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SUMMARY

Several research fields have to deal with very large classi-
fication problems, e.g. handwritten character recognition and
speech recognition. Many works have proposed methods to ad-
dress problems with large number of samples, but few works have
been done concerning problems with large numbers of classes.
CombNET-II was one of the first methods proposed for such a
kind of task. It consists of a sequential clustering VQ based gat-
ing network (stem network) and several Multilayer Perceptron
(MLP) based expert classifiers (branch networks). With the ob-
jectives of increasing the classification accuracy and providing a
more flexible model, this paper proposes a new model based on
the CombNET-II structure, the CombNET-III. The new model,
intended for, but not limited to, problems with large number of
classes, replaces the branch networks MLP with multiclass Sup-
port Vector Machines (SVM). It also introduces a new probabilis-
tic framework that outputs posterior class probabilities, enabling
the model to be applied in different scenarios (e.g. together with
Hidden Markov Models). These changes permit the use of a larger
number of smaller clusters, which reduce the complexity of the
final classifiers. Moreover, the use of binary SVM with proba-
bilistic outputs and a probabilistic decoding scheme permit the
use of a pairwise output encoding on the branch networks, which
reduces the computational complexity of the training stage. The
experimental results show that the proposed model outperforms
both the previous model CombNET-II and a single multiclass
SVM, while presenting considerably smaller complexity than the
latter. It is also confirmed that CombNET-III classification ac-
curacy scales better with the increasing number of clusters, in
comparison with CombNET-II.
key words: large scale classification problems, support vector
machines, probabilistic framework, divide-and-conquer

1. Introduction

Several research fields have to deal with very large
classification problems. Some examples are human-
computer interface applications (e.g. speech recog-
nition, handwritten character recognition, face detec-
tion), bioinformatics (e.g. protein structure predic-
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tion, gene expression) and data mining, in which huge
amounts of data have to be processed in order to pro-
duce useful information. To meet the need of these ap-
plications, large scale classification methods have been
receiving increasing attention, due to the need of adapt-
ing modern but computationally expensive classifica-
tion methods for their efficient application.

Many authors addressed classification problems
that present large number of samples. Jacobs et al.
[1], [2] introduced the mixture of experts technique, di-
viding the problem in many small and simpler subtasks
by the divide-and-conquer principle. In their approach,
the problem is solved by many Multilayer Perceptron
(MLP) “expert” classifiers whose outputs are weighted
by a “gating” network (trained with the same data) ac-
cording to their ability to classify each training sample.
This principle was further extended to Support Vector
Machines (SVM) based experts by Kwok [3] and Rida,
Labbi and Pellegrini [4].

The majority of the large-scale classification meth-
ods, however, are not appropriate for problems con-
taining large numbers of classes, e.g. classifying thou-
sands of categories. This kind of problem usually also
presents a large number of samples and/or features, as
in the case of human-computer interface applications.
In these cases, training the classifiers with all train-
ing samples, as suggested in [1],[2] is unfeasible. For
example, MLP based experts would have thousands of
output neurons and the SVM based experts would have
either a huge number of classifiers or oversized kernel
matrices. This is also the case when the splitting is
made without any control of the size of each cluster
or the balance among them. Iterative methods that
constantly reassign the samples among the experts, as
proposed by Collobert, Bengio and Bengio [5], [6], were
initially designed for binary problems. The reassign-
ments would constantly change the classifiers’ struc-
ture, requiring restart of the training. Moreover, the
initial random splits used in their approach would also
generate experts with too many classes and very unbal-
anced subtasks. From this point, “large scale” will be
used to refer to problems with large number of classes,
unless stated otherwise.

The CombNET-IT model proposed by Hotta et al.
[7] was one of the first divide-and-conquer based large
scale classifiers specifically developed for dealing with



classification problems composed by thousands of cate-
gories. It has presented several good results in Chinese
character (Kanji) recognition and some other specific
applications. However, as the CombNET-II was origi-
nally developed for character recognition tasks, its ap-
plication in different kinds of problems is not straight-
forward. Also, the algorithm used in the expert clas-
sifiers is the standard MLP, which, though presenting
good classification results in previous researches, result-
ing in large processing time and problems of local min-
ima during the training stage.

Arguing that CombNET-II spends too much time
in the training and recognition processes because it
uses all the available data in the expert networks train-
ing, Arai et al. [8]-][10] proposed the HoneycombNET,
in which only a few reference vectors representing the
data, found by vector quantization (VQ), are used on
each expert. The model was further extended in or-
der to reduce recognition time and to permit additional
learning. In their ELNET model, Saruta et al. [11],[12]
eliminated the subspace splitting procedure completely,
saying that VQ based clustering methods are slow and,
when using averaged vectors for speeding up, the per-
formance of the gating network decreases. In ELNET,
each class k has its own MLP expert network, which
divides class k (excitation) from the most similar sam-
ples (inhibition), found by pattern matching among the
samples of other classes.

These models, however, implement many heuris-
tics for reducing processing time that lead them to di-
gress from the basic idea of using the joint probabilities
of gating and expert classifiers directly to construct the
final answer. This reduces the flexibility of the models
and complicates their extension. As to be shown in sec-
tion 2, CombNET-II follows very closely that concept;
thus, it is the most appropriate model for the proposed
extensions of this research.

A few other models, based on different principles,
have been proposed for solving classification problems
with large number of categories. Fritsch and Finke [13]
used a hierarchical clustering algorithm called Agglom-
erative Clustering based on Information Divergence
(ACID) to divide the problem in subtasks with small
number of classes. However, due to the huge amount
of training samples that the upper nodes of the hier-
archy had to be trained with, the computational cost
was high. Hagihara and Kobatake [14] even proposed
the use of large scale networks as the experts of a larger
model, in which each expert was trained by a random
subset of the classes and the results were combined in
the end. Waizumi et al. [15] presented a new rough
classification network for large scale models based on a
hierarchy of Learning Vector Quantization (LVQ) neu-
ral networks. However, no definite result from the ap-
plication of their gating network in a complete large
scale model was presented.

The main objectives of this work are the improve-
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ment of the CombNET-II performance by the appli-
cation of more modern pattern recognition algorithms
and to develop a generic framework in order to enable
its application in different scenarios. In order to accom-
plish this, a new model is introduced—the CombNET-
III. The first objective was achieved by the applica-
tion of Support Vector Machines (SVM) as the expert
classifiers. For the generalization of the model, a new
probabilistic framework able to comprise experts with
different number of classes has been developed. It has
to be noticed that, although intended for large scale
problems, the model can also be applied to medium
size problems, for instance, one with dozens of classes
and a few thousands samples.

The organization of the paper goes as follows: a
more detailed revision of CombNET-II is presented
in Section 2, and Section 3 introduces the proposed
model, its modifications and new characteristics. Sec-
tion 4 presents experiments with the new model and
some comparisons with CombNET-II, and Section 5
concludes the paper with analyses of the results and
suggests possible future extensions.

2. Large Scale Classifier CombNET-I1

The CombNET-II is a large scale classifier that follows
the classic structure of divide-and-conquer methods: a
gating network and many experts classifiers, called re-
spectively “stem” network and “branch” networks in
the original references [7],[16]. The stem network is
a modified VQ based sequential clustering algorithm,
called Self Growing Algorithm (SGA), developed to
solve the problem of unbalanced clusters generated by
the Self-Organizing Map (SOM) used in the original
CombNET [16].

Sequential clustering algorithms are fast methods
that use each example only a few times, making the
method very suitable for large scale applications. Even
though the final clusters depend on the order the sam-

Make v1 =x1, hy =1l and R=1
forie {2...0}
Find v, so that:
sim (ve,X;) = max [sim (v}, X))
J

if sim (ve,x;) > O
R:R—‘rl, VR:Xi,thl

else
Ve = Ve UX;
if he > Op

Divide v¢ in v/ and vry1 so that:
|he —hRr41| <1
end if
end for
do Update the clusters (with necessary divisions)
until No significant changes in any clusters

Fig.1 Self Growing Algorithm (SGA)
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ples are inputted, this is not so critical for large num-
bers of samples. Usually, sequential clustering algo-
rithms have the similarity measurement threshold and
the maximal number of clusters as their parameters.
The SGA algorithm introduces another threshold to
control the maximal inner potential (number of sam-
ples) of a cluster. The basic SGA algorithm is described
in Figure 1, in which ¢ is the number of samples, R is
the current number of clusters, x; is the i*" sample, vj
is the jth cluster reference vector, Oy is the similarity
threshold, ©p is the inner potential threshold, h; is the
4" cluster inner potential and sim (vj,X;) represents
the similarity measurement between the i*" sample and
the j*" cluster. In its basic form, the CombNET-II uses
the average vectors of each class as the training set for
the stem network and the normalized dot product (the
cosine of the angle between two vectors) as the similar-
ity measurement.

After the stem network process is finished, all the
samples belonging to class k£ will belong to the cluster
that contains the reference vector of class k. Therefore,
the input space is partitioned in R Voronoi subspaces,
which will become the input spaces of the branch net-
works.

The CombNET-II uses MLP networks trained by
gradient descent as the branch networks. These can
be trained independently in order to reduce the total
processing time. After the branch networks training,
the class of an unknown sample x can be obtained as:

Y= wg SM]-SB;;7 = max (SM], SAB;,_,J) (1)

where:

<Vj7 X> (2)

SM; = sim (vj,x) = i [
j

SB ik s the maximal score among the output neurons
of the j** branch network and wy, is the k' possible
category, k = 1,..., K. The exponent ~ is a weight-
ing parameter (0 <y < 1) that dictates which network
(stem or branch) plays the major role in the classifica-
tion. The basic structure of the CombNET-II is shown
in Figure 2.

3. Proposed Model: CombNET-III

The main modification to CombNET-IT proposed in
this paper is the substitution of the MLP branch net-
works by multiclass Support Vector Machines based
branch networks. Moreover, as mentioned by many au-
thors, a classifier should output posterior class proba-
bilities to allow post processing [17], [18]. This charac-
teristic is required when the classifier is part of another
system, for instance, when it is used for the association
of HMM states with phonemes in speech recognition,

Stem Network: SGA
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Branch Branch Branch
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ﬁ sim(v,,x) % Sim(v,,x) e ﬁ Sim(vg,X)
I

SB,
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Fig.2 CombNET-II structure
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and also facilitates the cascading of classifiers. How-
ever, neither CombNET-II nor any of the other large
scale models for large number of classes problems com-
mented before (except for the ACID model) present a
probabilistic framework. The heuristics for reducing
the recognition time in [8]-[12] makes it more difficult
to obtain such a kind of outputs.

Support Vector Machine [19], [20] is a structure risk
minimization based method that has been successfully
applied in many classification tasks with great gener-
alization performance. Due to its high computational
and memory cost (O (63) and O (52), respectively, for
¢ training samples and a naive implementation), the
application of SVM in classifications problems with
large numbers of samples still remains as a challenge.
However, for problems with large numbers of classes
in which the number of samples per class is limited,
SVM becomes an interesting option as an expert clas-
sifier. Therefore, it is selected as the algorithm for the
CombNET-III’s branch networks. The basic SVM de-

cision function is:

F6)= Y yuonK (x0,%) +b (3)

nesSVvV

where x,, is the n*" support vector, ¥, is the label of the
n" support vector, K (x,,x) is the Kernel function, a,,
is the Lagrange multiplier of the n!* support vector and
b is the bias. The last two terms are found by means
of the minimization of a convex quadratic problem.
The application of SVMs as expert classifiers in a
divide-and-conquer model, however, is not straightfor-
ward. The SVMs unlimited output function of equa-
tion (3) and different output ranges among classifiers
make the output combination inefficient [18]. Many
approaches address the problem of converting the SVM
output in a calibrated probability. In this paper, Platt’s
methodology [17] was used, which consists of the direct
conversion of the function values to posterior proba-
bilities by fitting the SVM output with a sigmoidal
function. This solution has the desirable property of



maintaining the sparseness of the solution. In order
to obtain the sigmoid parameters, Platt used a model
trust minimization algorithm in his experiments. In
this paper, the Conjugate Gradient (CG) Minimization
Method [21] was used. Platt also observed that using
the same data for training the SVM and for the sigmoid
optimization can sometimes lead to biased fits. How-
ever, this problem was not observed in the experiments
presented in this work, which is also the case reported
in [22].

After the SVMs outputs are moderated, they must
be decoded properly, independent of the encoding
scheme used. Passerini, Pontil and Frasconi [18] pro-
posed a new decoding procedure for multiclass SVM
using error correcting output encodings that outper-
formed other decoding methods, such as hamming dis-
tance and loss based decoding. It also generates a pos-
terior class probability. This method, however, outputs
calibrated probabilities that do not directly reflect the
classifiers confidence on the overall sample space. In-
stead, a proportional probability is given. The direct
use of this kind of decoding would make the system very
dependent on the gating network classification. This
is undesirable, as the gating network usually presents
a low classification accuracy. This paper introduces
a new decoding function in order to obtain adequate
measures from the branch networks.

As the classifiers corresponding to one class were
trained with the same samples of that class, their
output probabilities are not statistically independent.
Thus, given a coding matrix M¥*H in which K is the
number of classes and H is the number of classifiers,
mg.p = {—1,0,41} and zero entries are interpreted as
“don’t care”, the probability of class wy given an un-
known sample x and a cluster v; is defined as the aver-
age probability outputted by the classifiers containing
that class. The proposed decoding function hence be-
comes:

Yo Pykn=mppnlx)
himy, 70

H
> [mnl
h=1

Fritsch and Finke [13] said that the OvR encoding
is a prerequisite for training neural networks in order
to estimate posterior probabilities, which are converted
in calibrated posterior probabilities by a softmaz [23]
activation function. The proposed probability decod-
ing eliminates this prerequisite, allowing the use of less
time consuming encodings in training, such as the One-
versus-One (OvO) scheme [24]. As, in general, the large
scale problems with large number of classes do not have
such a large number of samples per class, the OvO en-
coding was used in this work, although any other en-
coding could have been used.

The stem network uses the average of each class
as training data in order to control the number of

(4)

P (wg |x,v;) =
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classes per cluster and avoid unbalanced problems on
the branches. However, there is no constrain for each
class to belong to only one cluster. If strategies other
than the use of averaged data are used, classes belong-
ing to multiple branch networks can occur. Hence, the
events related to the class predicted by one branch net-
work are not mutually exclusive, and the probabilities
obtained with equation (4) are not calibrated. The final
structure of the SVM based branch network is shown
diagrammatically in Figure 3.

The events of different clusters, however, are sta-
tistically independent, as the stem network generates a
“hard” split of the samples and each branch is trained
with independent data. Also, the clusters posterior
probabilities are calculated from a similarity measure-
ment that considers each cluster individually. Hence,
when one cluster gives maximal probability, the prob-
ability of other cluster is not null, meaning that they
are not mutually exclusive.

The divide-and-conquer probabilistic approaches
normally use the total probability theorem for combin-
ing the probabilities of the expert networks. However,
this theorem considers that the clusters probabilities
are mutually exclusive and add up to unity. Further-
more, in the case of unbalanced clusters (i.e. in the case
of different number of classes for each cluster), if the to-
tal probability theorem is naively used, the branch net-
works with fewer classes tends to dominate the outlier
space. The reason for this is that the branch networks
outputs are considered as mutually exclusive, instead
of statistically independent. Therefore, this paper pro-
poses a new framework for combining the branch net-
work results.

As a branch network cannot give any information
about the categories that it was not trained to recog-
nize, it is assumed that:

1
wk¢VjHP(wk|X,Vj):§ (5)

The cluster probability P (v;|x) represents the
confidence of each branch network output, i.e, it
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weights between the branch network outputs and 1/2.
Hence, the final posterior probability of the class wy
given an unknown sample x is calculated as the prod-
uct of the probability of class wy given by each branch
network weighted by the respective cluster probability.
Finally, the proposed framework final equation can be
written as:

R
P () = e [T [P 1) P o )7 +
j=1

+1 _P(;j [x)” (6)

where the term ¢ before the product is used to adjust
the probabilities scale in order to ensure they are cal-
ibrated, summing to unity. Also, as the stem network
cluster posterior probability and the branch networks
class probabilities are obtained using very different pro-
cedures, a weighting factor v similar to the one used in
CombNET-II has to be used. The final structure of the
CombNET-III is shown diagrammatically in Figure 4.
When the kernel function of the SVM branch net-
works is the Gaussian function, the branch networks
outputs for an outlier sample tend to zero. Thus, equa-
tion (6) tends to generate equiprobable outputs for all
classes, as the normalized cosine base stem network also
tends to output equiprobable clusters. These are desir-
able properties, as the interference of one branch net-
work in the other branches sample space tends to be
minimized. Also, it is statistically consistent, as the
classifier does not have information about the outlier
space and should not produce any biased output.

4. Experiments

Two databases were used to illustrate the advantages
of the proposed model over previous methods. The Al-
phabet database is not a large scale problem, having
few number of categories and a few thousand samples,
and can be solved using most standard classification

5
Table 1  Alphabet database stem network SGA training pa-
rameters
Number of  Similarity = Inner Potential
Clusters Threshold Threshold
1 -1 30
2 -1 15
3 0.1 14
4 -1 8
5 0.45 8
6 -1 6
7 0.75 6
8 0.7 5
methods. However, as the branch networks parame-

ters can be extensively optimized for each experiment
realization, the scaling properties of CombNET-IT and
CombNET-IIT with increasing number of clusters can
be observed. The Kanji400 is a much larger database
for which standard classifiers starts to present poor per-
formance or large complexity. For this database, the
proposed method classification accuracy is compared
with other traditional classifiers. All experiments were
performed using in-house developed software packages.

4.1 JEITA-HP Alphabet Database

This database consists of the roman alphabet charac-
ters subset of the JEITA-HP database T dataset A.
The first 200 samples of each character from A to Z
were selected for the experiment, with 150 for training
(3900 samples) and 50 for testing (1300 samples). The
raw characters, which are composed of 64x64 binary
values representing black and white dots, were prepro-
cessed by a Local Line Direction (LLD) feature extrac-
tion method [25], which generated 256 features. Each
sample vector was normalized to a unitary maximal fea-
ture value and zero feature mean. This vector normal-
ization improves the normalized dot product similarity
measurement efficiency.

The Alphabet database was evaluated by the tra-
ditional CombNET-II using MLP branch networks,
with the evaluation procedure of equation (1), and the
proposed CombNET-IIT model using Gaussian Kernel
SVMs as the expert classifiers, under the framework of
equation (6). The stem network was trained with sev-
eral parameters in order to obtain increasing number
of clusters, with the best possible balance of number of
classes between them and no single-class cluster. For
balanced cluster, the non-optimal procedure of using
the same set of parameters for all the branches gives
acceptable results. The same trained stem networks
were used for CombNET-II and CombNET-III evalua-
tion. Table 1 shows the parameters used to train each
stem network.

Figures 5 and 6 depict the results for CombNET-

T Available under request from http://tsc.jeita.or.jp/
/TSC/COMMS/4.1T /Recog/database/jeitahp/index.html
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II and CombNET-III respectively, showing the varia-
tion of the stem (dark circles’ dotted line) and branch
(squares’ dashed line) networks and the whole structure
(crosses’ solid line) recognition rates with the increase
of the number of clusters in which the data is divided.
Figure 6 also shows the variation of the sum of the
number of support vectors in each cluster (diamonds’
dashed line). Under the x-axis, the optimized parame-
ters for each number of clusters are shown.

As expected, the CombNET-IIT performed better
than CombNET-II for all cases, specially for large num-
ber of clusters, even though the MLP branch networks
average classification accuracy is slightly higher than
the SVM based branches. Surprisingly, although the
Alphabet database is small enough for single classifiers,
the proposed model with 2 clusters outperformed the
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single multiclass SVM. The rapid decay of the number
of support vectors numbers also shows that CombNET-
IIT can be faster on classification than a single SVM
classifier, for instance, the 2 clusters CombNET-III
presents around half of the number of support vectors
achieved by the single SVM.

4.2 ETL9B Kanji400 Database

This database consists of a subset of the first 400 cat-
egories of the ETLIB database T. The performance of
the proposed model CombNET-III was compared with
the previous model CombNET-II, a single multiclass
SVM and the k-NN method. As it is very difficult to
obtain a good convergence with a single MLP in a 400
classes problem due to local minima, this comparison
was not performed. Moreover, even a single parameter
set experiment would be very time consuming.

The ETL9B database contains 3036 categories,
2965 Chinese characters (Kanji) and 71 Japanese Hi-
ragana characters. The first 400 classes were used,
each contains 200 samples, from which 150 samples
were used as the training set and 50 samples as the
test set. The characters were resized by their largest
dimension and the peripheral direction contributivity
(PDC) feature extraction method [26] was applied. For
all classifiers except the k-NN, before the features nor-
malization, each sample vector was independently nor-
malized to a unitary maximal feature value and zero
feature mean.

The k-NN method was run for all odd values of k
from 1 to 55. The data was normalized to zero mean
and unitary standard deviation. For the CombNET-
IT experiments, the MLP neural networks were trained
until the error was smaller than 10~* or the iteration
number exceeds 500, with learning rate equal to 0.9,
momentum 0.1 and sigmoidal activation function slope
0.1, while the number of hidden neurons and the v pa-
rameter were optimized (by testing several values) for
each experiment realization.

In the case of the single SVM and the CombNET-
II1, the binary SVM classifiers had non-biased output
and a Gaussian kernel function, whose parameter o was
optimized for each experiment realization. The soft-
margin C parameter was fixed at 200 (as several exper-
imented values did not produce significant changes for
the used data). For CombNET-III, each branch net-
work training data was normalized to zero mean and
unitary standard deviation.

Both divide-and-conquer models CombNET-IT and
CombNET-IIT used the same 12-cluster stem network,
which was trained with similarity threshold and inner
potential threshold respectively equal to —1 and 53. As
these experiments are very time-consuming, specially

f Available under request from
http://www.is.aist.go.jp/etledb
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for CombNET-IT branch networks training, no other
number of clusters were used. However, this configu-
ration is very appropriate, as the branch networks can
perform very well and the stem performance of 78.70%
is also acceptable. For these models each branch net-
work parameters were optimized independently.
Figure 7 depicts the classification accuracy results
for the proposed method and all compared methods.
For the divide-and-conquer methods, it is also shown
the branch networks average accuracy. The proposed
model outperformed the other methods, reducing the
single SVM error rate by around 16% and the previous
model CombNET-II by around 26%. As stated before,
it is difficult to obtain good convergence for a single
MLP with this amount of categories. Therefore, Figure
7 does not include such a result. Figure 8 depicts the
complexity for all compared methods, illustrating the
amount of memory and calculation required for each

7
Table 2  Classifiers computational complexity description
Classifier Complexity Description
k-NN NY
R
CombNET-II S Wy
=1
single SVM N-SV
R
CombNET-III N> 8V
j=1

model after training. Table 2 describes the complexity
definition for each model, in which N is the number of
features, ¢ is the number of training samples, R is the
number of clusters on the case of divide-and-conquer
methods, W is the total number of weights and biases
of a MLLP and SV is the final number of support vectors
in a multiclass SVM. It is to be noticed that the y-axis
is in logarithmic scale.

The results show that, even the performance of
the single multiclass SVM is not so far from the one
obtained by CombNET-III, the final classifier’'s com-
plexity is two orders of magnitude higher. Even chang-
ing the kernel parameters, a similar complexity for the
single SVM could not be obtained, while the accuracy
drops beyond all other methods.

When compared to the previous model CombNET-
II, the CombNET-III complexity is higher. However, as
the accuracy of CombNET-II is very dependent on the
stem network (as the high values of v under the x-axis of
Figure 5 indicate), the performance for the used number
of clusters is considerably lower than CombNET-III,
even the branch networks average accuracy is nearly
the same for both models.

These results confirm the expected advantages of
the proposed model CombNET-III on large scale prob-
lems classification.

5. Discussion and Conclusions

This paper proposed an extension of the previous large
scale classification model CombNET-II. On the devel-
opment of this new model, named CombNET-III, the
following points were addressed: the classification ac-
curacy improvement, the reduction of the large train-
ing computational cost of the CombNET-IT MLP based
branch networks, and the development of a new frame-
work that could output posterior probabilities, enabling
it to be used on different applications.

Substituting the MLP branch networks by multi-
class SVMs with moderated outputs permitted the first
two objectives to be achieved. The local effect of the
Gaussian kernel function reduces the interference be-
tween the clusters, as the SVM function value tends
to be zero for outlier samples. This allows an increase
in the importance given to the branch classification re-



sult, shown by the small values of v obtained on the
experiments, in comparison with CombNET-II. Also,
although no numerical measurement was presented, the
use of the OvO encoding makes the CombNET-III
training time to be at least one order of magnitude
faster than both CombNET-II and the single multi-
class SVM. Finally, the final classification accuracy of
CombNET-IIT outperformed all the compared methods
(k-NN, single SVM and CombNET-II), showing that
the proposed framework and the use of SVM branch
networks are effective.

Future works include the improvement of the stem
network, in order to increase its classification accuracy,
which will probably result in an improvement of the
whole classifier structure. Also, even the CombNET-
IIT complexity is considerably less than the single mul-
ticlass SVM, it is still higher than CombNET-II. Tech-
niques such as feature subset selection could be used in
order to reduce the classification complexity.
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