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PAPER

A Learning Algorithm of Boosting Kernel Discriminant
Analysis for Pattern Recognition

Shinji KITA†, Nonmember, Seiichi OZAWA†a), Satoshi MAEKAWA††, Members,
and Shigeo ABE†, Nonmember

SUMMARY In this paper, we present a new method to enhance classifi-
cation performance of a multiple classifier system by combining a boosting
technique called AdaBoost.M2 and Kernel Discriminant Analysis (KDA).
To reduce the dependency between classifier outputs and to speed up the
learning, each classifier is trained in a different feature space, which is ob-
tained by applying KDA to a small set of hard-to-classify training samples.
The training of the system is conducted based on AdaBoost.M2, and the
classifiers are implemented by Radial Basis Function networks. To per-
form KDA at every boosting round in a realistic time scale, a new kernel
selection method based on the class separability measure is proposed. Fur-
thermore, a new criterion of the training convergence is also proposed to
acquire good classification performance with fewer boosting rounds. To
evaluate the proposed method, several experiments are carried out using
standard evaluation datasets. The experimental results demonstrate that
the proposed method can select an optimal kernel parameter more effi-
ciently than the conventional cross-validation method, and that the training
of boosting classifiers is terminated with a fairly small number of rounds
to attain good classification accuracy. For multi-class classification prob-
lems, the proposed method outperforms both Boosting Linear Discriminant
Analysis (BLDA) and Radial-Basis Function Network (RBFN) with regard
to the classification accuracy. On the other hand, the performance evalua-
tion for 2-class problems shows that the advantage of the proposed BKDA
against BLDA and RBFN depends on the datasets.
key words: boosting, kernel methods, kernel discriminant analysis, pattern
classification, neural networks, feature selection

1. Introduction

Recently, boosting has been widely known as a powerful
method to construct a strong classifier by combining several
weak classifiers [7], each of which performs slightly better
than random guessing. It is demonstrated that boosting can
enhance the overall performance by increasing the so-called
margin, which is defined as the distance of the closest train-
ing sample to the decision surface of a classifier [4], [26].
In addition, Murua [23] reveals that the upper error bound
is represented by not only the margin but also the depen-
dence of the classifier outputs. In the boosting algorithms,
this classifier dependence is kept low by providing training
samples with different weights that are increased based on
the difficulty in classification [8].

Although the boosting can construct accurate and ro-
bust classification systems, there still remain some open
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questions. One question is how we can determine the num-
ber of boosting rounds properly (i.e., the criterion of the
training convergence) [16], and another is how a weak clas-
sifier should be created [17]. On the first question, the train-
ing convergence has often been determined by the train-
ing error or the training has been terminated at a predeter-
mined round. However, these methods are not always suit-
able to determine the learning convergence because it has
been known that a test error can be decreased even after
the training error converges to zero [25], and that a proper
boosting round generally depends on datasets. Therefore,
we still need to find another valid criterion leading to the
desired generalization performance with less computation
costs. On the second question, Lu et al. [18] have proposed
an interesting approach in which at each boosting round a
new Linear Discriminant Analysis (LDA) is performed to
construct a low-dimensional feature space called LDA sub-
space by focusing on hard-to-separate training samples, and
the features projected to this LDA subspace are trained by
a weak learner model. In this approach, low dependency of
week learners’ outputs is promoted by the variety of LDA
subspaces constructed from different training sets.

On the other hand, the kernel methods have also been
widely known as a powerful approach to solving difficult
classification tasks [1], [22], [28]. The advantage of the ker-
nel methods originates from the nonlinear mapping of an
input space to a high-dimensional feature space. If a proper
kernel function is selected, the subjects belonging to the
same class can be separated from the others completely,
and the class separability is maximized in the feature space.
However, the classification using such a high-dimensional
feature space often suffers from noise and outliers; thus
some dimensional reduction techniques (i.e., feature extrac-
tion) such as Kernel Principal Component Analysis [1], [27]
and Kernel Discriminant Analysis (KDA) have been widely
used [2], [20]. KDA is a promising method of feature ex-
traction in the sense that the class separability for any data
distribution can be largely enhanced in the feature space.

We [14] previously extended Lu’s work above [18] by
adopting KDA instead of LDA as the subspace learning.
For notational convenience, we call this approach “Boosting
Kernel Discriminant Analysis (BKDA).” In the proposed
BKDA, to satisfy the weak learner condition, a small num-
ber of training samples are selected based on a weight func-
tion and they are applied to KDA. Training such a small
training set also reduces the computation costs of KDA
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within a feasible range even when many classifiers are cre-
ated. However, it is well known that the performance of the
kernel methods generally depends on the selection of a ker-
nel function [12]. In the conventional methods, a proper ker-
nel function is often searched based on the cross-validation
method in which the classifier performance is estimated for
all possible candidates of kernel functions. Needless to say,
such a cross-validation method can impose immense com-
putation costs to the proposed BKDA because the feature
extraction by KDA and the training of classifiers must be
carried out for every candidate of kernel functions.

In this paper, we improve our prior work [14] in the
following points: (1) the kernel selection for KDA is carried
out within a feasible time, (2) the criterion of the training
convergence is defined so as to attain a desired performance
with fewer boosting rounds. As for the first point, we eval-
uate the kernel function by measuring the class separability
defined by the proportion of between-class scatter to within-
class scatter; then a proper kernel parameter is searched
within a certain range so as to maximize the separability.
As for the second point, the training convergence is judged
by the convergence of the minimum margins of classifiers. It
is expected that these two points allow the proposed BKDA
method to be more effective with regard to not only the train-
ing time but also the classification accuracy.

The rest of the paper is organized as follows. Section 2
gives a brief review of the two primary techniques used in
the proposed method: Kernel Discriminant Analysis (KDA)
and AdaBoost.M2. In Sect. 3, the basic idea of the proposed
Boosting KDA (BKDA) is first presented, then the selection
method of kernel functions and the criterion of the training
convergence are proposed. In Sect. 4, the proposed BKDA is
evaluated using several standard datasets through the com-
parisons with Boosting Linear Discriminant Analysis and
Radial-Basis Function Network. Finally, conclusions and
further research directions are addressed in Sect. 5.

2. Theoretical Background

As described in Sect. 1, we propose a novel learning algo-
rithm for a multiple classifier system combining the follow-
ing two methods: Kernel Discriminant Analysis (KDA) [2]
and AdaBoost.M2 [8]. KDA carries out the feature extrac-
tion, while AdaBoost.M2 performs the training of a multi-
ple classifier system in which a Radial Basis Function (RBF)
network [19], [24] is adopted as a weak classifier. Before de-
scribing the proposed method, let us review these methods
briefly.

2.1 Kernel Discriminant Analysis (KDA)

KDA [2], which is a nonlinear extension of Linear Discrim-
inant Analysis (LDA), is a well-known technique that con-
structs a subspace where the class separability is maximized
in a high-dimensional feature space. Suppose that training
samples are given as a set {(xi j, yi j)

Ci
j=1}Ci=1 where xi j is the

jth training sample of the ith class represented by an I di-

mensional column vector, yi j is the class label of xi j, C and
Ci (i = 1, . . . ,C) are the number of classes and the number
of training samples belonging to class i, respectively. Let
N =

∑
i Ci be the total number of training samples. Assume

that observations have zero means in the feature space (if we
cannot assume it, zero means observations can be obtained
by adjusting a kernel matrix [27]). The inputs are mapped
into a high dimensional feature space through a nonlinear
mapping function φ : RI→ F, where F is the feature space.
A between-class scatter matrix B and a within-class scatter
matrix W in F are defined as follows:

B =
1
N

C∑
i=1

Ci m̃im̃′i (1)

V =
1
N

C∑
i=1

Ci∑
j=1

(
φ(xi j) − m̃i

) (
φ(xi j) − m̃i

)′
(2)

where m̃i =
1
Ci

∑Ci

j=1 φ(xi j) is the mean vector of class i in
the feature space, and ′ means the transpose of a vector or
a matrix. To distinguish between two vectors in the input
space and the high-dimensional feature space, we denote a
vector in the feature space with tilde. The eigenvectors ũ
spanning a subspace of F are obtained by solving the fol-
lowing eigenvalue problem:

λVũ = Bũ (3)

where λ is the eigenvalue of ũ. However, this eigenproblem
is not solved directly to obtain ũ because the dimensionality
of a feature space is usually extremely high or infinite.

To avoid the direct calculation in the feature space, so-
called kernel trick is applied to Eq. (3). Since ũ is given by
the linear combination of φ(xi j), there exist coefficients αi j

(i = 1, . . . ,C; j = 1, . . . ,Ci) such that the following relation
holds:

ũ =
C∑

i=1

Ci∑
j=1

αi jφ(xi j). (4)

Substituting Eqs. (1), (2), and (4) into Eq. (3), the following
eigenproblem is obtained:

λKKα = KWKα (5)

where α = [α11, · · · , α1C1 , · · · , αC1, · · · , αCCC ]′ ∈ RN×1 and

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
W1 · · · 0
...
. . .

...
0 · · · WC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ R
N×N .

Here, W j ( j = 1, · · · ,C) is a C j × C j matrix whose diagonal
elements are 1/Cj. K ∈ RN×N in Eq. (5) is called kernel
matrix, and it is defined as

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
K11 · · · K1C
...
. . .

...
KC1 · · · KCC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)
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where

Kii′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
k(xi1, xi′1) · · · k(xi1, xi′Ci′ )
...

. . .
...

k(xiCi , xi′1) · · · k(xiCi , xi′Ci′ )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
φ(xi1)′φ(xi′1) · · · φ(xi1)′φ(xi′Ci′ )

...
. . .

...
φ(xiCi )

′φ(xi′1) · · · φ(xiCi )
′φ(xi′Ci′ )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ RCi×Ci′ . (7)

Let us consider the eigenvector decomposition of K: K =
PQP′ where P ∈ RN×L is the eigenvector matrix of K and
Q ∈ RL×L is a diagonal matrix whose elements are non-zero
eigenvalue. Here, L is the number of non-zero eigenvalue.
In addition, let us define a vector β such that β = QP′α.
Then, Eq. (5) is reduced to

λβ = P′WPβ. (8)

β is obtained by solving the new eigenproblem in Eq. (8),
then α is calculated by

α = PQ−1β. (9)

The feature z of a query input x is given by projecting φ(x)
to the eigenvector ũ in Eq. (4) and it is given by

z = φ′(x)ũ =
C∑

i=1

Ci∑
j=1

αi jk(x, xi j). (10)

Note that the feature vector z = (z1, · · · , zL)′ is obtained
without calculating B, V, φ(x), and ũ explicitly.

2.2 AdaBoost.M2

AdaBoost is a powerful boosting algorithm developed
by Freund and Schapire [8] in which the performance is
boosted by the ensemble of weak learners whose accuracy is
slightly better than random guessing. A week learner is con-
structed so as to focus on the data that are hard to discrimi-
nate. For this purpose, each training sample is provided with
the weight function D(i) (i = 1, · · · ,N) which is increased
when the ith training sample is misclassified, and the week
learner is trained so as to minimize the error weighted by
D(i).

To extend AdaBoost to multi-class classification prob-
lems, the following two points are modified in Ada-
Boost.M2. First, the output of a weak hypothesis is rep-
resented by a vector of [0, 1]k where k is the number of
classes. Second, the weight D(i) of every sample (xi, yi)
(i = 1, · · · ,N) is distributed to the incorrect class labels with
the rate of q(i, y � yi). By manipulating the weight function
D(i) and the label weight function q(i, y), Ada-Boost.M2 al-
lows a weak learner to focus not only on hard-to-classify
samples but also on the incorrect class labels. Thus, the
pseudo-loss εq(h, i) of the hypothesis h on the training sam-
ple i weighted by q(i, y) is defined as follows:

εq(h, i) =
1
2

(
1 − h(xi, yi) +

∑
y�yi

q(i, y)h(xi, y)
)

(11)

where
∑

y�yi
q(i, y) = 1. The weak learner is trained such

that the total pseudo-loss over all the N training samples
is minimized, and the weight functions D(i) and q(i, y) are
updated based on this pseudo-loss. The detail algorithm of
AdaBoost.M2 is shown in [8].

3. Boosting Kernel Discriminant Analysis

3.1 Basic Idea

In this section, a novel approach to combining KDA and
AdaBoost.M2 called Boosting KDA (BKDA) is described.
A straightforward way to combine these two methods is that
when a weak hypothesis is constructed, all training samples
weighted by the weight function D(i) are applied to KDA
and a classifier is trained using the extracted eigen-features.
More concretely, the kernel matrix is first obtained from
Eq. (6), the eigenvalue problem in Eq. (8) is solved, and the
coefficient vector α is calculated based on Eq. (9). Then, the
feature vector z of the training sample xi j is calculated by
projecting xi j to an eigenvector ũ (see Eq. (10)). Finally the
feature vector is applied to AdaBoost.M2 to train an indi-
vidual classifier. Note that the above operation is carried out
for all classifiers. A drawback of this method is that KDA
must be carried out at every boosting round using all training
samples; thus this method can cause immense computations
especially when a hard classification problem, which gener-
ally requires a large number of classifiers, is provided to the
classifier system.

To overcome this problem, we adopt the following
practical approach to training classifiers: a part of training
samples are selected based on Dt(i), then they are applied to
KDA to acquire a feature vector which is utilized for train-
ing the classifier. It is expected that this method has the
following properties:

1. The useful features are extracted such that the class
separability of hard-to-classify training samples are
maximized.

2. The diversity of classifiers is increased because they
are trained with different training sets selected based
on Dt(i).

3. The computational costs to solve an eigenproblem in
KDA are reduced.

4. The computational costs of the kernel selection are re-
duced.

The first property enables individual classifiers to optimize
their input features such that the features are linearly separa-
ble as much as possible. The second property can contribute
to lowering the dependency of classifiers’ outputs [18], and
it is expected that this also leads to good classification per-
formance. In addition, the third and fourth properties give us
a practical implementation to combine two powerful tech-
niques from the computational point of view.
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The primary novelty of this paper is claimed on a prac-
tical and effective implementation for the combination of
KDA and AdaBoost.M2. In addition, we present a new ker-
nel selection method and a new criterion of the training con-
vergence in order to make Boosting KDA more efficient and
robust. These two methods will be described below.

3.2 Kernel Selection

When the Gaussian function given by

k(x, x′) = exp

(
−‖x − x′‖2

σ2

)
. (12)

is adopted as a kernel function, an optimal parameter σ is
often obtained by using the Cross-Validation (CV) method
in which the classification accuracy for a validation dataset
is evaluated. Although several attempts to reduce the com-
putation costs in the CV procedure have been made [5], [9],
[15], they still need to evaluate the classification perfor-
mance. In the proposed Boosting KDA, to test the perfor-
mance, not only the training but also feature extraction must
be carried out in all classifiers. Therefore, the kernel selec-
tion based on CV is not practical in terms of the compu-
tational costs because both KDA and the classifier training
should be conducted for all the candidates of the parameter
σ at every boosting round in AdaBoost.M2.

To overcome this problem, we propose a novel kernel
selection method in which the search of the kernel parame-
ter in Eq. (12) is not carried out based on the classification
results, instead it is carried out based on the following class
separability measure S of kernel features:

S =
tr(B)
tr(V)

(13)

where tr(·) is the trace of a matrix, B and V are the between-
class scatter matrix and the within-class scatter matrix given
by Eqs. (1) and (2), respectively. This separability measure †
is the same as used in KDA, and an optimal kernel parame-
ter σ is searched such that S is maximized. Since S includes
only the calculation of kernel functions, the kernel selection
based on S do not need to carry out both the classifier train-
ing and its performance evaluation; therefore, it is expected
that the computation costs is greatly reduced.

When searching for an optimal parameter σ, we should
select it to be neither too small nor too large in order to
attain good classification performance. If σ is too small,
the value of k(x, x′) is close to zero unless x and x′ are
almost identical. This means that almost all training sam-
ples in the high-dimensional feature space are orthogonal
to each other; hence, an over-redundant feature space could
be created, and this feature space generally causes the de-
terioration in the generalization performance. On the other
hand, if σ is too large, most training samples in the high-
dimensional feature space are confined in a very small re-
gion because k(x1, x2) = φ(x1)′φ(x2) has a similar value for
any input pair (x1, x2). Then, this causes degeneracy of the
kernel matrix because many eigenvalue have almost zero,

and this will lead to the creation of an uninformative feature
space. To avoid such an ill-posed situation, we should se-
lect the kernel parameter σ such that the training samples
are distributed over a feature space with appropriate dimen-
sions. Our preliminary experiment suggests that σ should
not be less than 10−4 and should not be larger than 102 ††.
Next, let us explain how to find an optimal σ within this
range.

The distribution of training samples can be quantified
by the trace of the within-class scatter tr(V), and it is repre-
sented by the kernel function as follows:

tr(V) =
1
N

C∑
i=1

Ci∑
j=1

{
φ(xi j) − mi

}T {
φ(xi j) − mi

}

=
1
N

C∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝Ci − 1
Ci

Ci∑
j=1

Ci∑
k=1

k(xi j, xik)

⎞⎟⎟⎟⎟⎟⎟⎠ (14)

where mi is the mean vector of class i training samples. If
the Gaussian kernel in Eq. (12) is adopted, k(xi j, xik) for two
different vectors xi j and xik monotonously increases from
0 to 1 as the kernel parameter σ increases from 0 to infin-
ity. Thus, tr(V) in Eq. (14) has a larger value as σ becomes
smaller. Considering that the range of σ is assumed to be
10−4 < σ < 102, to avoid selecting an inappropriately small
σ, we define the following empirical upper bound for the
within-class scatter tr(V):

tr(V) < tr(V)|σ=10−4 . (15)

This upper bound will be used for narrowing the search re-
gion of σ in the proposed kernel selection algorithm de-
scribed later. Therefore, the final form of the proposed ker-
nel selection problem is described as follows:

max
σ

S =
tr(B)
tr(V)

s. t. 10−4 < σ < 102

tr(V) < tr(V)|σ=10−4 (16)

Figures 1 (a)-(c) illustrate the three types of σ-S curves
assumed in the proposed kernel selection. If a σ-S curve be-
longs to neither of the three types, we start over the selection
of training samples. The reason why we restrict σ-S curves
to these three types comes from the instability of obtaining
optimal parameters. When a σ-S curve belongs to neither of
the three types, no isolated maximum of S is found within a
proper range of σ. Although we could select the maximum
from the more than two local maxima, we often experienced
in the preliminary experiments that the good classification
performance was not stably obtained for such a σ.

For Type 1 in Fig. 1 (a), we select the σ which gives
S max in Eq. (16); however, as described above, we should
not simply select the σ giving S max for Type 2 or Type 3.

†There are some other criteria for the separability. See [10] for
details.
††The original data are normalized such that the average is zero

and the standard deviation is one.
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(a) Type 1. (b) Type 2.

(c) Type 3.

Fig. 1 Three types of σ-S curves.

As long as S is almost equivalent to S max, we should select
as small σ as possible for Type 2, and select as large σ as
possible for Type 3. In addition, since we have only a set of
pairs (σ, S (σ)), we need to check if the σ-S curve is really
one of the three types assumed here. Therefore, not only
searching for an optimal σ but also checking if a σ-S curve
belongs to either of the three types should be conducted by
the algorithm itself. To make the algorithm simple, we in-
troduce the following two straight lines with positive and
negative slopes †:

L1 : S (σ j) =
S max

6
(logσ j + 4) (17)

L2 : S (σ j) = −S max

6
(logσ j − 2). (18)

To explain how an optimal σ is searched by using L1 or
L2, let us take an example of Type 2 in Fig. 1 (b). First, ob-
tain all the pairs (σ, S (σ)) satisfying Eq. (15), and they are
defined as a parameter set P. Then, the pairs (σ ∈ P, S (σ))
are projected to L1 one after another from the smallest σ
(see Fig. 2 (a)), and search for local maxima of the projected
values by checking if an increasing trend of the values turns
into a decreasing one. As seen from Fig. 2 (a), no local max-
imum on L1 is found in this case. Then, they are projected to
L2 (see Fig. 2 (b)), and search for local maxima on L2 in the
same way. From Fig. 2 (b), we see that a single local max-
imum on L2 is found, and that the smallest σ, which gives
a little smaller value than the maximum separability S max,
is found. In this example, we know that the σ-S curve be-
longs to Type 2 because a single local maximum is found on
L2. On the other hand, if a single local maximum is found
on L1, it means that the σ-S curve belongs to Type 1 or 3.
Otherwise, it belongs to neither of the three types; then, the

(a) (b)

Fig. 2 Examples of the parameter search using the straight line (a) L1

and (b) L2 when the σ-S curve belongs to Type 2.

[Kernel Selection]

1) Select r% of training samples based on the so-called roulette wheel
strategy, in which the area of a roulette compartment for the ith train-
ing sample (i = 1, · · · , N) is allocated in proportion to Dt(i).

2) Obtain a set of n candidate parameters σ j ( j = 1, · · · , n) as follows:
σ j = j3 × 10−4.

3) Calculate S (σ j) for all σ j based on Eq. (13).
4) Remove all σ j that satisfy the following inequality: tr(V) <

tr(V)|σ j=10−4 . Then, put the selected σ j into the parameter set P,

and let the number of σ j ∈ P be n′.
5) Project all the points (σ j , S (σ j)) ( j = 1, · · · , n′) in the parameter set
P to L1 in Eq. (17).

6) If the projected values on L1 have a single local maximum, select the
σ j giving the local maximum as an optimal parameter, and terminate
this procedure. Otherwise, go to Step 7.

7) Project all the points (σ j , S (σ j)) in P to the following straight line
L2 in Eq. (18).

8) If the projected values on L2 have a single local maximum, select
the σ j giving the local maximum of S as an optimal parameter, and
terminate this procedure. Otherwise, go to Step 9.

9) Go back to Step 1 to redo the kernel selection.

Fig. 3 Algorithm of the proposed kernel selection.

kernel selection should be started over by selecting different
training samples.

To implement the above parameter search, we propose
a heuristic algorithm in Fig. 3. To find an optimal σ, all
the points (σ, S (σ)) are once projected to L1 in Step 5, and a
single local maximum is searched in Step 6. If no local max-
imum on L1 is found or more than two maxima are found,
it means that this σ-S curve belongs to neither Type 1 nor
Type 3. Then, go to Step 7, and all the points (σ, S (σ)) are
projected to L2 to find local maxima. If no local maximum
on L2 is found or more than two maxima are found in Step 8,
it means that this σ-S curve belongs to neither of the three
types we assume here. Then, retry to select different training
samples (see Step 9).

Since the calculation of S needs to perform neither
KDA nor the classification test at every validation of the pa-
rameter σ, it is expected that the computation costs of the

†We can choose any non-zero absolute value of the slope for
L1 and L2.
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proposed kernel selection are greatly reduced as compared
with the conventional CV-based method.

3.3 Criterion of Training Convergence

Defining an appropriate criterion of the training conver-
gence has always been a controversial topic in the machine
learning research. For neural classifiers such as Radial Basis
Function (RBF) networks [3], [19], [24], many convergence
criteria have been proposed so far based on both empiri-
cal and theoretical approaches [11]. However, since these
criteria were proposed for a single neural classifier, an ap-
propriate criterion for multiple classifier systems is still un-
clear. Hence, in many conventional boosting approaches,
the training convergence has been judged based on a simple
criterion such as training errors, or the training is just termi-
nated when the training reaches to a predetermined round.
However, these convergence criteria are sometimes inappro-
priate because it is known that the test performance can be
improved even after the training error converges to zero [25],
and because the training of neural networks with a fixed
number of steps often causes the so-called overfitting.

Instead of these criteria, we adopt a new measure which
is defined based on the margin of classifier outputs [26]. The
margin Mt(x) is defined by

Mt(x) = ht(x, y) −max
i
{ht(x, i)|i ∈ Y, i � y} (19)

where ht(x, y) is the output of the tth classifier for a train-
ing sample x and class y, and Y is the set of class labels.
There are two facts that we come up with this convergence
criterion. The first fact is that the theoretical bound on the
generalization errors of linear classifiers is determined by
the margin Mt(x) [26] for linearly separable problems. The
second fact is that the margin Mt(x) can increase even af-
ter the training error converges to zero [25] in some cases.
These two facts allow us to conjecture that the margin can
be a better measure of the test error than the training er-
ror although the first fact would not be applied to nonlinear
classifiers like RBF networks we adopt here.

To define a convergence criterion, let us consider the
distribution of the margins for all training samples called
margin distribution graph. Figure 4 shows an example of
the margin distribution graph for the ‘blood cell’ data [1].
The X axis corresponds to the margin Mt(x) ∈ [−1, 1] and
the Y axis means the accumulated number of training sam-
ples. Our preliminary experiments demonstrate that the
training progress can be monitored more clearly by observ-
ing the transition of the minimum margin than that of the
maximum margin. Figure 5 shows the time evolutions of
the minimum margin, the test error, and the training error
for the ‘blood cell’ data. As seen from Fig. 5, even after the
training error converges to zero, the test error decreases and
the minimum margin increases. In this case, the minimum
margin converges at around 240 rounds and the test error
also seems to converge at this round. This result reminds us
of the second fact addressed above.

Fig. 4 Margin distribution graph at the rounds 1, 10, and 100 for the
‘blood cell’ dataset.

Fig. 5 Time evolutions of minimum margin, training error, and test error
for the ‘blood cell’ dataset.

To detect the convergence of the minimum margin, we
define the following average temporal variation ΔMt of the
margin Mt(x):

ΔMt =
1

T0

T+T0∑
t=T

|min
j

Mt+1(x j) −min
j

Mt(x j)| (20)

where T is the current boosting round and T0 is a period to
average the minimum margin (in the later experiments, T0

is set to 50). To make sure if the training really converges,
the training is conducted while T0 extra boosting rounds are
completed. If the average margin variation ΔMt becomes
smaller than a threshold at T + T0, we judge that the train-
ing converged at T . Since classifiers are generally created
even during the extra boosting rounds, these created classi-
fiers must be removed from the obtained classifier system.
For example, if the convergence condition is satisfied at the
350th round, the training is terminated at the 350th round
and the classifiers created from the 301st round to the 350th
round are removed.

3.4 The Boosting KDA Algorithms

In Fig. 6, we summarize the proposed Boosting KDA
(BKDA) algorithm. Steps 1, 2, 7, 8, 9, 10 correspond to
the procedures of AdaBoost.M2, and Step 5 corresponds
to the procedure of KDA. The proposed kernel selection
(see Fig. 3 for details) and the convergence judgment is con-
ducted at Step 4 and Step 11, respectively.



KITA et al.: A LEARNING ALGORITHM OF BOOSTING KERNEL DISCRIMINANT ANALYSIS FOR PATTERN RECOGNITION
1859

[Boosting KDA Algorithm]
Input

• Training set S = {(xi j, yi j)
Ci
j=1}Ci=1 where xi j ∈ RI is an I-dimensional

input vector, yi j ∈ Y = {1, . . . ,C} is the class label, C is the number
of classes, and Ci is the number of training samples in the ith class.

• Weight function of samples D0(i, j) = 1/N for
i = 1, . . . ,C, j = 1, . . . ,Ci

• Kernel function k(x, x′) in Eq. (12).
• Selection percentage r of training samples.

Initialize

• Training step: t = 0.
• Weight value: w1

i j,y = D0(i, j)/(C − 1) for
i = 1, . . . , N, j = 1, . . . ,Ci, y ∈ Y − {yi j}.

Repeat

1. Calculate qt(i, j, y) =
wt

i j,y∑
y′�yi j

wt
i j,y′

for all y ∈ Y − {yi j}.

2. Update the distribution probability Dt(i, j) =
Wt

i j∑C
i=1

∑Ci
j=1 Wt

i j

.

3. Select r% of training samples based on the probability Dt(i, j), then
put them into the training set Rt .

4. Do kernel selection in Fig. 3 using Rt and obtain an optimal kernel
parameter σt .

5. Carry out the following Kernel Discriminant Analysis:

a. Calculate the kernel matrix K for Rt using Eq. (6), and
decompose K into P ∈ RN×L and Q ∈ RL×L where L is the
number of non-zero eigenvalue.

b. Obtain non-zero λl (l = 1, · · · , L) and the βl satisfying Eq. (8).
c. Calculate αl (l = 1, · · · , L) based on Eq. (9).

6. Calculate the feature vectors zi j = (zi j,1 , · · · , zi j,L)′
(i = 1, · · · ,C; j = 1, · · · ,Ci) by projecting the training data xi j to the
KDA subspace spanned by {ũ1, · · · , ũL} based on Eq. (10).

7. Train the tth hypothesis ht (RBF network) using the training set
{(zi j , yi j)

Ci
j=1}Ci=1.

8. Calculate the pseudo-loss of ht :

εt =
1
2

C∑
i=1

Ci∑
j=1

Dt(i, j)

× [1 − ht(zi j, yi j) +
∑
y�yi j

qt(i, j, y)ht(zi j , y)].

9. Update βt = εt/(1 − εt).
10. Update a new weight vector to be

wt+1
i j,y = wt

i j,yβ
(1/2)(1+ht(zi j ,yi j)−ht(zi j,y))
t

for i = 1, . . . ,C, j = 1, . . . ,Ci, y ∈ Y − {yi j}.
11. Calculate ΔMt using Eq. (20). If the convergence condition ΔMt < κ

(κ: small const.) is satisfied, terminate this algorithm. Otherwise,
t ← t + 1 and go back to Step 1.

Output

The final hypothesis: hf (x) = arg max
y∈Y

T∑
t=1

(
log 1

βt

)
ht(x, y).

Fig. 6 The proposed Boosting KDA algorithm.

4. Experiments

4.1 Experimental Setup

The performance evaluation is carried out using the four-

Table 1 Evaluation datasets.

#attrib. #class #train. #test

blood cell [1] 13 12 1197 5000
thyroid 1 [29] 21 3 1200 6000

segmentation [29] 19 7 500 1810
vehicle [29] 18 4 346 500
letter [29] 16 26 2000 18000

banana [13] 2 2 400 4900
breast cancer [13] 9 2 200 77

diabetis [13] 8 2 468 300
german [13] 20 2 700 300
heart [13] 13 2 170 100
image [13] 18 2 1300 1010

ringnorm [13] 20 2 400 7000
splice [13] 60 2 1000 2175

thyroid 2 [13] 5 2 140 75

teen datasets in Table 1, which are cited from the three data
sources [1], [13], [29]. The first five datasets are multi-class
problems, while the other nine datasets are two-class prob-
lems. To make a comparison as rigorously as possible in
a statistical sense, we generate 100 different pairs of train-
ing and test sets from the original dataset, and the average
test performance and its statistical significance are evalu-
ated. Since some of the datasets are originally separated
into training and test sets, these sets are once merged into a
single dataset, and then it is randomly divided into a pair of
training and test sets.

In the proposed BKDA, an extended Radial Basis
Function (RBF) network model [21] is adopted as a clas-
sifier due to its simplicity and high-performance although
BKDA itself does not restrict the classifier model. In the ex-
tended RBF network, the centers of RBF are initialized by
the k-means clustering, and the width is determined based
on the distance between two nearest centers. In the train-
ing, the RBF network is updated by the conjugate gradient
descent algorithm to minimize the square error weighted by
the sample weights Dt. To obtain weak classifiers, the num-
ber of hidden units in every RBF network is restricted to
twice as many as the number of classes.

There are several parameters to be set properly in the
proposed BKDA. In the following experiments, we set the
percentage r of selected training samples to 15 [%]. And
the number of candidate parameters n in the kernel selection
(see Fig. 3) are set to 100.

4.2 Evaluation of Kernel Selection and Convergence Cri-
terion

In the proposed BKDA, a new method of the kernel selec-
tion and a new criterion of the training convergence are pro-
posed. First, let us examine the effectiveness of these meth-
ods before evaluating the overall performance of BKDA.

4.2.1 Evaluation of Kernel Selection

As stated in Sect. 3.2, the optimal kernel parameter in KDA
is searched by maximizing the separability S of training
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samples in a feature space. Therefore, the training of a
boosting classifier is not actually carried out. Furthermore,
only a part of training samples, which are selected based on
a distribution probability Dt(i, j), should be applied to KDA.
Therefore, it is expected that these two characteristics in the
proposed method allow the system to find an optimal ker-
nel parameter much faster than the conventional parameter
selection method based on Cross-Validation (CV).

Table 2 shows the computation time needed in the pa-
rameter selection when the 10-fold CV and the proposed se-
lection methods are applied to the two-class problems. The
training time is measured for each boosting round on a Pen-
tium IV 1.8 GHz personal computer, and the average time
is evaluated for the first five rounds. As seen from Table 2,
the proposed method attains very fast parameter selection as
compared with the 10-fold CV. Note that the computation
time shown in Table 2 is required at every boosting round.
Thus, from the practical point of view, the CV-based selec-
tion method could not be introduced in the proposed BKDA
with typical high-performance computers †.

4.2.2 Evaluation of Training Convergence Criterion

As explained in Sect. 3.3, the training convergence is judged
by the convergence of the minimum margin (see Step 11 in
Fig. 6). The threshold κ for the average margin variation
is set to 0.001. To evaluate the proposed criterion, the test
classification accuracy is examined for the Boosting KDA
based on two different convergence criteria as well as the
proposed BKDA. For notational convenience, the Boost-
ing KDA whose convergence criterion is based on the train-
ing error is denoted as BKDAtrain, and the Boosting KDA
whose training is terminated at the 200th round is denoted
as BKDA200.

Table 3 shows the test classification performance and
the convergence rounds for the three types of Boosting
KDA. ‘N/A’ in the column of BKDAtrain means that the
training was not converged within 2,000 rounds. As seen

Table 2 Average training time (sec.) of a single boosting round in the
two kernel selection methods: the proposed kernel selection based on the
separability measure and the kernel selection based on the 10-fold CV.

banana breast cancer diabetis image
Proposed 0.5 0.55 0.7 0.66
CV-based 142 143 148 132

Table 3 Test classification accuracy [%] of the three types of Boosting
KDA. The value in the parentheses ( ) means the boosting round needed for
the convergence. ‘N/A’ means that the learning was not converged within
2,000 rounds.

BKDA BKDAtrain BKDA200

blood cell 93.7 (99) 93.7 (48) 93.9
thyroid 1 97.8 (46) 97.9 (694) 97.9

segmentation 93.5 (83) 92.2 (5) 93.4
banana 86.7 (83) 87.1 (113) 86.7

breast cancer 67.5 (38) N/A 66.2
image 98.4 (295) 97.5 (37) 98.3

thyroid 2 98.7 (133) 96.0 (3) 97.3

from Table 3, the test performance of BKDA is better than
or almost equal to that of BKDA200 although BKDA needs
more rounds than 200 for ‘image’ dataset. This result im-
plies that it is difficult to determine a proper convergence
round in advance. On the other hand, comparing between
BKDA and BKDAtrain, the proposed BKDA outperforms
BKDAtrain in many cases; in addition, the required boosting
rounds in BKDAtrain largely depend on the training datasets
and sometimes it could not converge within 2,000 rounds
for the ‘breast cancer’ dataset.

The above results support that the minimum margin
gives valid information on the training convergence to attain
a good test performance.

4.3 Performance Evaluation of Boosting KDA

The proposed BKDA is composed of the following two es-
sential methods: kernel discriminant analysis and boosting.
Hence, the comparison should be made with a non-kernel
approach and a non-multiple classifier model. For this pur-
pose, the test classification accuracy of the proposed BKDA
is investigated through the comparison with the following
two well-established methods: Boosting Linear Discrimi-
nant Analysis (BLDA) and Radial-Basis Function Network
(RBFN). In BLDA, the feature extraction is carried out
based on the conventional LDA algorithm instead of KDA in
the proposed BKDA. In order to focus on the effectiveness
of using the kernel method, the same convergence criterion
is adopted in both BKDA and BLDA. On the other hand,
for the latter, a single strong classifier model is constructed
by RBFN whose input features are extracted by KDA.

Tables 4 (a) and (b) show the test classification accu-
racy [%] of BKDA, BLDA, and RBFN for the multi-class
problems and the two-class problems, respectively. As men-
tioned in Sect. 4.1, the classification accuracy is averaged
over 100 evaluations (the value after ‘±’ means the standard
deviation). To test the statistical significance between the
average performances of the proposed BKDA and the two
competitive methods (i.e., BLDA and RBFN), we perform
the Wilcoxon signed-rank test. The asterisk after the values
means that there is 1% level of significance for the average
accuracy between BKDA and the two methods.

From the results in Table 4 (a), BKDA has significant
improvement against both BLDA and RBFN for the four
datasets out of five (i.e., ‘blood cell’, ‘thyroid 1’, ‘vehicle’,
and ‘letter’). On the other hand, the performance of BKDA
is lower than that of BLDA for the ‘segmentation’ dataset;
however, their difference is not very large. Thus, these re-
sults for the multi-class problems demonstrate that the com-
bination of KDA and boosting in the proposed BKDA works
effectively to attain good classification performance.

On the other hand, for the 2-class problems, the ad-
vantage of the proposed BKDA is a little obscure against
both BLDA and RBFN (see Table 4 (b)). BKDA has sig-

†Due to such a long computation time for the CV-based selec-
tion method, the classification accuracy was not evaluated here.
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Table 4 The results of the performance comparison for (a) multi-class
problems and (b) two-class problems. The two values in each column mean
the average classification accuracy [%] for the test dataset and the standard
deviation, respectively. The asterisk after the values means that there is 1%
level of significance for the average accuracy between BKDA and the two
competitive methods. The best and the second best results are written in
bold and italic fonts, respectively.

(a) Multi-class problems.
BKDA BLDA RBFN

blood cell 93.6 ± 0.34 93.36 ± 0.35 ∗ 92.62 ± 0.4∗
thyroid 1 97.34 ± 0.31 97.12 ± 0.46 ∗ 94.59 ± 0.77 ∗

segmentation 94.95 ± 0.78 95.66 ± 0.58 ∗ 92.82 ± 0.75 ∗
vehicle 80.5 ± 1.56 79.73 ± 1.68 ∗ 78.39 ± 1.64 ∗
letter 87.23 ± 0.47 85.83 ± 0.51 ∗ 85.47 ± 0.39 ∗

(b) Two-class problems.
BKDA BLDA RBFN

banana 87.44 ± 0.6 88.03 ± 1.13 ∗ 89.15 ± 0.53 ∗
breast cancer 71.17 ± 4.25 71.48 ± 4.52 71.77 ± 4.76

diabetis 72.48 ± 1.7 75.09 ± 2.26 ∗ 75.26 ± 1.79 ∗
german 74.71 ± 2.45 74.55 ± 2.68 75.18 ± 2.36
heart 79.96 ± 3.17 80.7 ± 3.2 79.01 ± 3.21 ∗
image 97.42 ± 0.48 91.99 ± 3.88 ∗ 88.24 ± 0.97 ∗

ringnorm 97.94 ± 0.22 81.26 ± 4.46 ∗ 90.66 ± 3.73 ∗
splice 88.07 ± 0.71 81.42 ± 1.14 ∗ 89.02 ± 1.08 ∗

thyroid 2 95.83 ± 2.21 93.69 ± 2.6 ∗ 96.07 ± 1.98

nificant improvement against both BLDA and RBFN for the
two datasets out of nine (i.e., ‘image’ and ‘ringnorm’), while
BKDA has significant degradation against both BLDA and
RBFN for the two datasets out of nine (i.e., ‘banana’ and ‘di-
abetis’). And the best performance is attained by RBFN in
many cases. However, considering that BKDA greatly out-
performs both BLDA and RBFN for the ‘image’ and ‘ring-
norm’ datasets, and that there is no statistical significance
for ‘breast cancer’, ‘german’, and ‘thyroid 2’ datasets be-
tween BKDA and RBFN, we can say that the effectiveness
of the proposed BKDA is not lost even for the two-class
problems.

From the above experimental results in Table 4, we
conclude that although the advantage of the proposed
BKDA against BLDA and/or RBFN can be dependent to
the given datasets for two-class problems, BKDA is still a
promising method for pattern classification problems espe-
cially for multi-class problems.

5. Conclusions and Further Works

This paper proposed a novel approach to constructing a mul-
tiple classifier system by combining AdaBoost.M2 and Ker-
nel Discriminant Analysis (KDA). In this approach, the
feature extraction is first carried out to construct a partic-
ular feature space for every classifier based on the KDA al-
gorithm, then the feature vectors are used for training the
classifier. Since enormous computation costs are generally
needed if all training samples are applied to KDA to train
every classifier, the training samples are selected based on
the distribution probability Dt(i, j) which is also used for se-
lecting data to train a classifier in AdaBoost.M2. This data
selection leads not only to the reduction of the computation

costs but also to making every classifier uncorrelated, result-
ing in boosting the performance of AdaBoost.M2.

We also proposed a new kernel parameter selection for
KDA and a new criterion of the training convergence for Ad-
aBoost.M2. In the kernel selection, an optimal parameter is
selected such that the class separability of feature vectors is
maximized based on the same separability measure as used
in KDA. Hence, the training of classifiers is unnecessary for
testing the classification performance when an optimal ker-
nel parameter is searched. It is expected that this contributes
to alleviating immense computations that are often imposed
to the kernel selection based on Cross-Validation (CV). As
for the training convergence criterion, the minimum mar-
gin, which is defined as the minimum distance of samples
to a separating hyper plane, was adopted as a measure of
the generalization performance. In the first experiments, the
effectiveness of the kernel parameter selection and the crite-
rion of the training convergence was examined. The results
showed that the proposed method could select an optimal
parameter very quickly as compared with the CV-based ker-
nel selection method, and that the training of boosting clas-
sifiers was terminated with fairly small rounds to attain good
classification accuracy.

In the performance evaluation, the proposed Boosting
KDA (BKDA) was compared with Boosting Linear Dis-
criminant Analysis (BLDA) and Radial-Basis Function Net-
work (RBFN) with regard to the classification accuracy. The
experimental results for the multi-class classification prob-
lems demonstrated that BKDA outperformed both BLDA
and RBFN in many cases. This result indicated that the com-
bination of KDA as a feature extraction method and boost-
ing as a classifier learning method works effectively to attain
good classification performance. On the other hand, for the
2-class problems, the advantage of the proposed BKDA was
a little obscure against both BLDA and RBFN. In many
cases, the best performance is attained by RBFN; however,
there are two datasets out of nine for which BKDA greatly
outperforms both BLDA and RBFN. Therefore, we con-
clude that although the advantage of the proposed BKDA
against BLDA and/or RBFN can be dependent to the given
datasets, the proposed BKDA is still promising for many
pattern classification problems.

There still remain several problems that should be ad-
dressed as future works. First, the training time of BKDA is
generally a little longer than that of both BLDA and RBFN
to achieve good classification accuracy. However, the train-
ing time of BKDA is strongly related to the number of boost-
ing rounds. As seen from Table 3, there was a case where
BKDA needed over 200 boosting rounds although the clas-
sification accuracy was not largely improved from the 200th
round. This fact means that the training speed can be en-
hanced by improving the criterion of training convergence.
Finally, the data selection method for KDA should be im-
proved. Our preliminary experiment showed that the pro-
posed selection method based on the distribution probabil-
ity was better than the random selection. However, this
does not mean that the proposed method is optimal. Re-
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cently, Dai and Yeung [6] have proposed a new method to
calculate optimal discriminant vectors for weak classifiers
by weighting training samples of hard-to-separate classes,
and this scheme could make classifier outputs uncorrelated.
Since the data selection in KDA strongly affects the depen-
dence of weak classifiers, further improvement in the pro-
posed BKDA might be done with Dai’s KDA.
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