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Summary Extracting frequently executed (hot) portions of the 

application and executing their corresponding data flow graph 

(DFG) on the hardware accelerator brings about more speedup 

and energy saving for embedded systems comprising a base 

processor integrated with a tightly coupled accelerator. 

Extending DFGs to support control instructions and using 

Control DFGs (CDFGs) instead of DFGs results in more 

coverage of application code portion are being accelerated hence, 

more speedup and energy saving. In this paper, motivations for 

extending DFGs to CDFGs and handling control instructions are 

introduced. In addition, basic requirements for an accelerator 

with conditional execution support are proposed. Then, two 

algorithms are presented for temporal partitioning of CDFGs 

considering the target accelerator architectural constraints. To 

demonstrate effectiveness of the proposed ideas, they are applied 

to the accelerator of a reconfigurable processor called AMBER. 

Experimental results approve the remarkable effectiveness of 

covering control instructions and using CDFGs versus DFGs in 

the aspects of performance and energy reduction. 

Key words:  Reconfigurable accelerator, Conditional execution, 

Control data flow graph, Temporal partitioning, reconfigurable 

processor. 

1. Introduction 

Using an accelerator for executing critical or hot (most 

frequently executed) portions of applications is an 

effective technique to enhance the performance and energy 

saving of processors in embedded systems. In this 

technique, data flow graphs (DFGs) extracted from critical 

portions of an application are executed on an accelerator 

and remaining portions on the base processor, 

correspondingly. By executing hot portions on an 

accelerator performance improvement is obtained through 

exploiting potential parallelism and reducing the latency of 

critical paths and the number of intermediate results 

read/written to the register file.  The accelerator can be 

implemented as a reconfigurable hardware with fine or 

coarse granularity or as a custom hardware (such as 

Application Specific Instruction-set Processors or 

Extensible Processors)  [8]. Finer granularity brings about 

more flexibility compared to coarse one; however it suffers 

from long latency and high reconfiguration overhead time 

compared to coarse grained accelerators. Moreover, it 

needs large amount of memory for configuration bits. The 

custom hardware accelerators are faster and consume less 

energy compared to reconfigurable accelerators; however 

they need a long and costly design and manufacturing 

process.  

The integration of accelerator and the processor can be 

tightly  [3] [4] [11] [21] [27] or loosely coupled  [8] [15]. For 

loosely-coupled systems, there is an overhead for 

transferring data between base processor and accelerator. 

In a tightly coupled accelerator, data is read and written 

directly to and from the processor’s register file, making 

the accelerator an additional functional unit in the 

processor pipeline. This makes the control logic simple, as 

almost no overhead is required in transferring data to the 

programmable hardware unit; however, it increases the 

read/write ports of the register file. This paper focuses 

especially on tightly coupled reconfigurable accelerator.  

DFG extraction can be done at high level or binary 

level of the source code. In our analysis, we concentrate on 

the latter one which means that the DFG nodes are the 

primitive instructions of the base processor and each 

functional unit in accelerator implements the instruction 

level operations. Using binary level brings about more 

transparency, more accurate software estimation and 

similar speedup to source-level for numerous applications 

while keeping the binary compatibility  [24]. The Control 

DFG (CDFG) is a DFG containing control instructions 

(e.g. branch instruction).  For a branch instruction, two 

succeeding paths can be considered. If the branch is taken 

(branch result is true), a sequence starting from branch 

target address called taken path is executed. Otherwise, 

not-taken path including a sequence of instructions starting 

from the next address to the branch is executed. Therefore, 

depending to the result of a branch instruction one of the 

instruction sequences from taken or not taken paths are 

executed. Handling branches (conditional execution) is a 

challenge in CDFG acceleration. It means executing 

CDFG instead of DFG on accelerator which includes 

conditional execution facilities due to existing control 

instructions in CDFG. We consider two types of CDFGs:  

a) CDFGs including at most one branch instruction as 

its last instruction. In this case, the accelerator does not 

need to support conditional execution. 
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b) CDFGs containing more than one branch 

instructions. This case necessitates featuring 

conditional execution in accelerator for executing 

CDFGs.  

In CDFG generation process one can only follow the 

frequently executed (hot) directions of branches. For each 

branch, one of its taken or not-taken paths or both of them 

might be hot. We suggest adding hot directions of branches 

into the CDFG without being limited to selecting just one 

or all of the directions. This can hide branch misprediction 

penalty.  

One main intuition behind this work is twofold 

regarding two following questions: 

a) Does executing CDFGs instead of DFGs on 

accelerator (which means acceleration based on 

CDFGs vs. DFGs) obtain higher performance? 

b) How can the conditional execution be supported on 

an accelerator, if the answer to the first question is 

Yes? 

To answer the first question, effect of extending DFGs 

and covering control instructions on the speedup is studied 

and reasonable arguments for extending DFGs and using 

CDFGs instead of DFGs are presented. Moreover, as an 

answer to the second question, basic requirements for an 

accelerator with conditional execution support are studied.  

Another contribution of this paper is our investigation 

on CDFG generation considering limitations of resources 

in the accelerator (e.g. number of inputs, outputs, logics, 

connections and etc). CDFGs extracted from various 

applications have different sizes and in most cases the 

whole CDFG can not be mapped on the accelerator. 

Therefore, algorithms for partitioning CDFGs under the 

accelerator resource constraints are studied.  We present a 

couple of CDFG temporal partitioning algorithms to 

partition large CDFGs to smaller and mappable ones. 

Mappable CDFGs satisfy the accelerator architectural 

constraints; hence, can be mapped and executed on the 

accelerator. Moreover, our proposed ideas are applied to a 

reconfigurable processor referred as AMBER and its 

accelerator is extended to support conditional execution. 

Then, effects of using CDFGs on speedup and energy 

consumption are evaluated. Finally, the extended version 

of AMBER is compared with other approaches to show the 

effectiveness of our proposed ideas. 

The paper outline is as follows. Section 2 introduces a 

reconfigurable processor referred as AMBER. In Section 

3, motivations for extending DFGs on control instructions 

and using CDFGs are illustrated. General requirements for 

an accelerator architecture featuring conditional execution 

are proposed in Section 4. Section 5, describes the 

algorithms proposed for CDFG temporal partitioning 

which are used for generating appropriate CDFGs for 

executing on the accelerator. Also, comparison of the 

algorithms and a performance evaluation approach are 

presented in Section 5. Section 6, after a review on related 

work, explains the results of applying the proposed ideas to 

a reconfigurable processor called AMBER and he 

experimental results obtained.  Finally, the paper is 

concluded in Section 7. 

2. General Overview of AMBER 

AMBER is a reconfigurable processor  [17] targeted for 

embedded systems. It has been developed by integrating a 

base processor with two other main components [17]. The 

base processor is a general RISC processor and the other 

two components are: sequencer and a coarse grain 

reconfigurable functional unit (RFU).  Fig. 1.a illustrates 

the integration of different components in AMBER. 

The base processor is a 4-issue in-order RISC 

processor supporting MIPS instruction set. The sequencer 

mainly determines the microcode execution sequence by 

selecting between the RFU and the processor functional 

unit. The RFU is based on array of 16 functional units 

(FUs) with 8 input and 6 output ports. It is used in parallel 

with other processor’s ALUs ( Fig. 1.b). RFU reads (write) 

from (to) register file. Each FU can support all fixed-point 

instructions of the base processor except multiply, divide 

and load. In the RFU, the output of each FU in a row can 

be used by all FUs in the subsequent row.  

 

Register File

ID/EXE Reg

RFU

Configuration

Memory

ALUs

MUX Sequencer
Sequencer

Table

EXE/MEM Reg

GPP Augmented HW  
(a) 

 
(b) 

Fig. 1. Main components in AMBER (a) RFU architecture (b) 

AMBER has two operational modes: the training and 

the normal mode. The training mode is done offline. In this 

phase, target applications are run on an instruction set 

simulator (ISS) and profiled. Then, the start addresses of 

hot basic blocks (HBBs) are detected. HBB is a basic 
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block that is executed more times than a given threshold 

and a basic block is a sequence of instructions that 

terminates in a control instruction. After generating 

configuration bit-streams for extracted DFGs and initiating 

sequencer tables in training mode it switches to the normal 

mode. DFGs are executed on the RFU in the normal mode 

utilizing the RFU, its configuration data (stored in the 

configuration memory) and sequencer. More details on 

AMBER can be found in  [17]. 

3. Motivations 

We follow a quantitative analysis to explore the 

motivations for extending DFGs over control instructions 

and generating CDFGs to be executed on an accelerator. 

We use some applications of Mibench  [16] for the 

analysis. As mentioned formerly, DFGs are extracted from 

the frequently executed portions of application and a 

control instruction (e.g. branch instruction) may terminate 

DFG generation process. Therefore, control instructions 

located in a short distance result in generation of small size 

DFGs (SSDFG). In fact, SSDFGs are not suitable for 

improving performance in application execution and have 

to be run on the base processor. Authors showed in  [13] 

that the small length DFGs (including less than or equal to 

five instructions) offer no more speedup.  

In  Fig. 2, a piece of a main loop of adpcm(enc) is  

shown. adpcm(enc) is an application program containing a 

loop which consumes 98% of total execution time. The 

critical portion of application contains 12 branch 

instructions. According the location of branch instructions, 

four DFGs can be extracted from the piece of loop that has 

been shown in Fig 1. In this figure, three out of four DFGs 

are SSDFGs. These SSDFGs do not gain more speedup 

and have to be run on the base processor. 

 
Fig. 2. Control data flow graph of hot portion of adpcmc(enc) 

 

This kind of analysis was accomplished for 17 

applications of Mibench  [16].  Fig. 3 shows the overall 

percentage of frequently executed (hot) portion of each 

application. In addition, this figure shows the fraction of 

applications that could not be accelerated because of 

SSDFGs. For example, for bitcount application, almost 

92% of application is hot. On the other hand, 32% out of 

92% of hot portions do not worth to be accelerated due to 

the SSDFGs; therefore, they are dismissed from execution 

on the accelerator. However, analyses show for some 

applications like fft, fft(inv) and sha which includes few 

branch instructions, supporting conditional execution no 

considerable speedup is achievable, because the small 

portion of generated DFGs are removed due to SSDFGs.  
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Fig. 3. Fraction of hot portions and eliminated hot portions in some 

applications of Mibench  [16] 

Extending DFGs to contain more than one branch 

instruction and generating the CDFGs vs. DFGs is one 

solution to amortize the number of generated SSDFGs. As 

mentioned before, according to the result of a branch 

instruction, one of the instructions sequence located in 

taken or not-taken paths of the associated branch might be 

executed. In some case, only one of these paths is 

frequently executed (hot) and in some other cases both 

paths are hot. In latter case, covering both directions can 

aid the generation of larger CDFGs, hence more 

parallelism, as well as eliminating branch misprediction 

penalties. On the other hand, for supporting CDFGs 

architecture of the accelerator should be able to support 

conditional execution. In addition, appropriate algorithms 

are required to generate CDFGs considering the 

specifications of the accelerator. 

4. Basic Requirements for Architecture 

Featuring Conditional Execution Support  

As it was mentioned in Section 3, conditional execution 

support in accelerator is needed for CDFG execution. For 

this purpose, the capability of branch instruction execution 

should be added to the accelerator. The target accelerator 

is assumed to be a coarse grained reconfigurable hardware 

which is a matrix of functional units (FUs) with specified 

connections. CDFG nodes are the base processor 

instructions, since we assumed that our concentration is on 

binary level of the applications. Therefore, each FU like 

the processor’s ALUs can execute instruction level 

operations.  

In a DFG, the nodes (instructions) receive their input 

from a single source whereas, in the CDFG, nodes can 

have multiple sources with respect to the different paths 



MEHDIPOUR et al.: IMPROVING PERFORMANCE AND ENERGY SAVING IN A RECONFIGURABLE PROCESSOR  

4 

  

generated by branches. The correct source is selected at 

run time according to the results of branches.  

 Fig. 4 shows a piece of adpcm(enc)’s critical portion, a 

part of its corresponding DFG ( Fig. 4.a) and the CFG 

comprising only control flow of instructions ( Fig. 4.b). In 

 Fig. 4.a, each node of DFG corresponds to one instruction 

in the code. Inside circles, instruction number and 

instruction itself has been depicted. Each instruction has at 

most two sources and one destination. According to the 

results of branch instructions various values for an 

instruction source could be obtained. For example, 13
th
 

instruction (13:subu) receives its first source (register R3) 

from 3
rd
 (3:subu) and 7

th
 (7:subu) instructions.  Its output 

may be routed to instructions (16:slt) and (19:subu) or 

(22:slt) depending on the result of branch instruction 

(17:bne). As another example, instruction (22:slt) may 

receive its first source (R3) through the instructions 

(3:subu), (7:subu) or (19:subu) depending on the result of 

branch instructions (4:bgez), (6:beq), (11:bne) and 

(17:bne). Also, it receives the second source (R9) from 

(21:sra). Consequently, the nodes that generate output data 

of a CDFG are altered according to the results of branches 

as well. Therefore, the accelerator should have some 

facilities to generate valid output data.  

 

 
(a) 

1 5 6 7 84 11 15

17 16212223242526

... ... ...

...

Control Flow Graph  
(b) 

Fig. 4. A piece of adpcm(enc) code and a part of its corresponding 

DFG and (a) its control flow graph (b)  

Predicated execution is one technique  [19] which 

effectively removes control dependency of programs 

running on ILP (Instruction level parallelism) processors. 

Proposed architecture in  [9] uses predicated instructions. 

With predicated execution, control dependency is 

essentially turned into data dependency using predicates. A 

predicated variable is a boolean variable which represents 

the control information of a control instruction. The 

following instructions become no-ops if the predicated 

variable is evaluated to be false. To support predicated 

execution on a microprocessor two sets of modifications 

are needed in the instruction set architecture of the 

processor. First, the original instructions need to be 

replaced with their predicated versions. A predicated 

instructions performs the same operations as its original 

(non-predicated version), but it does not change the 

processor state if the associated predicated variable is 

evaluated to be false at the time of its execution. Second, 

predicate defining instructions need to be added to set the 

predicate variables to appropriate boolean variables for the 

following instructions to behave correctly. 

The architecture with predicated execution features 

should have radical changes, since every instruction can be 

predicated and a separated predicated register file is 

needed. Partial architectural support has also been studied 

 [12] to solve this issue. In  [12], Mahlke et al. proposed 

architecture with two new instructions added to the original 

instruction set to support predicated execution. Instead of 

making all instructions predicated, only two instructions 

are defined to perform depending on the predicated while 

the others remain the same. In this architecture every 

predicated instruction can be rewritten (without altering the 

behavior at the end of instructions execution) using non-

predicated instructions and the two newly introduced ones. 

In other words, the behavior of a predicated instruction is 

evaluated and its destination is transferred to a temporary 

register and then the result is conditionally copied to the 

destination.  

In this section, we propose basic requirements of an 

architecture which can support conditional execution. In 

the general architecture with conditional execution 

features, following characteristics are found: 

a)  An FU in the accelerator can receive its inputs 

directly from accelerator primary inputs or from output 

of the other FUs.  

b) According to the condition of branch instructions, 

output of each node can be directed to the other nodes 

from different paths. For example, in  Fig. 4.b, output of 

instruction (13:subu) can be routed to nodes (16:slt), 

(19:subu) and (22:slt). It means instruction (19:subu) 

receives the value of R3 (output of instruction 13) if 

branch instruction (17:bne) is not-taken, otherwise R3 

is obtained by instruction (22:slt). Therefore, there may 

be several outputs for a CDFG and some of them may 

be valid as accelerator’s final outputs. 

According to aforementioned properties, the 

accelerator architecture must have these following 

inevitable requirements: 
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a) Capability of selective receiving of inputs from both 

accelerator primary inputs and output of other 

instructions (FUs) for each node.  

b) Possibility of selecting the valid outputs from 

several outputs generated by accelerator according to 

conditions made by branch instructions.  

c) Accelerator should be equipped by control path 

besides to data path which provides the correct 

selection of inputs and outputs for each FU and entire 

accelerator.  

We will give more details on the architecture 

designated for a reconfigurable processor in Section 6. 

5. Algorithms for CDFG Temporal 

Partitioning  

 Extending DFGs to cover hot directions of branch 

instructions indeed, results in large CDFGs which may not 

satisfy the accelerator resource constraints. In other words, 

CDFG extracted from various applications have different 

sizes and some times the whole CDFG can not be mapped 

on the accelerator due to the resource limitations of the 

accelerator (e.g. number of inputs, outputs, logics and 

specifically routing resource constraints). Using temporal 

partitioning algorithms which consider the accelerator 

constraints is a solution to this issue. Temporal 

partitioning can be stated as partitioning a DFG/CDFG 

into a number of partitions such that each partition can fit 

into the target hardware and also, dependencies among the 

graph nodes are not violated  [1] [7] [14]. A temporal 

partitioning algorithm can consider the accelerator 

architectural specifications to generate executable DFGs 

on the accelerator. Even if the logic resource limitations 

are considered, some of them like the routing resource 

constraints are not applicable in DFG generation phase. 

Satisfying or violating routing resource constraints can be 

specified after trying to map a DFG on the accelerator.  

Integrated Framework presented in  [13] (based on 

design flow proposed in  [14]) performs an integrated 

temporal partitioning and mapping process to generate 

mappable DFGs. It takes rejected DFGs and attempts to 

partition them to appropriate ones with the capability of 

being mapped on the accelerator. The DFGs which are 

called rejected (vs. mappable) are ones that can not be 

mapped on the accelerator due to resource constraints  [13]. 

Moreover, the partitions obtained from the integrated 

temporal partitioning process are the same appropriate 

DFGs which are mappable on the accelerator. 

In the first stage of Integrated Framework, temporal 

partitioning algorithm generates initial partitions applying 

accelerator primary constraints (e.g. number of FUs, inputs, 

outputs). Then in the second stage, for each partition 

generated in the first step, the mapping of DFG nodes on 

the accelerator’s FUs is done. The mapping tool attempts 

to reduce total connection length between the nodes and 

satisfy the accelerator architectural constraints 

simultaneously. These DFGs are accepted and finalized if 

they can be successfully mapped and routed on the 

accelerator.  

The routing process is unsuccessful if there are r 

routing resources between ith and jth row while demanding 

more than r resources between these rows. In other words, 

the routing process fails if one or more connections in 

DFG could not be routed due to limitation of the routing 

resources. In case of unsuccessful routing, Integrated 

Framework utilizes an iterative process to change the 

partitions incrementally and repeats upon performing a 

successful mapping and meeting routing constraints. 

During the incremental temporal partitioning algorithm 

each partition is modified by moving some of the nodes to 

the subsequent partition (for more details refer to [13]). 

We modified the Integrated Framework introduced in 

[13] by replacing DFG temporal portioning algorithm with 

a temporal partitioning algorithm applicable to CDFGs. 

The modified Integrated Framework partitions large 

CDFGs and generates mappable and executable CDFGs on 

the accelerator. Indeed, temporal partitioning algorithm 

has a key role in Integrated Framework. As the authors 

knowledge there are small number of algorithms for CDFG 

partitioning, though a lot of works have been done around 

the DFG temporal partitioning  [1] [7] [14]. In  [1] a temporal 

portioning algorithm has been presented that partitions a 

CDFG considering target hardware with non-homogenous 

architecture. In this approach, each node of CDFG may 

have several implementation models on hardware and 

software. Setting control signal values determines a 

specific path of the data and converts a CDFG to sub-

graphs that do not include control instructions. This 

algorithm tries to consider all states of the control 

instructions in application to convert corresponding CDFG 

to a set of DFGs. Then it tries to minimize the number of 

states to reduce the number of generated DFGs. For each 

DFG a temporal partitioning algorithm is used for 

partitioning. One of the important disadvantages of this 

algorithm is that the large number of DFGs may be 

obtained during CDFG to DFG conversion. In addition, an 

exact knowledge to different states in application is 

required to reduce the number of DFGs.  

In this section, a couple of algorithms are introduced 

for CDFG temporal partitioning. The main goal is 

generating the minimum number of partitions to reduce the 

reconfiguration overhead time as well as configuration 

memory size. The proposed algorithms may be used as 

general CDFG temporal partitioning algorithms and also 
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can be superimposed on the modified Integrated 

Framework.  First, some definitions are presented: 

• Terminator instruction: An instruction which changes 

execution direction of the program including procedure 

or function call instructions and also backward branch 

and return (to prevent making cycles in CDFG). 

• Critical instruction: An instruction is critical or hot if 

its execution frequency is more than the predefined 

frequency threshold. In fact, execution frequency of 

instructions is achievable through profiling phase. One 

method for profiling is running the application on an 

instruction set simulator (ISS) and gathering required 

information like the approaches used in  [17] [18].  

• Frequency threshold: defines a boundary to identify 

whether an instruction is critical or not.  

5.1. TP Based on Not-Taken Paths (NTPT) 

This algorithm as our first CDFG temporal partitioning 

algorithm adds instructions from not-taken path of a 

control instruction to a partition until violating the target 

hardware architectural constraints (e.g. number of logic 

resources, inputs and outputs) or reaching to a terminator 

control instruction. In fact, a terminator instruction is an 

exit point for a CDFG. Therefore, in our methodology a 

CDFG can include one or more exit-points according the 

different paths achieved based on control instructions 

conditions. The concept of non-atomic multi-exit CDFGs 

has been introduced in  [18]. Generating a new partition is 

started with branch instructions which at least one of their 

taken or not-taken instructions has not been located in the 

current partition. The pseudo code for NTPT algorithm is 

as follows: 
Not Taken Path Traversing Temporal Partitioning 
Algorithm: 

1. Create a new empty partition and add initial 
instruction to the current partition 
2. If the current partition does not satisfy the 
accelerator primary architectural constraints, remove 
the last instruction added to the partition and close 
current partition and go to step 3, otherwise if the last 
instructions is not a terminator then consider its next 
instruction from the not-taken path, add it to the 
current partition and repeat step 2. 
3. Create StartNodeList as an empty list. 
4. If the last instruction of the current partition is a 
branch instruction, add it to StartNodeList. 
5. For each branch instruction in current partition, if it’s 
taken or not-taken instructions are not in current 
partition, add it to StartNodeList. 
6. Repeat steps 1 to 5 for each of instructions in 
StartNodeList as the initial instruction of new partition. 

 

 Fig. 5 exemplifies how this algorithm works for a piece 

of a CDFG. If the first partition generation stops in 

instruction 14 due to resource limitation of the accelerator, 

then, second partition is started from instruction 11. 

Because, for branch instructions located in nodes 4 and 6, 

both taken and not-taken paths has been inserted in the first 

partition, but for instruction 11, only its not-taken path are 

located in the first partition. Therefore, it is inserted in 

StartNodeList and used as an initial instruction of the next 

partition. The time complexity of this algorithm is O(n
2
) 

where, n is the number of nodes in CDFG. 

 

 
Fig. 5. Applying NTPT algorithm on a sample CDFG 

5.2. Execution Frequency-Based Algorithms 
 

In NTPT algorithm, instructions were selected only 

from not-taken paths of branches regardless of their 

criticalities, whereas, execution frequency of taken and 

not-taken instructions may be different. Here, another 

temporal partitioning algorithm is proposed with the aim of 

taking into account the execution frequency of taken and 

not-taken instructions. Execution frequency of instructions 

is an effective factor for selecting the instructions being 

added to the current partition. In other words, selecting the 

next instruction to the branch is done according to the 

frequency of branch succeeding instructions. For a branch 

instruction according to execution frequency of its 

succeeding taken or not-taken instructions one of them or 

both can be critical.   

In our frequency-based temporal partitioning algorithm, 

instructions are added one after another until observing a 

terminator or a branch instruction. For each instruction, list 

of all instructions located on its taken and not-taken paths 

stopping at a terminator are created. All instructions of 

two lists are added to the current partition if enough space 

is available. Otherwise, the list with higher execution 

frequency is selected and the other list is used to create a 

new partition. If two lists are terminating in a unique 

instruction, it is both added to the current partition, so, it 

necessitates reconfiguration during execution of the 

instructions located in the current partition. The time 

complexity of this algorithm is O(n
3
) where, n is the 

number of nodes in CDFG.  Fig. 6 clarifies this partitioning 

technique. According to partitions produced and shown in 

the figure, both taken and not-taken parts of branch 

instructions 4 and 6 are in the first partition. On the other 

hand, for instruction 11, only taken instructions are located 

in the same partition. Therefore, in its execution a 

reconfiguration for loading the next partition is needed if 

the branch is not-taken.  

 
Frequency Based Temporal Partitioning Algorithm: 

1. Create an empty partition and add initial instruction 
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to the current partition while the architectural 
constraints are satisfying, or the instruction is not a 
terminator. 
2. if the last instruction in current partition is branch, 
create two lists for its succeeding taken and not-taken 
paths (these lists should be stopped at a terminator). 
3. if both lists are critical and can be added to the 
current partition and are terminating in a unique 
branch instruction, add both to the current partition, 
otherwise add one of them that is more critical (has 
more execution frequency). 
4. For the list which its instructions have not been 
added to the current partition, create a new partition 
and insert its instructions in the new partition.  
5. Repeat steps 1 to 4 starting the instructions are 
next to the last nodes of the recently generated 
partitions as the initial instructions. 
 

 
Fig. 6. An example of frequency-based CDFG temporal partitioning 

5.3. Evaluating Proposed Algorithms 

The above algorithms were compared according to a) the 

number of generated partitions and b) efficiency factor. 

The former is a factor that determines the number of 

reconfigurations during run-time. The latter has been 

defined as a factor to show the efficacy of executing 

CDFGs on the accelerator. First, we introduce some 

definitions and then present equations for calculating the 

efficiency factor.  

• Branch Taken Part (BTP):  Set of instructions in a 

given CDFG that are started from the target address of 

a branch and is terminated by a terminator.  

• Branch Not-Taken Part (BNTP):  Set of instructions 

in a given CDFG that are started from the succeeding 

instruction of a branch and is terminated by a 

terminator.  

We introduce Eq. 1 to calculate the efficiency factor: 

∑∑∑
==

++

=
N

i

n

j

jijijijiCRFU

N

i

ipCPU

CPU

i

i
ntntbttbPCCf

ountOnCPUCDFGCycleC
FactorEfficiency

11

))().().((.)(.

.

ααγτ

τ

 (1) 

In Eq. 1: 

N is the number of partitions generated by the temporal 

partitioning algorithm 

CPUτ : the base processor clock cycle time 

CRFUγ : a timing factor that represents the time is needed 

for loading a configuration (partition) on the accelerator 

in : the number of branches in partition Pi 

)(tjiα : taken frequency of jth branch in partition Pi  

)(ntjiα : not-taken frequency of  jth branch in partition Pi 

)(tb ji : is equal to 0 if BTP of the jth branch instruction in 

Pi has been located at the same partition and it is equal to 1 

if some or all instructions of BTP are not located in Pi. 

)(ntb ji : is equal to 0 if BNTP of the jth branch instruction 

in Pi has been located at the same partition and it is equal 

to 1 if some or all instructions of BNTP are not located in 

Pi. 

)( iPCC : the number of clock cycles required for execution 

of Pi on the accelerator. 

i
pf : execution frequency of Pi. Total execution frequency 

of Pi is the summation of the execution frequency of all 

other partitions which their execution may cause to starting 

Pi. For each partition which its execution is independent 

from other partitions, execution frequency of its first 

instruction is considered. 

CDFGCycleCountOnCPU: number of clock cycles spent 

for CDFG execution on the CPU in aggregate. 

 Eq. 2 can be obtained by dividing numerator and 

denumerator of Eq. 1 to CPUτ . 

∑
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)(. αα
τ
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   (2) 

CPU

CRFU

τ

γ
denotes the reconfiguration time of the accelerator 

in terms of  processor clock cycle time. For example, for 

the ratio equal to 2, accelerator reconfiguration time is 

equal to duration of the two base processor clock periods. 

Eq. 2 represents the number of clock cycles spent for DFG 

execution on the base processor to the number of clock 

cycles on the accelerator. In other words, it represents the 

execution time ratio; therefore, larger amount of this factor 

means lower delay and correspondingly higher speedup.  

The first term of the denumerator represents the number of 

clock cycles for CDFG execution on the accelerator and 

the second term represents the time required to reconfigure 

the accelerator in terms of the number of clock cycles. 

Moreover, )))().().((
1

∑∑
=

+
N

i

n

j

jijijiji

i

ntntbttb αα  denotes the 

total number of reconfigurations.  

Six applications of Mibench  [16] were selected for 

evaluation of the two proposed algorithms. These 

applications have considerable number of branch 

instructions and high potential to get enhanced 

performance using the conditional execution supporting 

features ( Fig. 3). In addition, in these applications the large 
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numbers of SSDFGs are generated due to the many short 

distance branch instructions. Comparison of two NTPT 

and execution frequency-based temporal partitioning 

algorithms was accomplished with respect to the average 

number of partitions (CDFGs) generated and the efficiency 

factor defined by Eq. 2. According to  Fig. 7, using NTPT 

algorithm, fewer partitions are obtained for all of the 

applications. We remove all small size CDFGs (CDFGs 

with the length less than or equal to 5 instructions) from 

the CDFGs generated by temporal partitioning algorithms.  

 

0

1

2

3

4

5

6

ad
pc
m
c

ad
pc
m
d

bl
ow
fis
h(
en
c)

bl
ow
fis
h(
de
c) cr

c

di
jk
st
ra

A
v
e
ra
g
e
 P
a
rt
it
io
n
 N
o
.

NTPT Alg. Frequency Based Partitioning Alg.

 
Fig. 7. Comparison of the number of partitions 
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Fig. 8. Comparison of the efficiency factor 

 Fig. 8 depicts the NTPT algorithm has more or 

equivalent efficiency compared to frequency-based 

algorithm. Though, the NTPT algorithm is a simpler 

approach for temporal partitioning, but it may bring about 

more efficiency comparing with the more complicated 

frequency-based algorithm. Some compilers employing for 

VLIW processors move hot instructions to the not-taken 

part of branch instructions to avoid the pipeline flushing 

 [11] [23]. For the applications have been modified by this 

kind of compliers, NTPT algorithm is suggested. However, 

we do not claim that the NTPT algorithm does better for 

all CDFGs. The following example elucidates this fact: 

Analyzing different CDFGs show that for some of them, 

NTPT is not a good choice. For example,  Fig. 9 shows two 

CDFGs extracted from blowfish(dec) application with 

different properties. Their hot directions have been shown 

in bold arcs. Using both of algorithms generates similar 

results for CDFG of  Fig. 9.a, since hot direction of branch 

instructions are in the same direction of not-taken paths. 

On the other hand, for CDFG of  Fig. 9.b, hot direction of 

branch instruction 2 corresponds to its taken path. 

Therefore, different outputs are obtained for the two 

temporal partitioning algorithms. Certainly, more 

efficiency is achieved for the CDFG of  Fig. 9.b through 

frequency based algorithm.  

 

 
(a) 

 
(b) 

Fig. 9. Sample CDFGs extracted from blowfish(dec) 

6. Case study: Extending an Accelerator of an 

Reconfigurable Processor to Support Conditional 

Execution 

As mentioned in Section 2, AMBER comprises a tight 

integration of a reconfigurable functional unit (RFU) to a 

RISC processor [17]. Performance enhancement is 

achievable by executing hot portions on RFU and 

remaining portions on the base processor. AMBER’s RFU 

can not support conditional execution, here; we propose an 

extended version of RFU with conditional execution 

support. The basic requirements introduced in Section 4 

are applied to the AMBER’s RFU.  

6.1. Related Work 

Several studies have examined the design of reconfigurable 

processors and systems. In the case of reconfigurable 

processors, PRISC  [21], OneChip  [3], MOLEN  [27], and 

XiRisc  [11] are instances of tightly coupled integration of 

a GPP with fine-grained programmable hardware and 

ADRES  [15] is a sample of a tightly coupled coarse-

grained accelerator. AMBER falls in the coarse-grained 

category. AMBER unlike other reconfigurable processors, 

neither needs for a new programming model and new 

compiler nor rewriting and recompiling the source codes. 

Consequently, the approach is applicable to cases where 

the source code is not available. Loosely coupled systems 

like MorphoSys  [10] and Garp  [6] suffer from the 

overhead of transferring data between the base processor 

and the coprocessor. Chimaera  [5] adds a shadow register 

to solve this issue. In AMBER, the input/output resources 

are shared between the RFU and the processor functional 

units.  In the work proposed by Clark et al.  [4] as the most 

similar work to AMBER, hot portions of the application 
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are detected (limited to one basic block) using rePLay 

framework  [20] and then executed on a hardware 

accelerator. rePLay unlike AMBER selects only one 

direction in branches. When both directions are hot and the 

branch does not bias in one direction, the hot trace is 

terminated. In contrast to their design, the control signals 

or configuration data for AMBER’s RFU are generated 

offline to be more energy efficient. This eliminates the 

need for more hardware. They also need to extend the 

branch target address cache (BTAC) to store additional 

information for replacing the DFG by an invocation of a 

subgraph function. In our extension, generated CDFGs are 

non-atomic and can include branches and multiple exit 

points [18]. CDFGs also can accommodate both directions 

of a branch if both are hot. This feature can save the 

penalty cycles due to the misprediction of branches. 

Finally, unlike their proposed accelerators, AMBER’s 

extended RFU can support conditional execution.  

6.2. Extending RFU to Support Conditional 

Execution 

In Section 4, basic requirements were presented for the 

accelerator architecture featuring conditional execution. 

Here, we extend AMBER’s RFU according to these 

requirements and construct a conditional RFU (CRFU). 

First, we propose conditional data selection muxes for 

controlling selectors of muxes used for FU inputs and 

outputs of the RFU.  Fig. 10 (top portion) shows a RFU 

(with 5 FUs) without conditional execution facilities. On 

the other hand, the hardware has been modified as shown 

in bottom part of  Fig. 10 to support conditional data 

execution. In the proposed architecture, the selector signals 

of muxes used for choosing data for FU inputs (the Data-

Selection-Mux), along with the CRFU output and exit 

point (not shown in the figure) are controlled by other 

muxes (the Selector-Mux). The inputs of Selector-Mux 

(one-bit width) originate from the FUs (which execute 

branches) of the upper rows and the configuration memory 

in order to control the selector signals conditionally, as 

well as unconditionally. The selectors of Selector-Mux are 

controlled by configuration bits. It should be noted the 

outputs of FUs are only applied to the Selector-Muxes in 

the lower-level rows, not in the same or upper rows. A 

similar structure is used for selecting the valid output data 

of the CRFU.  

For example, suppose a CDFG containing nodes 

(instructions) (3:subu), (6:beq), (7:subu) and (13:subu) 

( Fig. 4) is to be mapped on the CRFU. The first source of 

instruction 13 (R3) uses the output of instruction 3 when 

instruction 6 is taken otherwise uses the output of 

instruction 7. Instructions 3, 7, 6, and 13 are mapped to 

FU1, FU2, FU3, and FU5, respectively, using the mapping 

algorithm presented in  [13]. In this architecture, the 

selection bits for input muxes of FU4 and FU5 are 

controlled by configuration bits. Assuming that outputs of 

FU1, FU2, FU3, and the immediate value have been 

assigned to inputs 1, 2, 3, and 0 of the Data Selection Mux 

in the second input of FU5. The selector signals of 

Selector-Mux i.e. Sel1 and Sel0 are configured to be driven 

by Not Branch result from FU3 and Branch result from 

FU3, respectively, using configuration bits. When FU3 

(instruction 6) is taken, Sel1 is 0 and Sel0 is 1, therefore 

the output of FU1 (instruction 3) is selected. When FU3 is 

not-taken Sel1 is 1 and Sel0 is 0, therefore the output of 

FU2 (instruction 7) is selected. 

  
Fig. 10. Equipping the RFU to support conditional execution 

6.3. Performance and Energy Evaluation 

The CRFU was developed and synthesized using Synopsys 

tools  [25] and Hitachi 0.18µm. Its area is 2.1 mm
2 
(gate 

count of CRFU is 68,407 and 231,236 gates for the base 

processor). Each CDFG totally needs 615 bits (~80bytes) 

for its configuration on the CRFU. Profiling data was 

provided by executing applications on the Simplescalar 

 [22] as ISS. Integrated Framework introduced in  [13] was 

modified to use NTPT temporal partitioning algorithm to 

generate mappable CDFGs for executing on the modified 

AMBER’s RFU (CRFU). Total elapsed time by the 

modified Integrated Framework for processing 487 

CDFGs from 22 applications on a host machine (Intel Core 

2 Duo 6600, 2400MHz, 2GB RAM) was less than 7sec. 

The CRFU has variable delay for CDFG execution. This 

idea has been proposed in  [17]. The delay of CRFU for 

CDFGs with various depths (critical path lengths) from 1 

to 5 (maximum supportable depth) are 2.2ns, 4.2ns, 6.1ns, 

7.9ns and 9.8ns, respectively. The required number of 

clock cycles for executing each CDFG is determined 

according to the depth of CDFG and base processor clock 

frequency. Therefore, according to the clock frequency of 

the AMBER’s base processor  which is 300MHz 

(according to Table 1) the number of clock cycled required 

for executing CDFGs with depths 1 to 5 are 1, 2, 2, 3, 3 
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clock cycles, respectively. Configuration of the AMBER’s 

base processor is as Table 1. 

Table. 1. Base processor configuration 
Issue 4-way 

Clock frequency 300MHz 
L1- I cache 32K, 2 way, 1 cycle latency 
L1- D cache 32K, 4 way, 1 cycle latency 
Unified L2  1M, 6 cycle latency 

Execution units 4 integer, 4 floating point 
RUU size & Fetch queue size 64 

Branch predictor Bimodal 
Branch prediction table size 2048 
Extra branch misprediction 

latency 
3 

 

We evaluated the effectiveness of CDFGs versus DFGs 

in the aspects of speedup and total energy reduction. The 

average number of instructions included in DFGs is 5.43 

instructions and for CDFGs is 8.32 instructions. Therefore, 

extending DFG and covering control instructions results in 

larger data flow graphs for acceleration, hence promising 

more speedup.  Fig. 11 shows the speedups obtained based 

on CDFG and DFG compared to the base processor for 

some applications. According to  Fig. 11, using CDFG 

achieves remarkable speedup compared to DFGs as 

expected. The reason for the high speedup obtained by 

adpcm is that it has a main loop with 56 instructions, 

including 12 branches. For 7 of these branches, both taken 

and not-taken instructions are hot, so that 27% of branches 

are mispredicted. Therefore, a big part of executed clock 

cycles belongs to penalty of the mispredicted branches 

(18%). For those branches with both directions being hot, 

the CDFGs include both directions, and hence, the CRFU 

architecture eliminates cycles of mispredicted branches. 

Also, since CDFGs are longer than DFGs, more ILP can be 

exploited.  

Other comparison was done based on the effect of 

employing CDFG versus DFG in total energy reduction. In 

our measurement, the configuration memory is assumed to 

keep up to 100 CDFG configurations. Therefore, the size 

of the configuration memory is 80x100 bytes SRAM with a 

640-bit width data bus and in one clock cycle the 

configuration can be loaded to the CRFU. 

Verilog-XL from Cadence, Power Compiler from 

Synopsys and 0.18µm technology cell library from Hitachi 

were exploited to measure the power of CRFU. The power 

consumption of the CRFU for 100,000 different test 

vectors is 246.335mW. The configuration memory was 

modeled using CACTI  [26] in 0.18µm. The area is 

0.77mm
2
 and the energy for each access is 0.198nJ. Also, 

Wattch  [2] which is based on Simplescalar  [22] was used 

for energy estimation of the base processor. The Wattch 

was targeted for 0.18µm as well.  Fig. 12 shows the total 

energy reduction for the AMBER using CDFG compared 

to the DFG for the clock frequency of 300MHz. This 

figure concludes that using CDFG brings about noticeable 

reduction in total energy compared to DFG. 
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Fig. 11. Speedup comparison of DFG vs. CDFG 
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Fig. 12. Comparison of energy reduction using CDFG vs. DFG 

Finally, we compared our proposed architecture with 

two most similar architectures which employ the tightly 

coupled reconfigurable accelerators augmented to a RISC 

processor inside a reconfigurable processor. Table 2 

summarizes this comparison.  Although, our architecture 

uses 0.18µm technology and variable delay accelerator and 

on the other side they used 0.13µm technology with one 

clock cycle delay accelerator, higher speedup in average 

has been attained by ours. Moreover, in our architecture, 

total power dissipation is reduced by 43.5% in average 

whereas, no measurement is available for others.  

7. Conclusion 

In an effective method to enhance performance of an 

embedded system, data flow graphs extracted from 

frequently executed portions of an application are mapped 

and executed on an accelerator. With respect to the result 

of a branch in instruction sequences, one of its taken or 

not-taken paths should be executed. In this paper, we 

highlighted the main motivations for handling branch 

instruction in DFGs and extending DFGs to CDFGs. In 

addition, basic requirements for developing an accelerator 

with conditional execution support were pointed out. 
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Table 2: Comparison of two similar approaches with ours 

Approach Base 

Processor 

Accelerator 

Coupling to 

Processor 

Technology 

Size (µm) 

Accelerator 

Granularity 

Accelerator 

Delay (# of clock 

cycles) 

Average 

Speedup 

Energy 

Reduction 

(%) 

Yehia et al.  
 [28] 

ARM 
1-issue, 
250MHz 

 
Tight  

 
0.13 

Fine (LUT-
based) 

 
1 

 

1.47 

 
N/A 

Clark et al. 
 [4] 

ARM 
4-issue,  
250MHz 

 
Tight 

 
0.13 

Coarse (FU-
based) 

 
1 

 

1.28 

 
N/A 

 
Ours 

MIPS 
4-issue, 
300MHz 

 
Tight 

 
0.18 

Coarse (FU-
based)  

 
Variable 

 

2.1 

 

43.5 

 
Also, two algorithms for CDFG temporal partitioning 

and generating mappable CDFGs were proposed. 

Mappable CDFGs satisfy the accelerator hardware 

constraints and can be executed on accelerator. NTPT is a 

temporal partitioning algorithm which tries to traverse not-

taken path of the branch instructions and partitions the 

input CDFG. On the contrary, frequency-based temporal 

partitioning algorithm considers the taken and not-taken 

frequencies to partition input CDFG. In this approach, both 

taken and not-taken paths associated to a branch can be   

added to a partition simultaneously. Comparison of these 

algorithms shows that though NTPT is a simple 

partitioning algorithm but it generates small number of 

CDFGs which bring about a comparable and even higher 

speedup. To show the effectiveness of supporting 

conditional execution in hardware, we applied our 

proposals to the accelerator of an extensible processor 

called AMBER. RFU was a matrix of functional units 

which was extended (CRFU) to support the conditional 

execution. We used an integrated framework based on 

NTPT algorithm to generate mappable CDFGs on CRFU. 

These CDFGs are executed on CRFU to accelerate the 

application execution. Experimental results show the 

noticeable effectiveness of covering branch instructions 

and using CDFGs versus DFGs. Also, total energy 

degrades by 43%. In addition, the designated architecture 

obtains higher speedup in comparison with two similar 

reconfigurable processors.  
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