMTI and approximation ratio of ap-
proximation algorithms.

An instance I of MAX SMTI consists of N men, N women and each person’s
preference list that may be incomplete and may include ties. If a person p writes
a person ¢ in his/her list, we say that ¢ is acceptable to p. Let m be a man. If
m strictly prefers w; to w; in I, we write w; >,, w;. If w; and w; are tied in
m’s list, we write w; =,, w;. The statement w; >,, w; is true if and only if
W >m Wj OF W; =, w;. We use a similar notation for women’s preference lists.
Let M be a matching. If a man m is matched with a woman w in M, we write
M(m) = w and M (w) = m. We say that m and w form a blocking pair for M (or
simply, (m,w) blocks M) if the following three conditions are met: (i) M (m) # w
but m and w are acceptable to each other. (ii) w >,, M(m) or m is single in
M. (iii) m >, M(w) or w is single in M. For a matching M, BP(M) denotes
the set of all blocking pairs for M. A matching M is called stable if and only if
BP(M) = 0. MAX SMTT is the problem of finding a largest stable matching.

A goodness measure of an approximation algorithm 7' of a maximization
problem is defined as usual: the approzimation ratio of T is max{opt(z)/T(z)}
over all instances x of size N, where opt(z) and T'(x) are the size of the optimal
and the algorithm’s solution, respectively.

3 Overview of Algorithm LOCALSEARCH(T)

Here we give an overview of our algorithm LOCALSEARCH. We need two param-
eters k and ¢, which are fixed constants such that ¢ < %. LOCALSEARCH takes
an input I of MAX SMTT and uses two subroutines, INCREASE and STABILIZE.

INCREASE takes a stable matching M for I and a subset S of M such that
|S| = klogN. It outputs a (not necessarily stable) matching My such that
|Mo| > |M]|, and for any blocking pair (m,w) € BP(My), either m or w (or
both) is single in My. INCREASE may fail to find such a matching. In such a
case, it returns an error.

STABILIZE takes a (not necessarily stable) matching My where, for any block-
ing pair (m,w) € BP(Mp), either m or w (or both) is single in My. It outputs
a stable matching of size at least |Mp| (Lemma 10).

The full description of LOCALSEARCH is given in Fig. 1. One can see that
application of the while-loop increases the size of stable matching by at least
one. This process can continue as long as the condition at line 7 is true. Later,
we show that this is the case if (1) an input S for INCREASE has some “nice”
property, and (2) |M]|, the size of the input stable matching for INCREASE, is

at most OI; T 1 clog N (Lemma 4), where OPT denotes the size of a maximum




Algorithm LoCALSEARCH(I)
1: M: = arbitrary stable matching for I;
/* This can be done in polynomial time by arbitrary tie-breaking
and applying the Gale-Shapley algorithm. */
2: while (true);
3: {select (k + 4c)log N edges from M in an arbitrary way,
and let P be the set of selected edges;

4: let P, Pa,---, P, be all subsets of P of size klog N;
5: fori:=1ton
6: M; := INCREASE (M, F;);
/* If INCREASE returns an error, let M; be empty. */
7: if (there is an M; such that |M;| > |M])
8: Mo = Mi;
9: else
10: terminate and output M;
11: M := STABILIZE (My);
12: }

Fig. 1. Algorithm LOCALSEARCH

stable matching, and c is a constant defined above. Furthermore, we show that,
among Py, Ps, -+, P, obtained at line 4, there is at least one “nice” P; if |[M| <
g + clog N (Lemma 3). Hence, we have the following theorem:

Theorem 1. Given an SMTI instance I of size N, LOCALSEARCH outputs a

stable matching of size more than O—I;T + clog N in time polynomial in N.

Since constants ¢ and k can be set arbitrarily large, we have the following
corollary.

Corollary 1. For any positive constant c, there is a polynomial-time approxi-
log N

mation algorithm for MAX SMTI with approzimation ratio at most 2 — c=57

Before showing INCREASE and STABILIZE, we prove an important property
of P, P5,---, P, obtained at line 4 of LOCALSEARCH.

Let us fix an optimal solution M,,;, a largest stable matching for I (which
we do not know of course). Given a stable matching M for I, let us define the
following bipartite graph GMopt, v Each vertex of G M,,.,m corresponds to a
person in I. There is an edge between vertices m and w if and only if M,,:(m) =
w or M(m) = w. If both Myp:(m) = w and M(m) = w hold, we give two edges
between m and w; hence Gyy,,,,nr is a multigraph. An edge (m,w) associated
with My (m) = w is called an OPT-edge. Similarly, an edge associated with
M(m) = w is called an M -edge. Observe that the degree of each vertex is at
most two, and hence each connected component of Gy, as is a simple path, a
cycle or an isolated vertex.

Let us partition M-edges of Gyy,,, mr into good edges and bad ones. If an
edge is in the path of length three starting from and ending with OPT-edges,
then it is called good. Otherwise, it is bad. We also call an edge in M good (bad,
respectively) if that M-edge in Gy, is good (bad, respectively).



Lemma 1. Let (m,w) be a good edge of M. Then, w = Mopt(m) and m =,
Mopt(w).

Proof. If Mopi(m) >m w, then (m, Mope(m)) is a blocking pair for M, which
contradicts the stability of M. So, w >, Myp(m). For the same reason, m =,
Mopt (’LU) (H]

Lemma 2. Let t be an arbitrary positive integer. If |M| < % +t, then the
number of bad edges in Gy, . a 1S at most 4t.

opt s

Proof. First of all, we show that there is no path of length one in G, 2. This
can be seen as follows: Suppose that there is a path of length one, say (m,w),
and suppose that this is an OPT-edge. Then m and w write each other on the
preference list since they are matched in M,,;. However, both of them are single
in M. This means that (m,w) is a blocking pair for M, which contradicts the
stability of M. When (m, w) is an M-edge, we can do a similar argument to have
a contradiction.

Consider then each connected component C' of Gy, a- Let R(C) be the
ratio of the number of OPT-edges to the number of M-edges in C. If C' is a
cycle, then it contains the same number of OPT-edges and M-edges, and hence,
R(C) = 1. This is same if C is a path of even length. If C is a path of odd
length starting from and ending with M-edges, R(C) < 1 since the number of
M-edges in C' is more than that of OPT-edges. If C' is a path of length three
starting from and ending with OPT-edges, then the M-edge it contains is good
and R(C) = 2. If C is a path of length more than three starting from and ending
with OPT-edges, then R(C) < 3/2.

Now, suppose that there are ¢1 good edges and f5 bad edges. Then, the
number of OPT-edges, namely |M,,:| is at most 261—1—%& by the above argument.

Since {1 + 5 = |M| and | M| < % + t, we have that £, < 4t. m|

Lemma 3. If |[M| < % + clog N, then there is at least one i such that P;
contains only good edges.

Proof. Recall that |P| = (k + 4c)log N. Since there are at most 4clog N bad
edges in M as proved in Lemma 2, P contains at least klog N good edges. Since
we output all subsets of size klog N, there must be P; with only good edges. O

4 Procedure INCREASE(M, S)

Recall that INCREASE takes a stable matching M and its subset S of size klog N
as an input, and outputs a matching, say M’, where |M’| > |M|. M’ may not
be stable for I but it satisfies the property that for any blocking pair (m,w) €
BP(M’), either m or w (or both) is single in M’. Before going to the detail, we
roughly explain the execution of INCREASE.

In the following, we assume that S consists of only good edges. (As proved in

Lemma 3, there is one way of receiving such S if | M| < @ + clog N.) Given

S, let S; be a subset of S whose size is |S|/4. Since each edge in S; is good,



for each person p in S;, his/her partner in M,y is single in M. We divorce all
couples of 5;, and then, make them to find a partner who is single in M. They
may not find the partner in M, but if we try all possible S;, at least one choice
will give us a good result, i.e., every person in S; finds a partner who is at least
as good as the partner in M,y (Lemma 5). Let L be the set of newly added
edges. Then, it is not hard to see that |L| = 2|S;|, and hence we can increase
the size of M by |S;|. (See Fig. 2 (a).)

In the latter half of the algorithm, we do the following: If there is a blocking
pair (m, w) such that both m and w have a partner, say, w’ and m’, respectively,
then, we can prove that exactly one of (m,w’) or (m/,w) is in L. We then remove
one which is not in L. (See Fig. 2 (b).) This process may decrease the size of a
matching, but we prove that its size decrease is less than |S;|. In total, we can
increase the size of matching at least by one. The full description of algorithm
INCREASE is given in Fig. 3.
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Fig. 2. Execution of INCREASE

4.1 Correctness of INCREASE

We give a sufficient condition for INCREASE to achieve a successful computation.

Lemma 4. If S consists of only good edges, and if |M| < ‘MQLH +clog N, then

there is at least one way of selecting i such that INCREASE succeeds.

The proof of this lemma uses a series of lemmas. In the following lemmas,
we assume assumptions in Lemma 4, namely, S consists of only good edges, and

M| < [Mope| 4 clog N, even if they are not explicitly stated in the statement of
2
each of following lemmas.

Lemma 5. There exists i* such that, after executing the Gale-Shapley algorithm
m

(at lines 5 and 6 of Fig. 3), every person in S[* U SY is matched with a partner
who is at least as good as his/her partner in Mopy.

Proof. Consider the following procedure. (Note that we consider this procedure
only for the proof of this lemma. This procedure cannot be performed by al-
gorithm INCREASE since it does not know Mop.): Let S™ and S™ be sets of



Procedure INCREASE(M, S)
1: F™ := set of all single men in M; F™ := set of all single women in M;
2: let S1,52,---, S, be all subsets of S of size |S|/4;
3:fori:=1tom

4:
5:

T

8:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

{S7" := set of all men in S;; S;* := set of all women in S;;
Find a matching between Sj* and F'“
using the men-propose Gale-Shapley algorithm;
(To do this, remove all persons not in S;” U F™ from each person’s list,
and break all ties arbitrarily.)
Find a matching between S;’ and F™
using the women-propose Gale-Shapley algorithm;
(To do this, remove all persons not in S;° U F™ from each person’s list,
and break all ties arbitrarily.)
if (3p s.t. p € S7*USY and p remains single after the Gale-Shapley algorithm)
exit for-loop;  /* the current i was not good choice */
else
{L := the set of all pairs obtained by the Gale-Shapley algorithm;
M; =M — S; UL;
while (3(m,w) € BP(M;) s.t. both m and w have a partner in M;)
{if ( (m, M;(m)) € L and (M;(w),w) € L)
exit for-loop;  /* the current ¢ was not good choice */
if ( (m, M;(m)) € M; — L and (M;(w),w) € M; — L)
exit for-loop;  /* the current ¢ was not good choice */
if ( (m, M;(m)) € M; — L and (M;(w),w) € L)
if ( (m, M;(m)) € L and (M;(w),w) € M; — L)
M; == M; — {(M;(w), w)};
} /* end while */
if (1M > [M])
output M; and terminate;
else exit for-loop; /* the current 7 was not good choice */
} /* end else */
} /* end for */

27: output “error” and terminate;

Fig. 3. Procedure INCREASE



all men and women in S, respectively. Modify preference lists of all persons in
S™USYUF™UFY in the same way as in the execution of INCREASE. Further-
more, in each man m(e S™)’s list, remove all women strictly below Mop(m).
Similarly, in each woman w(€ S™)’s list, remove all men strictly below Mo (w).
It should be noted that for any person p in S™ U S, Myp(p) is in F™ U F™
since any element of S is a good edge, and hence is not removed from p’s list.

Apply the men-propose Gale-Shapley algorithm to the subinstance defined
by S™ and F%. It is not hard to see that at least half of S™ are matched at
the termination of the Gale-Shapley. To see this, suppose the contrary, and let
A C S™ be the set of single men (JA| > |S™|/2). Then, each man m in A
is rejected by Mype(m). (Recall that M,y (m) is in m’s list.) When M,y (m)
rejected m, Mopi(m) was matched with someone better than m, and during the
execution of the Gale-Shapley algorithm, she never becomes single. So, at the
termination, more than |S™|/2 women are matched but this means that more
than |S™|/2 men are matched, a contradiction.

Now, if m € S™ has a partner after the execution of the Gale-Shapley al-
gorithm, call m a successful man. Call a woman in S a successful woman if
and only if her partner in M is a successful man (there are at least |S|/2 suc-
cessful women). Now apply the women-propose Gale-Shapley algorithm to the
subinstance defined by all successful women in S and F™. If, in the resulting
matching, a successful women gets a partner, call her a super-successful woman.
For the same reason as above, at least half of all successful women are super-
successful. Call a pair (m,w) € S a super-successful pair if and only if w is a
super-successful woman. There are at least |\S|/4 super-successful pairs.

Since 51,5, --, S, are all subsets of S with size exactly |S|/4, there exists
at least one i such that S; consists of only super-successful pairs. Let i* be one
of such i. It is not hard to see that after INCREASE completes the Gale-Shapley
algorithm (of lines 6 and 7), each person in S/ and S¥ is matched with at least
as good a partner as one obtained by the above procedure. This completes the
proof. O

In the following lemmas, i* always denotes the one that satisfies the condition
of Lemma 5.

Lemma 6. M;« at line 11 of Fig. 3 satisfies following (1) and (2): (1) |M;~
|M| + £log N. (2) Consider an arbitrary blocking pair (m,w) € BP(M;) such
that both m and w are matched in M. Then, exactly one of (m, M;«(m)) and
(M (w),w) is in Mj+ — L and the other is in L.
Proof. (1) Recall that |S;«| = |S|/4 = &log N and |L| = 2|S;+|. Then, |M;+| =
|M| = |Si=| + |L| = M|+ |Si+| = |M| + % log N.

(2) First, suppose that both (m, M;«(m)) and (M;(w),w) are in M;« — L.
Observe that, by the construction of M;«, both of these two pairs are also in M.
This means that (m,w) € BP(M), which contradicts the stability of M.

Next, suppose that both (m, M;<(m)) and (M;«(w),w) are in L. We have
four cases to consider: (i) m € F™,w € Fv, (ii) m € SZ,w € F, (ili) m €
F we SY and (iv) m € S w € SY.

Case (i): By the definition of F™ and F™, both m and w are single in M.
But since (m,w) forms a blocking pair for M;«, m and w write each other on
their lists. This contradicts the stability of M.




Case (ii): By the assumption that (m,w) is a blocking pair for M, w >,
M+ (m). Since w € F™, w stays in m’s list when his list is modified to apply the
Gale-Shapley algorithm. So during the execution of the Gale-Shapley algorithm
at line 5, m proposed to w, but w rejected m, so M;«(w) >, m. Then (m,w)
cannot block M;+, a contradiction.

Case (iii): Similar to Case (ii).

Case (iv): Since (m,w) is a blocking pair for M+, w >, M;-(m) and
m >y M+ (w). But by Lemma 5, M« (m) =y Mopt(m) and My« (w) > Mops(w).
Then, w >, Mopi(m) and m >, Mopt(w), which means that (m,w) is a blocking
pair for My, a contradiction. a

The proof of Lemma 4 is completed by the following lemma, which guarantees
the size of |M;«| at line 22 of Fig. 3.

Lemma 7. M;» at line 22 of INCREASE satisfies |M;«| > |M]|.

Proof. First of all, it should be noted that INCREASE never fails on ¢* at lines 7
and 8 by Lemma 5. Also, during the execution of the while-loop on i*, INCREASE
never fails by Lemma 6 (2). By Lemma 6 (1), we know that [M;«| = [M|+%£log N.
However, during the execution of the while-loop, some pairs may be removed
from M;« — L, which may decrease the size of M;-. Note that all pairs in M;« — L
are pairs in M. In the following, we show that if a pair in M; — L is removed
during the while-loop, then the pair must be a bad edge of M. If this is true,
the number of removed pairs in the while-loop is at most 4clog N by Lemma 2,
and thus [M;-| > |M|+ %log N — 4clog N > [M]. (Recall that ¢ < +%.)

Suppose that during the while-loop of INCREASE, some pair is removed from
M. Then, there is a blocking pair (m, w) for M;» and both m and w are matched
in M;». We have two cases: (1) (m, M;«(m)) € L and (M;+(w), w) € M;+—L (and
hence (M (w),w) is removed). (2) (m, M;«(m)) € M= — L and (M« (w),w) € L
(and hence (m, M;«(m)) is removed). We consider only Case (1). (Case (2) can
be treated similarly.) Now, suppose that the removed pair (M;~(w), w) is a good
edge of M. We will show a contradiction.

For Case (1), we further consider two cases: (1-1) m € F™ and (1-2) m € S}%.

Case (1-1): Note that m is single in M since m € F™. Now observe
that, as (M (w),w) € My — L, w and M;=(w) are matched in M, namely,
M« (w) = M(w). Since (m,w) € BP(M;~), it results that (m,w) € BP(M),
which contradicts the stability of M. (In this case, we can have a contradiction
without assuming that (M;«(w),w) is a good edge of M.)

Case (1-2): Since we assume that (M;=(w), w) is a good edge of M, M (w) >+,
Mypi(w) by Lemma 1. For the same reason as above, M;«(w) = M(w). So,
Mi«(w) = Mopt(w). As (m,w) is a blocking pair for M;«, it results that
m = Mi«(w) = Mopi(w). Next, consider the man m which we assumed to
be in S¥. By Lemma 5, M;«(m) >, Mop(m). Again, as (m,w) is a blocking
pair for M, w >, M«(m). So, w >, Mi«(m) =, Mype(m). Consequently, we
have that (m,w) is in BP(M,,), a contradiction. 0

5 Procedure STABILIZE(M))

STABILIZE takes a matching M, and makes it stable without decreasing the size.
Recall that for any blocking pair (m, w) for My, at least one of m and w is single



in My. For a matching M, define BP, (M) C BP(M) to be the set of all
blocking pairs (m,w) for M such that m is single in M and w is matched in M.
Similarly, BP,, s(M) (BPs (M) and BP,, ,,(M), respectively) denotes the set
of all blocking pairs (m,w) for M such that m is matched and w is single (both
m and w are single, and both m and w are matched, respectively) in M. Define
BP_ (M) = BP,, s(M)UBP; ;(M). Fig. 4 shows the procedure STABILIZE.

Procedure STABILIZE(M,)

1: while ( BPsn(Mo) #0)

2:  {select (m,w) € BPsm(Mpy);

3: w* := woman s.t. (m,w") € BPs »(Mp) and

there is no (m, w’) € BPsm(Mop) s.t. w' =m w*;

& M= My — {(Mo(w), w)} U { (m,w)};

5: }
6: while ( BP_ (Mo) #0 )
7 {select (m,w) € BP- s(Mo);
8 m” := man s.t. (m*,w) € BP_ ;(My) and

there is no (m',w) € BP_ s(Mo) s.t. m’' = m*;

9: if ( m* is matched in My )

10 M= Mo (" MmO
12; Mo := Mo U {(m*,w)};
13: }

Fig. 4. Procedure STABILIZE

5.1 Correctness of STABILIZE

Lemma 8. Suppose that an application of line 4 of STABILIZE updates My as
follows.

Mg := Mo — {(Mo(w"), w")} U {(m", w")}.

Then, following (1) through (8) hold. (1) M{(w*) =y Mo(w*) and for any
w(# w*), Mi(w) = Mo(w). (2) |My| = |Mo|. (3) If BPpm(Mo) = 0, then

Proof. (1) Since (m*,w*) is in BP(Mp), m* >y Mo(w*). So, Mi(w*) >u»
Moy(w*) because M{j(w*) = m*. The latter part of (1) is trivial because, among
all women, only w* changed a partner.

(2) This is trivial.

(3) Observe that three persons changed the partner by updating from M to
M{: w* obtained a better partner, m* became matched from single, and M (w*)
became single from matched. So, any blocking pair arising by changing from Mj
to M is associated with the man My(w*). Since My(w*) is single in M), any
pair in BP(My) — BP(Mjy) is not in BPp, m (Mj).



Next, consider (m,w) € BP(M{})NBP(Mjy). Since BP,, ,(Mg) = 0, at least
one of m and w is single in Mj. Recall that only m* changed the status from
single to matched. So if m # m*, (m,w) & BP, m(M]).

Now consider a blocking pair (m*,w) € BP(M{) N BP(My). If w was single
in My, she is also single in M and hence (m*,w) ¢ BP,, m(M}). So assume
that w was matched in M. In this case, both (m*,w*) and (m*,w) were in
BP; ,,,(Mp). So, both w* and w were candidates for being matched with m*
in M. But since w* was selected, it must be the case that w* >« w. Hence
(m*,w) cannot block M{, leading to a contradiction.

We have shown that any element in BP(M{) — BP(My) and BP(M]) N
BP(My) is not in BPy, m(M{). This completes the proof. O

Lemma 9. Suppose that an application of lines 10 and 12 of STABILIZE updates
My as follows.

(Line 10) M| := My — {(m*, Mo(m*))} U {(m*,w*)}.

(Line 12) M| := My U {(m*,w*)}.

Then, following (1) through (8) hold. (1) In case of executing line 10, M} (m*) ==
Mo(m™*) (in case of executing line 12, m* becomes matched in M{), and for any

m( me), Mj(m) = Mo(m). (2) |M3| = [Mal- (3) If BPyn(Mo)UB Py (Mo) =

0, then BP; (M) U BPyy, (M) = 0.

Proof. The proof is similar to that of Lemma 8 and will be omitted. O

Lemma 10. Let M’ be the output of STABILIZE. Then |M'| > |My| and M’ is
stable.

Proof. Consider an application of line 4 of STABILIZE. By Lemma 8 (1), at least
one woman gets better off and all other women do not change the marital status.
Since there are N women, each with a preference list of length at most NV, the
number of repetitions of the first while-loop is at most N2. Let M” be the
matching just before STABILIZE starts the second while-loop. Then BP; ,,(M")
is empty. (This is the condition for STABILIZE to exit from the first while-loop.)
Since, BP,, ;m(Mo) is empty, we can show that BP,, ,,,(M") is empty by applying
Lemma 8 (3) repeatedly. Combining these two facts, it results that BP; ,,,(M")U
BPp, m(M") is empty. Also, by Lemma 8 (2), |[M"| = | M|

Similarly as above, each application of line 10 or 12 would make men better
off (Lemma 9 (1)), and hence the number of repetitions of the second while-
loop is at most N2. Since BP; ,,,(M") U BP,, ,,(M") = (), we can show that,
BP; (M) U BPy, ;n(M’) = 0 using Lemma 9 (3) repeatedly. However, the
termination condition of STABILIZE says that BP_ ;(M’) = . Consequently,
BP(M’) is empty and hence M’ is stable. By Lemma 9 (2), |M’| > |M"|. So,
| M| = | Mo|. o
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