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Details of the Nitech HMM-Based Speech Synthesis System for the

Blizzard Challenge 2005

Heiga ZEN'®, Nonmember, Tomoki TODA ™, Member, Masaru NAKAMURA'®, Nonmember,

SUMMARY  InJanuary 2005, an open evaluation of corpus-based text-
to-speech synthesis systems using common speech datasets, named Bliz-
zard Challenge 2005, was conducted. Nitech group participated in this
challenge, entering an HMM-based speech synthesis system called Nitech-
HTS 2005. This paper describes the technical details, building processes,
and performance of our system. We first give an overview of the ba-
sic HMM-based speech synthesis system, and then describe new features
integrated into Nitech-HTS 2005 such as STRAIGHT-based vocoding,
HSMM-based acoustic modeling, and a speech parameter generation algo-
rithm considering GV. Constructed Nitech-HTS 2005 voices can generate
speech waveforms at 0.3 XRT (real-time ratio) on a 1.6 GHz Pentium 4
machine, and footprints of these voices are less than 2 Mbytes. Subjective
!istening tests showed that the naturalness and intelligibility of the Nitech-
HTS 2005 voices were much better than expected.

key words: HMM-based speech synthesis, Blizzard Challenge 2005,
STRAIGHT, HSMM, GV

1. Introduction

The increasing availability of large speech databases makes
it possible to construct data-driven speech synthesis sys-
tems, referred to as corpus-based speech synthesis sys-
rems [1], by applying statistical learning algorithms. These
systems can both synthesize natural and high quality speech
and reproduce the original speaker’s voice characteristics.

In recent years, a kind of corpus-based speech synthe-
sis system based on Hidden Markov Models (HMMs) has
been developed [2]. In the training part of this system, spec-
tral and excitation parameters are extracted from a speech
database and modeled by context-dependent HMMs. In the
synthesis part, spectral and excitation parameters are gener-
ated from the HMMs themselves [3]. By filtering the gen-
erated excitation, a speech synthesis filter controlled by the
generated spectral parameters synthesizes a speech wave-
form. This system has the following features:

1) Smooth and natural sounding speech can be synthe-
sized,
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2) voice characteristics can be easily modified,
3) itis trainable.

The speech synthesis in 1) can be carried out by taking ac-
count of the statistics for both static and dynamic features,
which constrains the dynamics of generated speech parame-
ter vector to be realistic. The voice characteristics in 2) can
be changed by transforming HMM parameters appropriately
because the system generates speech waveforms from the
HMMSs themselves. In fact, speaker adaptation [4], speaker
interpolation [5], and eigenvoice [6] techniques have been
applied to this system to modify its voice characteristics. As
for 3), this system can be automatically constructed.

In January 2005, Black and Tokuda conducted an open
evaluation of corpus-based text-to-speech synthesis systems
using common speech datasets, named Blizzard Challenge
2005[7],[8]. Nitech group participated in this challenge,
entering an HMM-based speech synthesis system called
Nitech-HTS 2005. In this paper, we describe technical de-
tails, building processes, and performance of the Nitech-
HTS 2005 voices.

One of the major limitations of the basic HMM-based
speech synthesis system is that synthesized speech is buzzy
since it uses a simple mel-cepstral vocoder. To solve
this problem, Nitech-HTS 2005 uses Speech Transtorma-
tion and Representation using Adaptive Interpolation of
weiGHTed spectrum (STRAIGHT) [9]. Other technologies
such as Hidden Semi-Markov Model (HSMM) [10] and the
speech parameter generation algorithm considering Global
Variance (GV)[11] were also integrated.

The rest of this paper is organized as follows. First,
a brief overview of the Blizzard Challenge 2005 is given.
Then, the basic HMM-based speech synthesis system is re-
viewed. After that, the new features integrated into Nitech-
HTS 2005 and the details of constructed voices submitted
to the Blizzard Challenge 2005 are discussed. Finally con-
cluding remarks are presented.

2. Blizzard Challenge 2005

In January 2005, Black and Tokuda conducted the Blizzard
Challenge 2005 [7] to more closely compare the labeling,
pruning, target and concatenation costs, signal processing,
and others techniques of corpus-based text-to-speech syn-
thesis systems. Organizers asked participants to use the
designated databases to synthesize utterances from a small
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number of genres. They also did an organized evaluation
based on subjective listening tests to try to rank the systems
and help identify the effectiveness of the techniques used by
each[12].

In 2004, the first two single-speaker datasets (US-
English) consisting of 1132 phonetically balanced utter-
ances were released as the CMU ARCTIC databases [13].
Then, groups working in speech synthesis around the world
were asked to build their best voices from these databases.
In January 2005, the two additional databases (US-English)
and a set of 50 utterance texts from each of five genres
were released. The participants were asked to build four
voices using these datasets and synthesize these utterances
in a week. Their resulting synthesized utterances were then
presented to three groups of listeners: speech experts, volun-
teers recruited from the Web, and native US-English speak-
ing undergraduates. The evaluation included five separate
tests, one from each genre. Tests 1 through 3 were Mean
Opinion Score (MOS) tests, where the listener made a judg-
ment about the naturalness of a particular sample by assign-
ing it ascore of 1 to 5. The remaining two tests were type-in
tests that required the listener to enter the words they heard
into a textbox. Details of the Blizzard Challenge 2005 it-
self are described by Tokuda and Black [7]. Discussions of
its results and evaluation methodology are available in Ben-
nett [12]. In the following section, technical details, building
processes, and performance of the Nitech-HTS 2005 voices
are described.

3. Basic System

Figure 1 is an overview of the basic HMM-based speech
synthesis system [2]. In this system, feature vectors for
training HMMs consist of spectrum and excitation param-
eter vectors: the spectrum parameter vectors are composed
of mel-cepstral coefficients [14], their delta, and delta-delta,
and excitation parameter vectors consist of logarithmic fun-
damental frequency (log Fy) values, their delta, and delta-
delta.

Training part:

SPEECH Speech ‘signal

DATABASE .

FO Mel-cepstral
Extraction Analysis

Mel-cepstrum

i
Text Analysis
Label
log FO Mel-cepstrum

Pulse/Noise| Excitation |MLSA| _SYNTHESIZED
| Synthesis part |_Excitation Filter SPEECH

Fig.1  The overview of the basic HMM-based speech synthesis system.
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In the training part, sequences of feature vectors are
modeled by context-dependent HMMs. Although sequences
of mel-cepstral coefficients can be modeled by continuous
HMMs, log Fp sequences cannot be represented by con-
tinuous or discrete HMMs since each observation is com-
posed of a one-dimensional continuous log Fy value or a
discrete symbol, which represents wunvoiced frame. To
model this kind of observation, HMMs based on multi-
space probability distributions (MSD-HMMs) have been
proposed [15]. An MSD-HMM includes both discrete and
continuous HMMs as its special cases and can model log F
sequences with no heuristic assumptions. The training pro-
cedure of the context-dependent HMMs is very similar to
that used in speech recognition. The main differences are as
follows:

e It estimates model parameters based on the maxi-
mum likelihood criterion rather than the discriminative
one[16];

e it uses a Gaussian distribution rather than mixture of
Gaussian distributions for each state output probability
density function;’

e it takes into account linguistic contexts as well as pho-
netic contexts;

e it also models state duration probability density func-
tions by multi-variate Gaussian distributions.?

In the synthesis part, a text to be synthesized is first
converted to a context-dependent label sequence and then
the sentence HMM is constructed based on the label se-
quence. Second, the state durations are determined so as
to maximize their probabilities based on the state duration
probability density functions. Third, the speech parame-
ter generation algorithm (typically, case 1 as described by
Tokuda et al.[3] is used) generates the sequences of mel-
cepstral coefficients and log Fyp values that maximize their
output probabilities. Finally, a speech waveform is synthe-
sized directly from the generated mel-cepstral coefficients
and log F values using the Mel Log Spectrum Approxima-
tion (MLSA) filter [20] with binary pulse or noise excitation.

4. New Features Integrated into Nitech-HTS 2005

One of the major limitations of the basic HMM-based
speech synthesis system is that synthesized speech is buzzy
since it uses a mel-cepstral vocoder with binary pulse
or noise excitation. To solve this problem, several at-
tempts to incorporate advanced excitation models into the
HMM-based speech synthesis have been reported[21],
[22]. In Nitech-HTS 2005, a high-quality vocoder called
STRAIGHT [9] was introduced to address this problem.
The system also integrated other technologies such as

YA parameter optimization criteria so as to minimize mean
squared error between generated speech parameter trajectories and
training data has also been proposed [17].

""The use of mixture of Gaussian distributions increases com-
putational complexity in the speech parameter generation [18].
""Gamma distributions have also been applied [19].



ZEN et al.: DETAILS OF THE NITECH HMM-BASED SPEECH SYNTHESIS SYSTEM FOR THE BLIZZARD CHALLENGE 2005

HSMM-based acoustic modeling [10] and a speech param-
eter generation algorithm considering GV [11], (which im-
proved the basic system). Figure 2 is a block diagram of
Nitech-HTS 2005. Differences can be seen between the ba-
sic system and Nitech-HTS 2005 in the front-end, acoustic
modeling, and speech parameter generation parts. The fol-
lowing section details and describes the evaluations of these
new features.

4.1 STRAIGHT Vocoding

Nitech-HTS 2005 uses the high-quality speech vocoding
method STRAIGHT. This is a vocoder type algorithm pro-
posed by Kawahara et al. [9] and is diagrammed in Fig. 3. It
consists of three main components: Fo extraction, spectral
and aperiodicity measurement analysis, and speech synthe-
sis.

First, STRAIGHT automatically extracts Fy values
with fixed-point analysis [23]. Using the extracted Fy val-
ues, STRAIGHT carries out Fy-adaptive spectral analysis
combined with a surface reconstruction method in the time-
frequency region to remove signal periodicity. It also ex-
tracts aperiodicity measurements on the frequency domain.
These are based on a ratio between the lower and upper
smoothed spectral envelopes and represent the relative en-
ergy distribution of aperiodic components [24]. In the syn-
thesis part, a mixed excitation is designed as a weighted
sum of a pulse train with phase manipulation and Gaus-

_ Training part |

SPEECH Speech IS|gnal X .
BATABASE FO STRAIGHT 5
Extraction FO Analysis 1

STRAIGHT Mel-cepstrum!

& Aperiodicity i

[}

Label

SYNTHESIZED
SPEECH

Waveform

FO extraction

Fixed-point analysis

FO adaptive spectral
smoothing in the
time-frequency region

Synthetic waveform

Synthesis

Mixed excitation with
phase manipulation

Smoothed
spectrum
Aperiodicity
measures

Fig.3 A block diagram of STRAIGHT vocoding method.

327

sian noise. The weighting process is carried out in the fre-
quency domain using the aperiodicity measurements. Using
the smoothed spectrum and mixed excitation, STRAIGHT
synthesizes a speech waveform with FFT-based processing.

To construct its voice, Nitech-HTS 2005 used a two-
stage extraction to alleviate errors of Fy extraction such as
halving and doubling. First, the system extracted Fy val-
ues for all training data for each speaker within a search
range from 40 to 600Hz. Then, the Fy range of each
speaker was roughly estimated taking account of a his-
togram of the extracted F, values. Then, Fy values were
re-extracted in the speaker-specific range. In STRAIGHT,
a smoothed spectrum is used as a spectral parameter. How-
ever, it is high-dimensional representation (e.g., 512 dimen-
sions). Estimating statistically reliable acoustic models us-
ing such high-dimensional observations is very difficult. To
avoid this problem, in Nitech-HTS 2005 mel-cepstral coef-
ficients, converted from the smoothed spectrum with a re-
cursive algorithm [25], hereafter referred to as STRAIGHT
mel-cepstrum, were used as its spectral parameters. For the
same reason, the aperiodicity measurements were averaged
on five frequency sub-bands, i.e., 0-1, 1-2, 24, 4-6, and
6-8kHz. Figure 4 shows examples of spectral envelopes
extracted with the FFT and represented by conventional and
STRAIGHT mel-cepstrum. It can be seen from the figure
that the conventional mel-cepstral analysis suffers from the
Fy effect in the lower frequency range when the order of
mel-cepstral analysis is high. In contrast, the STRAIGHT
mel-cepstrum avoids this effect and approximates the spec-
tral envelope well. To synthesize a speech waveform, it is
necessary to convert the mel-cepstrum to the linear-scaled
spectrum, since STRAIGHT uses FFT-based processing to
synthesize speech waveforms. However, this increases com-
putational complexity. To reduce computational cost, we
used the MLSA filter [20] in Nitech-HTS 2005 in a process
illustrated in Fig. 5. Specifically, a one-pitch waveform was
synthesized from mel-cepstral coefficients and the mixed-

120 T T T T T T

~~~~~~~~~~ FFT spectrum

100+ - Conventinal mel-cepstrum (order=24)
— Conventinal mel-cepstrum (order=39)
—— STRAIGHT mel-cepstrum (order=39)

L

Power [dB]

g% 4 & s

Frequency [kHz]

Fig.4  Examples of spectral extracted with FFT and represented by mel-
cepstral coefficients extracted with the mel-cepstral analysis (order of mel-
cepstral analysis is 24 and 39) and converted from the smoothed spectrum
(order of mel-cepstral analysis is 39).
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Fig.5 A block diagram of the synthesis part of STRAIGHT.

excitation with the MLSA filter, and then a synthesized
waveform was generated with Pitch-Synchronous OverLap-
Add (PSOLA) [26].

4.2 HSMM-Based Acoustic Modeling

In the HMM-based speech synthesis system, rhythm and
tempo are controlled by the state duration probabilities mod-
eled by single Gaussian distributions. They are estimated
from statistical variables obtained in the last iteration of the
forward-backward algorithm, and then clustered by a deci-
sion tree-based context-clustering algorithm: they are not
re-estimated in the Baum-Welch iteration. In the synthe-
sis stage, we construct a sentence HMM and determine its
state durations so as to maximize their probabilities. Then,
a speech parameter vector sequence is generated. However,
there is an inconsistency in the basic system: although pa-
rameters of HMMs are re-estimated without explicit state
duration probability density functions, speech parameter
vector sequences are generated from the HMMs using the
explicit state duration probability density functions. This in-
consistency can degrade the quality of synthesized speech.

To resolve the discrepancy, HSMMs [27], which can
be viewed as HMMs with explicit state duration probability
density functions, were introduced into the training part of
the system [10]. The use of HSMMSs makes it possible to si-
multaneously re-estimate state output and duration probabil-
ity density functions. Improvements in durations, spectrum,
and Fy have been reported [10].

4.3 Speech Parameter Generation Algorithm Considering
GV

In the basic system, the speech parameter generation algo-
rithm (typically case 1 described by Tokuda et al.[18]) is
used to generate spectral and excitation parameters from
the HMMs. By taking account of constraints between the
static and dynamic features, it can generate smooth speech
parameter trajectories. However, the generated spectral
and excitation parameters are often over-smoothed. Syn-
thesized speech using over-smoothed spectral parameters
sounds muffled. There were several attempts to reduce this
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3rd mel-cepstrum
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Fig.6  Examples of the third mel-cepstrum’s trajectory ¢ for an utterance
and its global variance c®(c) (the left side of the figure plots the trajectory
and the right side shows a Gaussian distribution calculated from c).
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Fig.7  Averages for GVs of STRAIGHT mel-cepstral coefficients of nat-
ural speech and synthesized speech generated by the speech parameter gen-
eration algorithm with and without considering GV. They are calculated
from 212 utterences by two female and two male speakers (53 utterances
for each speaker).

effect [28]. In Nitech-HTS 2005, a speech parameter gener-
ation algorithm considering GV [11] was used.

Figure 6 shows how GV, which is defined as an intra-
utterance variance, is calculated. The probability density
function of GV is modeled by a Gaussian distribution with
a diagonal covariance matrix. To generate speech param-
eters, a trajectory is first generated with the generation al-
gorithm (case 1 in Tokuda et al. [18]). Then, the generated
trajectory is converted so that its GV is equal to the mean of
the Gaussian distribution. Using the converted trajectory as
the initial value, the speech parameter trajectory that max-
imizes an objective function (defined as a weighted sum of
logarithmic output probability of the speech parameter se-
quence and that of its GV) is iteratively optimized using the
Newton-Raphson method. Figure 7 shows plots of averages
for GVs of natural and synthesized speech. It can be seen
that by considering GV in the speech parameter generation
process, the average for GVs of synthesized speech almost
reaches the level of natural speech.

The performance of GV in speech synthesis is highly
dependent on spectral parameter representations. Figure 8
shows an example of Gaussian distributions for GVs of
mel-cepstral coefficients extracted with conventional mel-
cepstral analysis and STRAIGHT mel-cepstral analysis. It
can be seen that the Gaussian distribution modeling GVs of
conventional mel-cepstral coefficients have relatively large
means and wide variances in higher orders because of the
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Table 1  Conditions of constructed systems for evaluating the effectiveness of STRAIGHT, HSMM
and GV.
[ System setting | Spectrum [ Order of mel-cepstrum | Excitation [ Model [ GV ]
A Mel-cepstrum + A + A? 24 log Fo + A + A? HMM | no
B STRAIGHT mel-cepstrum + A + A” 24 log Fo + A + A%, aperiodicity + A + A2 | HMM | no
C Mel-cepstrum + A + A2 24 log Fo + A + A? HSMM | no
D STRAIGHT mel-cepstrum + A + A? 24 log Fo + A + A?, aperiodicity + A + A2 | HSMM | no
E STRAIGHT mel-cepstrum + A + A” 39 log Fp + A + A?, aperiodicity + A + A2 | HSMM | no
E Mel-cepstrum + A + A? 24 log Fo + A + A? HSMM | yes
G STRAIGHT mel-cepstrum + A + A2 24 log Fo + A + A?, aperiodicity + A + A*> | HSMM | yes
H STRAIGHT mel-cepstrum + A + A2 39 log Fo + A + A?, aperiodicity + A + A*> | HSMM | yes

10
---- Conventional mel-cepstrum
1 — STRAIGHT mel-cepstrum
®
g
2 0.1 Mean
T
>
S 0.01
o
R 2 Y
0.001
Standard deviation
0.0001
0 5 10 15 20 25 30 35 40
Order of mel-cepstrum
Fig.8 Gaussian distributions for GVs of mel-cepstral coefficients ex-

tracted with conventional mel-cepstral analysis and STRAIGHT mel-
cepstral analysis. Means and standard deviations are calculated from 50
sentences uttered by a female speaker whose average F is 235.2 Hz, which
are recorded at 16 kHz sampling.

Fy effect shown in Fig. 4. This causes the frequency compo-
nents around Fy values in impulse responses of generated
mel-cepstral coefficients to be overemphasized. By con-
trast, as discussed in Sect.4.1 STRAIGHT mel-cepstrum
is not subject to this effect. Therefore, we can use higher-
order mel-cepstral analysis and synthesize natural sounding
speech waveforms. This effect is more apparent in female
speakers who have high average Fy values.

The algorithm described in this section was applied in
Nitech-HTS 2005 to both spectral and F generation pro-
cesses.” Note that only voiced frames were used to calculate
GV of Fy values.

4.4 Evaluation of the New Features

To evaluate the effectiveness of the three new features, we
conducted a subjective listening test. The first 450 of 503
phonetically balanced sentences from the ATR Japanese
speech database B-set uttered by speakers FYM (female)
and MYI (male) were used to train the system. The re-
maining 53 sentences were used for evaluation. Eight sys-
tems (A-H) were constructed to evaluate each of the new
features. The specifications of these systems are shown in
Table 1. In this experiment, we also evaluated the effect of
increasing the order of mel-cepstral analysis. The setting for

| 1 95% confidence intervals

5
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c
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(o} 3 { 1 1 } |
c
@
[} i -]
=
[} T J
g 2 i
2 1 J
<

1

A B C D E F G H
System settings
Fig.9  Results of subjective evaluation (speaker MYT).

system H was adopted in Nitech-HTS 2005. Speech signals
were sampled at a rate of 16 kHz and windowed by a 25-
ms Blackman window in the mel-cepstral analysis used in
the baseline system with a 5-ms shift or a Gaussian win-
dow with F adaptive window size for STRAIGHT mel-
cepstral analysis with a 5-ms shift. Then spectral and ex-
citation parameters were extracted. A five-state left-to-right
HMM/HSMM structure with no skip was used.

The naturalness of synthesized speech was evaluated
by Mean Opinion Score (MOS). For each test sentence,
eight samples’ were presented in random order. After lis-
tening to each sample, subjects were asked to assign a 5-
point score (5: natural-1: poor) to each sample. The 12
subjects were all students. For each subject, 10 sentences
were randomly chosen from 53 test sentences. Figures 9 and
10 show experimental results. It can be seen from the fig-
ures that introducing STRAIGHT and the speech parameter
generation considering GV dramatically enhanced the qual-
ity of synthesized speech. Using the HSMM and increasing
the order of mel-cepstral analysis, on the other hand, did not
significantly improve the quality. For both speakers, the H

This algorithm was not applied to aperiodicity measures gen-
eration because its effect was relatively small and it increased the
computational complexity.

"'Natural speech examples were not included in this experi-
ment.
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Fig.10  Results of subjective evaluation (speaker FYM).

system settings performed best.
5. Constructing the Nitech-HTS 2005 Voices
5.1 Preparing Training Data

In the Blizzard Challenge 2005, the participants were asked
to build four US-English voices (speakers BDL, CLB, RMS,
and SLT) using the CMU ARCTIC databases [13]. Each
of them consisted of 1132 phonetically balanced utterances,
speech waveforms recorded at 16 kHz, phoneme segmen-
tations, utterance information files, and pitch marks in the
Festvox style [29]. Data for two of the four speakers (SLT
and BDL) was released in advance and was used to opti-
mize the system settings, e.g., training procedure. The re-
maining two speakers’ data was released in January 2005.
The system settings developed with the first two speakers
except Fy search range were used to construct the remain-
ing two voices. Therefore, the building process for the later
two voices was completely automatic.

To prepare training data, STRAIGHT mel-cepstral co-
efficients, log Fy, and average values of aperiodicity mea-
surements were extracted from the databases as described
in Sect.4.1. Feature vectors consisted of 40 mel-cepstral
coefficients including the zeroth coefficient, log F, average
values of aperiodicity measures in five frequency sub-bands,
their delta, and delta-delta.

5.2 Acoustic Modeling

The five-state left-to-right structure with no-skip was used.
Each state output probability density function was consisted
of five streams: STRAIGHT mel-cepstral coefficients with
their delta and delta-delta, log F, Alog Fo, A2 log Fy, and
average values of aperiodicity measurements with their delta
and delta-delta. The streams for STRAIGHT mel-cepstral
coefficients and aperiodicity measurements were modeled
by Gaussian distributions with diagonal covariance matri-
ces. Each of the log Fy, Alog Fo, and A” log Fy streams was

IEICE TRANS. INE & SYST., VOL.E90-D, NO.1 JANUARY 2007

Table 2 The numbers of leaf nodes of constructed decision trees for
spectrum, Fo, aperiodicity measures, and durations.
r ﬂ BDL [ CLB [ RMS [ SLT |
Spectrum 882 1,013 | 1,021 859
Fy 2,046 | 1,851 | 2,090 | 1,691
Aperiodicity 676 800 924 720
Duration 570 511 521 571
Table 3  System building times (Hours:Minutes:Seconds).
Data Acoustic model
preparation training Total
BDL 03:35:06 18:12:24 21:47:30
CLB 04:10:13 23:31:31 27:41:44
RMS 04:18:29 24:55:53 29:14:22
SLT 04:02:10 20:23:42 24:25:52

modeled by an MSD consisting of a Gaussian distribution
with a diagonal covariance matrix (voiced space) and a dis-
crete distribution (unvoiced space). The state duration prob-
ability density functions of each HSMM were modeled by
a multi-variate Gaussian distribution whose dimensionality
was equal to the number of states.

A modified version of the HMM-based speech synthe-
sis software toolkit [30] was used for training acoustic mod-
els. After monophone HSMMs were initialized using the
segmental k-means algorithm, they were re-estimated us-
ing the EM algorithm. Then their statistics were copied
to context-dependent HSMMs. In the Nitech-HTS 2005
voices, contextual factors described in Zen et al. [31] were
taken into account. They were extracted from utterance in-
formation files included in the databases using the feature
extraction functions included in the Festival speech syn-
thesis system. The context-dependent HSMMs were re-
estimated (one iteration) and then the decision-tree-based
context clustering technique [32] was used to construct
the parameter sharing structure. The minimum descrip-
tion length (MDL) criterion [33] was used to stop tree
growth [2],[34]. A decision tree was separately constructed
for each state position of spectrum, Fy, aperiodicity mea-
surements, and state duration. After re-estimating clustered
HSMMs (four iterations), the constructed parameter shar-
ing structure was untied. Then the untied context-dependent
HSMMs were re-estimated (one iteration), and the decision-
tree-based context clustering was applied once again. Ta-
ble 2 shows the numbers of leaf nodes of constructed deci-
sion trees for spectrum, Fy, aperiodicity measures, and dura-
tion. Then the re-clustered HSMMs were re-estimated (five
iterations). Finally, they were converted into the input file
format of our HMM-based speech synthesis engine. '

Table 3 shows the total system building times of the
Nitech-HTS 2005 voices on a 3.2 GHz Pentium 4 machine.
It shows that these voices could be trained in about a day.
Table 4 shows the footprints of the constructed Nitech-HTS
2005 voices. In this table, “Pdfs” means the files includ-
ing the parameter values of state output and duration prob-

"This engine did not include text analyzer.
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Table 4
1 [ BDL | CLB [ RMS [ SLT |

Pdfs 1,024 | 1,161 | 1,221 | 1,004
Trees 270 266 289 243

Footprints of constructed voices in Kbytes.

Engine 252
Others 2
[ Total [[ 1,548 [ 1,681 | 1,764 | 1501 |
BDL —
c cLB —
o
H iy
=]
4 ‘A’ un
“ 1 | ll
E \ --t v‘ ‘ L‘u
?) g i
o
1 I 1 1
Conv Guten MRT News Sus
Domains

Fig.11  Real-time ratios of the Nitech-HTS 2005 voices to synthesize
speech waveforms.

ability distributions saved in 32-bit single precision float-
ing point number, “Trees” denotes the tree files containing
the decision trees of spectrum, F, aperiodicity measures,
and durations saved in ASCII (HTK format). It can be seen
from the figure that the footprint of each voice was less than
2 Mbytes. Their footprints can be reduced further without
any quality degradation by eliminating redundant informa-
tion [35]. Further reduction is also possible with little degra-
dation of quality by vector quantization, saving pdf files in
fixed point numbers instead of floating point ones, and prun-
ing of the decision trees.

5.3 Synthesizing Speech

The test texts released from the organizers consisted of five
different domains:

Gutenberg novels (Guten),

Standard news text (News),

Conversational/dialog sentences (Conv),

DRT/MRT phonetically confusable words, within sen-
tences (MRT) [36],

e Semantically unpredictable sentences (SUS) [37].

Each text was converted into the corresponding context-
dependent label sequence using the Festival speech synthe-
sis system [38]. While analyzing a given text, any tags that
specified accents, stresses or pronunciations to help the text
analyzer were omitted, and none of the outputs of the text
analyzer were manually corrected. Then the speech syn-
thesis engine generated a speech waveform for the given
context-dependent label sequence.

Figure 11 shows plots of the real-time ratios (xRT) of
the Nitech-HTS 2005 voices to synthesize a speech wave-
form for a given label sequence on a 1.6 GHz Pentium 4
machine. An XRT of 1 means the time to synthesize is
the same as the speech signal time. A lower value of xRT
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Il Speech synthesis experts [_] Volunteers recruited from the Web
[ Native US-English speaking undergraduates

Average Mean Opinion Scores

X D
Natural ) Nitech-HTS
speech 2005

Fig.12  Average MOSs of natural speech and all submitted systems.

Bl Speech synthesis experts [__] Volunteers recruited from the Web

[ Native US-English speaking undergraduates
50

Average Word Error Rates (%)

D
Natural ) ( Nitech-HTS )

speech 2005

Fig. 13  Average WERs of natural speech and all submitted systems.

means better performance. It can be seen from the figure
that the constructed Nitech-HTS 2005 voices could synthe-
size speech waveforms at 0.3 xRT. It should be noted that
this engine loaded both acoustic models and decision trees
for every sentence. In fact, loading time took up about 60%
of the synthesizing time. This means it can be reduced fur-
ther.

This year, six groups including five universities and
one company participated in the challenge. Figures 12 and
13 show the average MOSs for the three MOS tests about
naturalness and Word Error Rates (WER, the percentage of
words that had errors) for the two intelligibility (type-in)
tests carried out in the Blizzard Challenge 2005, respec-
tively. To preserve participants’ anonymity, the letters A
through F are used to denote the systems, and X denotes a
real speech reference condition of examples recorded by the
voice talent. The Nitech-HTS 2005 is denoted by the let-
ter D. In the Blizzard Challenge 2005, 50 speech synthesis
experts, 60 volunteers recruited from the Web, and 58 na-
tive US-English speaking undergraduates participated in the
evaluation. It can be seen from these figures that the perfor-
mance of the Nitech-HTS 2005 voices was much better than
expected, though it was still far from natural speech. They
show that the Nitech-HTS 2005 voices achieved the high-
est MOSs and the lowest WERs with all types of listeners.
Please refer to Bennett [ 12] for the details.
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5.4 Discussion

In the Blizzard Challenge 2005, relatively small databases
(around an hour for each speaker) were used. It is gener-
ally thought that the HMM-based approach is more appro-
priate than the unit selection approach for small databases
because the HMM-based approach can potentially cover the
given training data more effectively [39]. In these days of
unit selection-based speech synthesis systems, a much larger
speech database (e.g., more than 10 hours) is usually used.
It may be worth studying at what size a speech database is
more appropriate for the unit selection approach than for the
HMM-based approach.

Sometimes it is difficult to assemble a speech database
large enough to build a good unit selection system. For ex-
ample, Black has reported that recording emotional or em-
phasized speech consistently has been difficult[40]. The
HMM-based approach is very useful in these areas because
it does not require a large amount of training data and can re-
estimate new voices with only a few utterances from existing
models that were trained with a large amount of data [41].

6. Conclusion

This paper detailed the HMM-based speech synthesis sys-
tem (Nitech-HTS 2005) developed for the Blizzard Chal-
lenge 2005. We gave an overview of the basic HMM-based
speech synthesis system and the new features integrated
into Nitech-HTS 2005, such as STRAIGHT-based vocod-
ing, HSMM-based acoustic modeling, and the speech pa-
rameter generation algorithm considering global variance.
Constructed Nitech-HTS 2005 voices were able to synthe-
size a speech waveform at 0.3 xRT (real-time ratio) on a
1.6 GHz Pentium 4 machine, and footprints of these voices
were less than 2 Mbytes. Subjective listening test results
showed that performance of the Nitech-HTS 2005 voices
were much better than expected.
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