
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Improving Performance and Energy Saving in a
Reconfigurable Processor via Accelerating
Control Data Flow Graphs

Mehdipour, Farhad
Computing and Communication Center, Kyushu University

Noori, Hamid
Department of Informatics, Kyushu University

Zamani, Morteza Saheb
Department of IT and Computer Engineering, Amirkabir University of Technology

Inoue, Koji
Department of Informatics, Kyushu University

他

https://hdl.handle.net/2324/8697

出版情報：IEICE Transactions on Information and Systems. E90-D (12), pp.1956-1966, 2007-12-01.
電子情報通信学会
バージョン：
権利関係：

1

PAPER Special Section on Reconfigurable Systems

† The author is with the Computing and Communication Center, Kyushu

University, Fukuoka, Japan.
†† The authors are with the Department of Informatics, Graduate School

of Information Science and Electrical Engineering, Kyushu University,

Fukuoka, Japan.
††† The author is with the Department of IT and Computer Engineering,

Amirkabir University of Technology, Iran.

a) Email: farhad@c.csce.kyushu-u.ac.jp

Improving Performance and Energy Saving in a Reconfigurable

Processor via Accelerating Control Data Flow Graphs

Farhad Mehdipour

†a)
, Hamid Noori

††
, Morteza Saheb Zamani

†††
, Nonmembers, Koji Inoue

††
 and Kazuaki

Murakami
††
, Members

Summary Extracting frequently executed (hot) portions of the

application and executing their corresponding data flow graph

(DFG) on the hardware accelerator brings about more speedup

and energy saving for embedded systems comprising a base

processor integrated with a tightly coupled accelerator.

Extending DFGs to support control instructions and using

Control DFGs (CDFGs) instead of DFGs results in more

coverage of application code portion are being accelerated hence,

more speedup and energy saving. In this paper, motivations for

extending DFGs to CDFGs and handling control instructions are

introduced. In addition, basic requirements for an accelerator

with conditional execution support are proposed. Then, two

algorithms are presented for temporal partitioning of CDFGs

considering the target accelerator architectural constraints. To

demonstrate effectiveness of the proposed ideas, they are applied

to the accelerator of a reconfigurable processor called AMBER.

Experimental results approve the remarkable effectiveness of

covering control instructions and using CDFGs versus DFGs in

the aspects of performance and energy reduction.

Key words: Reconfigurable accelerator, Conditional execution,

Control data flow graph, Temporal partitioning, reconfigurable

processor.

1. Introduction

Using an accelerator for executing critical or hot (most

frequently executed) portions of applications is an

effective technique to enhance the performance and energy

saving of processors in embedded systems. In this

technique, data flow graphs (DFGs) extracted from critical

portions of an application are executed on an accelerator

and remaining portions on the base processor,

correspondingly. By executing hot portions on an

accelerator performance improvement is obtained through

exploiting potential parallelism and reducing the latency of

critical paths and the number of intermediate results

read/written to the register file. The accelerator can be

implemented as a reconfigurable hardware with fine or

coarse granularity or as a custom hardware (such as

Application Specific Instruction-set Processors or

Extensible Processors) [8]. Finer granularity brings about

more flexibility compared to coarse one; however it suffers

from long latency and high reconfiguration overhead time

compared to coarse grained accelerators. Moreover, it

needs large amount of memory for configuration bits. The

custom hardware accelerators are faster and consume less

energy compared to reconfigurable accelerators; however

they need a long and costly design and manufacturing

process.

The integration of accelerator and the processor can be

tightly [3] [4] [11] [21] [27] or loosely coupled [8] [15]. For

loosely-coupled systems, there is an overhead for

transferring data between base processor and accelerator.

In a tightly coupled accelerator, data is read and written

directly to and from the processor’s register file, making

the accelerator an additional functional unit in the

processor pipeline. This makes the control logic simple, as

almost no overhead is required in transferring data to the

programmable hardware unit; however, it increases the

read/write ports of the register file. This paper focuses

especially on tightly coupled reconfigurable accelerator.

DFG extraction can be done at high level or binary

level of the source code. In our analysis, we concentrate on

the latter one which means that the DFG nodes are the

primitive instructions of the base processor and each

functional unit in accelerator implements the instruction

level operations. Using binary level brings about more

transparency, more accurate software estimation and

similar speedup to source-level for numerous applications

while keeping the binary compatibility [24]. The Control

DFG (CDFG) is a DFG containing control instructions

(e.g. branch instruction). For a branch instruction, two

succeeding paths can be considered. If the branch is taken

(branch result is true), a sequence starting from branch

target address called taken path is executed. Otherwise,

not-taken path including a sequence of instructions starting

from the next address to the branch is executed. Therefore,

depending to the result of a branch instruction one of the

instruction sequences from taken or not taken paths are

executed. Handling branches (conditional execution) is a

challenge in CDFG acceleration. It means executing

CDFG instead of DFG on accelerator which includes

conditional execution facilities due to existing control

instructions in CDFG. We consider two types of CDFGs:

a) CDFGs including at most one branch instruction as

its last instruction. In this case, the accelerator does not

need to support conditional execution.

MEHDIPOUR et al.: IMPROVING PERFORMANCE AND ENERGY SAVING IN A RECONFIGURABLE PROCESSOR

2

b) CDFGs containing more than one branch

instructions. This case necessitates featuring

conditional execution in accelerator for executing

CDFGs.

In CDFG generation process one can only follow the

frequently executed (hot) directions of branches. For each

branch, one of its taken or not-taken paths or both of them

might be hot. We suggest adding hot directions of branches

into the CDFG without being limited to selecting just one

or all of the directions. This can hide branch misprediction

penalty.

One main intuition behind this work is twofold

regarding two following questions:

a) Does executing CDFGs instead of DFGs on

accelerator (which means acceleration based on

CDFGs vs. DFGs) obtain higher performance?

b) How can the conditional execution be supported on

an accelerator, if the answer to the first question is

Yes?

To answer the first question, effect of extending DFGs

and covering control instructions on the speedup is studied

and reasonable arguments for extending DFGs and using

CDFGs instead of DFGs are presented. Moreover, as an

answer to the second question, basic requirements for an

accelerator with conditional execution support are studied.

Another contribution of this paper is our investigation

on CDFG generation considering limitations of resources

in the accelerator (e.g. number of inputs, outputs, logics,

connections and etc). CDFGs extracted from various

applications have different sizes and in most cases the

whole CDFG can not be mapped on the accelerator.

Therefore, algorithms for partitioning CDFGs under the

accelerator resource constraints are studied. We present a

couple of CDFG temporal partitioning algorithms to

partition large CDFGs to smaller and mappable ones.

Mappable CDFGs satisfy the accelerator architectural

constraints; hence, can be mapped and executed on the

accelerator. Moreover, our proposed ideas are applied to a

reconfigurable processor referred as AMBER and its

accelerator is extended to support conditional execution.

Then, effects of using CDFGs on speedup and energy

consumption are evaluated. Finally, the extended version

of AMBER is compared with other approaches to show the

effectiveness of our proposed ideas.

The paper outline is as follows. Section 2 introduces a

reconfigurable processor referred as AMBER. In Section

3, motivations for extending DFGs on control instructions

and using CDFGs are illustrated. General requirements for

an accelerator architecture featuring conditional execution

are proposed in Section 4. Section 5, describes the

algorithms proposed for CDFG temporal partitioning

which are used for generating appropriate CDFGs for

executing on the accelerator. Also, comparison of the

algorithms and a performance evaluation approach are

presented in Section 5. Section 6, after a review on related

work, explains the results of applying the proposed ideas to

a reconfigurable processor called AMBER and he

experimental results obtained. Finally, the paper is

concluded in Section 7.

2. General Overview of AMBER

AMBER is a reconfigurable processor [17] targeted for

embedded systems. It has been developed by integrating a

base processor with two other main components [17]. The

base processor is a general RISC processor and the other

two components are: sequencer and a coarse grain

reconfigurable functional unit (RFU). Fig. 1.a illustrates

the integration of different components in AMBER.

The base processor is a 4-issue in-order RISC

processor supporting MIPS instruction set. The sequencer

mainly determines the microcode execution sequence by

selecting between the RFU and the processor functional

unit. The RFU is based on array of 16 functional units

(FUs) with 8 input and 6 output ports. It is used in parallel

with other processor’s ALUs (Fig. 1.b). RFU reads (write)

from (to) register file. Each FU can support all fixed-point

instructions of the base processor except multiply, divide

and load. In the RFU, the output of each FU in a row can

be used by all FUs in the subsequent row.

Register File

ID/EXE Reg

RFU

Configuration

Memory

ALUs

MUX Sequencer
Sequencer

Table

EXE/MEM Reg

GPP Augmented HW
(a)

(b)

Fig. 1. Main components in AMBER (a) RFU architecture (b)

AMBER has two operational modes: the training and

the normal mode. The training mode is done offline. In this

phase, target applications are run on an instruction set

simulator (ISS) and profiled. Then, the start addresses of

hot basic blocks (HBBs) are detected. HBB is a basic

IEICE TRANS.INF. & SYS.

3

block that is executed more times than a given threshold

and a basic block is a sequence of instructions that

terminates in a control instruction. After generating

configuration bit-streams for extracted DFGs and initiating

sequencer tables in training mode it switches to the normal

mode. DFGs are executed on the RFU in the normal mode

utilizing the RFU, its configuration data (stored in the

configuration memory) and sequencer. More details on

AMBER can be found in [17].

3. Motivations

We follow a quantitative analysis to explore the

motivations for extending DFGs over control instructions

and generating CDFGs to be executed on an accelerator.

We use some applications of Mibench [16] for the

analysis. As mentioned formerly, DFGs are extracted from

the frequently executed portions of application and a

control instruction (e.g. branch instruction) may terminate

DFG generation process. Therefore, control instructions

located in a short distance result in generation of small size

DFGs (SSDFG). In fact, SSDFGs are not suitable for

improving performance in application execution and have

to be run on the base processor. Authors showed in [13]

that the small length DFGs (including less than or equal to

five instructions) offer no more speedup.

In Fig. 2, a piece of a main loop of adpcm(enc) is

shown. adpcm(enc) is an application program containing a

loop which consumes 98% of total execution time. The

critical portion of application contains 12 branch

instructions. According the location of branch instructions,

four DFGs can be extracted from the piece of loop that has

been shown in Fig 1. In this figure, three out of four DFGs

are SSDFGs. These SSDFGs do not gain more speedup

and have to be run on the base processor.

Fig. 2. Control data flow graph of hot portion of adpcmc(enc)

This kind of analysis was accomplished for 17

applications of Mibench [16]. Fig. 3 shows the overall

percentage of frequently executed (hot) portion of each

application. In addition, this figure shows the fraction of

applications that could not be accelerated because of

SSDFGs. For example, for bitcount application, almost

92% of application is hot. On the other hand, 32% out of

92% of hot portions do not worth to be accelerated due to

the SSDFGs; therefore, they are dismissed from execution

on the accelerator. However, analyses show for some

applications like fft, fft(inv) and sha which includes few

branch instructions, supporting conditional execution no

considerable speedup is achievable, because the small

portion of generated DFGs are removed due to SSDFGs.

0

10

20

30

40

50

60

70

80

90

100

ad
pc
m
(e
nc
)

ad
pc
m
(d
ec
)

bi
tc
ou
nt
s

bl
ow
fis
h

bl
ow
fis
h
(d
ec
)

ba
si
cm
at
h

cj
pe
g

cr
c

di
jk
st
ra

dj
pe
g ff

t

ff
t (
in
v)

la
m
e

pa
tr
ic
ia

sh
a

st
ri
ng
se
ar
ch

su
sa
n

%

Percentage of hot portions Percentage of eliminated hot portions due to SSDFGs

Fig. 3. Fraction of hot portions and eliminated hot portions in some

applications of Mibench [16]

Extending DFGs to contain more than one branch

instruction and generating the CDFGs vs. DFGs is one

solution to amortize the number of generated SSDFGs. As

mentioned before, according to the result of a branch

instruction, one of the instructions sequence located in

taken or not-taken paths of the associated branch might be

executed. In some case, only one of these paths is

frequently executed (hot) and in some other cases both

paths are hot. In latter case, covering both directions can

aid the generation of larger CDFGs, hence more

parallelism, as well as eliminating branch misprediction

penalties. On the other hand, for supporting CDFGs

architecture of the accelerator should be able to support

conditional execution. In addition, appropriate algorithms

are required to generate CDFGs considering the

specifications of the accelerator.

4. Basic Requirements for Architecture

Featuring Conditional Execution Support

As it was mentioned in Section 3, conditional execution

support in accelerator is needed for CDFG execution. For

this purpose, the capability of branch instruction execution

should be added to the accelerator. The target accelerator

is assumed to be a coarse grained reconfigurable hardware

which is a matrix of functional units (FUs) with specified

connections. CDFG nodes are the base processor

instructions, since we assumed that our concentration is on

binary level of the applications. Therefore, each FU like

the processor’s ALUs can execute instruction level

operations.

In a DFG, the nodes (instructions) receive their input

from a single source whereas, in the CDFG, nodes can

have multiple sources with respect to the different paths

MEHDIPOUR et al.: IMPROVING PERFORMANCE AND ENERGY SAVING IN A RECONFIGURABLE PROCESSOR

4

generated by branches. The correct source is selected at

run time according to the results of branches.

 Fig. 4 shows a piece of adpcm(enc)’s critical portion, a

part of its corresponding DFG (Fig. 4.a) and the CFG

comprising only control flow of instructions (Fig. 4.b). In

 Fig. 4.a, each node of DFG corresponds to one instruction

in the code. Inside circles, instruction number and

instruction itself has been depicted. Each instruction has at

most two sources and one destination. According to the

results of branch instructions various values for an

instruction source could be obtained. For example, 13
th

instruction (13:subu) receives its first source (register R3)

from 3
rd
 (3:subu) and 7

th
 (7:subu) instructions. Its output

may be routed to instructions (16:slt) and (19:subu) or

(22:slt) depending on the result of branch instruction

(17:bne). As another example, instruction (22:slt) may

receive its first source (R3) through the instructions

(3:subu), (7:subu) or (19:subu) depending on the result of

branch instructions (4:bgez), (6:beq), (11:bne) and

(17:bne). Also, it receives the second source (R9) from

(21:sra). Consequently, the nodes that generate output data

of a CDFG are altered according to the results of branches

as well. Therefore, the accelerator should have some

facilities to generate valid output data.

(a)

1 5 6 7 84 11 15

17 16212223242526

...

...

Control Flow Graph
(b)

Fig. 4. A piece of adpcm(enc) code and a part of its corresponding

DFG and (a) its control flow graph (b)

Predicated execution is one technique [19] which

effectively removes control dependency of programs

running on ILP (Instruction level parallelism) processors.

Proposed architecture in [9] uses predicated instructions.

With predicated execution, control dependency is

essentially turned into data dependency using predicates. A

predicated variable is a boolean variable which represents

the control information of a control instruction. The

following instructions become no-ops if the predicated

variable is evaluated to be false. To support predicated

execution on a microprocessor two sets of modifications

are needed in the instruction set architecture of the

processor. First, the original instructions need to be

replaced with their predicated versions. A predicated

instructions performs the same operations as its original

(non-predicated version), but it does not change the

processor state if the associated predicated variable is

evaluated to be false at the time of its execution. Second,

predicate defining instructions need to be added to set the

predicate variables to appropriate boolean variables for the

following instructions to behave correctly.

The architecture with predicated execution features

should have radical changes, since every instruction can be

predicated and a separated predicated register file is

needed. Partial architectural support has also been studied

 [12] to solve this issue. In [12], Mahlke et al. proposed

architecture with two new instructions added to the original

instruction set to support predicated execution. Instead of

making all instructions predicated, only two instructions

are defined to perform depending on the predicated while

the others remain the same. In this architecture every

predicated instruction can be rewritten (without altering the

behavior at the end of instructions execution) using non-

predicated instructions and the two newly introduced ones.

In other words, the behavior of a predicated instruction is

evaluated and its destination is transferred to a temporary

register and then the result is conditionally copied to the

destination.

In this section, we propose basic requirements of an

architecture which can support conditional execution. In

the general architecture with conditional execution

features, following characteristics are found:

a) An FU in the accelerator can receive its inputs

directly from accelerator primary inputs or from output

of the other FUs.

b) According to the condition of branch instructions,

output of each node can be directed to the other nodes

from different paths. For example, in Fig. 4.b, output of

instruction (13:subu) can be routed to nodes (16:slt),

(19:subu) and (22:slt). It means instruction (19:subu)

receives the value of R3 (output of instruction 13) if

branch instruction (17:bne) is not-taken, otherwise R3

is obtained by instruction (22:slt). Therefore, there may

be several outputs for a CDFG and some of them may

be valid as accelerator’s final outputs.

According to aforementioned properties, the

accelerator architecture must have these following

inevitable requirements:

IEICE TRANS.INF. & SYS.

5

a) Capability of selective receiving of inputs from both

accelerator primary inputs and output of other

instructions (FUs) for each node.

b) Possibility of selecting the valid outputs from

several outputs generated by accelerator according to

conditions made by branch instructions.

c) Accelerator should be equipped by control path

besides to data path which provides the correct

selection of inputs and outputs for each FU and entire

accelerator.

We will give more details on the architecture

designated for a reconfigurable processor in Section 6.

5. Algorithms for CDFG Temporal

Partitioning

 Extending DFGs to cover hot directions of branch

instructions indeed, results in large CDFGs which may not

satisfy the accelerator resource constraints. In other words,

CDFG extracted from various applications have different

sizes and some times the whole CDFG can not be mapped

on the accelerator due to the resource limitations of the

accelerator (e.g. number of inputs, outputs, logics and

specifically routing resource constraints). Using temporal

partitioning algorithms which consider the accelerator

constraints is a solution to this issue. Temporal

partitioning can be stated as partitioning a DFG/CDFG

into a number of partitions such that each partition can fit

into the target hardware and also, dependencies among the

graph nodes are not violated [1] [7] [14]. A temporal

partitioning algorithm can consider the accelerator

architectural specifications to generate executable DFGs

on the accelerator. Even if the logic resource limitations

are considered, some of them like the routing resource

constraints are not applicable in DFG generation phase.

Satisfying or violating routing resource constraints can be

specified after trying to map a DFG on the accelerator.

Integrated Framework presented in [13] (based on

design flow proposed in [14]) performs an integrated

temporal partitioning and mapping process to generate

mappable DFGs. It takes rejected DFGs and attempts to

partition them to appropriate ones with the capability of

being mapped on the accelerator. The DFGs which are

called rejected (vs. mappable) are ones that can not be

mapped on the accelerator due to resource constraints [13].

Moreover, the partitions obtained from the integrated

temporal partitioning process are the same appropriate

DFGs which are mappable on the accelerator.

In the first stage of Integrated Framework, temporal

partitioning algorithm generates initial partitions applying

accelerator primary constraints (e.g. number of FUs, inputs,

outputs). Then in the second stage, for each partition

generated in the first step, the mapping of DFG nodes on

the accelerator’s FUs is done. The mapping tool attempts

to reduce total connection length between the nodes and

satisfy the accelerator architectural constraints

simultaneously. These DFGs are accepted and finalized if

they can be successfully mapped and routed on the

accelerator.

The routing process is unsuccessful if there are r

routing resources between ith and jth row while demanding

more than r resources between these rows. In other words,

the routing process fails if one or more connections in

DFG could not be routed due to limitation of the routing

resources. In case of unsuccessful routing, Integrated

Framework utilizes an iterative process to change the

partitions incrementally and repeats upon performing a

successful mapping and meeting routing constraints.

During the incremental temporal partitioning algorithm

each partition is modified by moving some of the nodes to

the subsequent partition (for more details refer to [13]).

We modified the Integrated Framework introduced in

[13] by replacing DFG temporal portioning algorithm with

a temporal partitioning algorithm applicable to CDFGs.

The modified Integrated Framework partitions large

CDFGs and generates mappable and executable CDFGs on

the accelerator. Indeed, temporal partitioning algorithm

has a key role in Integrated Framework. As the authors

knowledge there are small number of algorithms for CDFG

partitioning, though a lot of works have been done around

the DFG temporal partitioning [1] [7] [14]. In [1] a temporal

portioning algorithm has been presented that partitions a

CDFG considering target hardware with non-homogenous

architecture. In this approach, each node of CDFG may

have several implementation models on hardware and

software. Setting control signal values determines a

specific path of the data and converts a CDFG to sub-

graphs that do not include control instructions. This

algorithm tries to consider all states of the control

instructions in application to convert corresponding CDFG

to a set of DFGs. Then it tries to minimize the number of

states to reduce the number of generated DFGs. For each

DFG a temporal partitioning algorithm is used for

partitioning. One of the important disadvantages of this

algorithm is that the large number of DFGs may be

obtained during CDFG to DFG conversion. In addition, an

exact knowledge to different states in application is

required to reduce the number of DFGs.

In this section, a couple of algorithms are introduced

for CDFG temporal partitioning. The main goal is

generating the minimum number of partitions to reduce the

reconfiguration overhead time as well as configuration

memory size. The proposed algorithms may be used as

general CDFG temporal partitioning algorithms and also

MEHDIPOUR et al.: IMPROVING PERFORMANCE AND ENERGY SAVING IN A RECONFIGURABLE PROCESSOR

6

can be superimposed on the modified Integrated

Framework. First, some definitions are presented:

• Terminator instruction: An instruction which changes

execution direction of the program including procedure

or function call instructions and also backward branch

and return (to prevent making cycles in CDFG).

• Critical instruction: An instruction is critical or hot if

its execution frequency is more than the predefined

frequency threshold. In fact, execution frequency of

instructions is achievable through profiling phase. One

method for profiling is running the application on an

instruction set simulator (ISS) and gathering required

information like the approaches used in [17] [18].

• Frequency threshold: defines a boundary to identify

whether an instruction is critical or not.

5.1. TP Based on Not-Taken Paths (NTPT)

This algorithm as our first CDFG temporal partitioning

algorithm adds instructions from not-taken path of a

control instruction to a partition until violating the target

hardware architectural constraints (e.g. number of logic

resources, inputs and outputs) or reaching to a terminator

control instruction. In fact, a terminator instruction is an

exit point for a CDFG. Therefore, in our methodology a

CDFG can include one or more exit-points according the

different paths achieved based on control instructions

conditions. The concept of non-atomic multi-exit CDFGs

has been introduced in [18]. Generating a new partition is

started with branch instructions which at least one of their

taken or not-taken instructions has not been located in the

current partition. The pseudo code for NTPT algorithm is

as follows:
Not Taken Path Traversing Temporal Partitioning
Algorithm:

1. Create a new empty partition and add initial
instruction to the current partition
2. If the current partition does not satisfy the
accelerator primary architectural constraints, remove
the last instruction added to the partition and close
current partition and go to step 3, otherwise if the last
instructions is not a terminator then consider its next
instruction from the not-taken path, add it to the
current partition and repeat step 2.
3. Create StartNodeList as an empty list.
4. If the last instruction of the current partition is a
branch instruction, add it to StartNodeList.
5. For each branch instruction in current partition, if it’s
taken or not-taken instructions are not in current
partition, add it to StartNodeList.
6. Repeat steps 1 to 5 for each of instructions in
StartNodeList as the initial instruction of new partition.

 Fig. 5 exemplifies how this algorithm works for a piece

of a CDFG. If the first partition generation stops in

instruction 14 due to resource limitation of the accelerator,

then, second partition is started from instruction 11.

Because, for branch instructions located in nodes 4 and 6,

both taken and not-taken paths has been inserted in the first

partition, but for instruction 11, only its not-taken path are

located in the first partition. Therefore, it is inserted in

StartNodeList and used as an initial instruction of the next

partition. The time complexity of this algorithm is O(n
2
)

where, n is the number of nodes in CDFG.

Fig. 5. Applying NTPT algorithm on a sample CDFG

5.2. Execution Frequency-Based Algorithms

In NTPT algorithm, instructions were selected only

from not-taken paths of branches regardless of their

criticalities, whereas, execution frequency of taken and

not-taken instructions may be different. Here, another

temporal partitioning algorithm is proposed with the aim of

taking into account the execution frequency of taken and

not-taken instructions. Execution frequency of instructions

is an effective factor for selecting the instructions being

added to the current partition. In other words, selecting the

next instruction to the branch is done according to the

frequency of branch succeeding instructions. For a branch

instruction according to execution frequency of its

succeeding taken or not-taken instructions one of them or

both can be critical.

In our frequency-based temporal partitioning algorithm,

instructions are added one after another until observing a

terminator or a branch instruction. For each instruction, list

of all instructions located on its taken and not-taken paths

stopping at a terminator are created. All instructions of

two lists are added to the current partition if enough space

is available. Otherwise, the list with higher execution

frequency is selected and the other list is used to create a

new partition. If two lists are terminating in a unique

instruction, it is both added to the current partition, so, it

necessitates reconfiguration during execution of the

instructions located in the current partition. The time

complexity of this algorithm is O(n
3
) where, n is the

number of nodes in CDFG. Fig. 6 clarifies this partitioning

technique. According to partitions produced and shown in

the figure, both taken and not-taken parts of branch

instructions 4 and 6 are in the first partition. On the other

hand, for instruction 11, only taken instructions are located

in the same partition. Therefore, in its execution a

reconfiguration for loading the next partition is needed if

the branch is not-taken.

Frequency Based Temporal Partitioning Algorithm:

1. Create an empty partition and add initial instruction

IEICE TRANS.INF. & SYS.

7

to the current partition while the architectural
constraints are satisfying, or the instruction is not a
terminator.
2. if the last instruction in current partition is branch,
create two lists for its succeeding taken and not-taken
paths (these lists should be stopped at a terminator).
3. if both lists are critical and can be added to the
current partition and are terminating in a unique
branch instruction, add both to the current partition,
otherwise add one of them that is more critical (has
more execution frequency).
4. For the list which its instructions have not been
added to the current partition, create a new partition
and insert its instructions in the new partition.
5. Repeat steps 1 to 4 starting the instructions are
next to the last nodes of the recently generated
partitions as the initial instructions.

Fig. 6. An example of frequency-based CDFG temporal partitioning

5.3. Evaluating Proposed Algorithms

The above algorithms were compared according to a) the

number of generated partitions and b) efficiency factor.

The former is a factor that determines the number of

reconfigurations during run-time. The latter has been

defined as a factor to show the efficacy of executing

CDFGs on the accelerator. First, we introduce some

definitions and then present equations for calculating the

efficiency factor.

• Branch Taken Part (BTP): Set of instructions in a

given CDFG that are started from the target address of

a branch and is terminated by a terminator.

• Branch Not-Taken Part (BNTP): Set of instructions

in a given CDFG that are started from the succeeding

instruction of a branch and is terminated by a

terminator.

We introduce Eq. 1 to calculate the efficiency factor:

∑∑∑
==

++

=
N

i

n

j

jijijijiCRFU

N

i

ipCPU

CPU

i

i
ntntbttbPCCf

ountOnCPUCDFGCycleC
FactorEfficiency

11

))().().((.)(.

.

ααγτ

τ

 (1)

In Eq. 1:

N is the number of partitions generated by the temporal

partitioning algorithm

CPUτ : the base processor clock cycle time

CRFUγ : a timing factor that represents the time is needed

for loading a configuration (partition) on the accelerator

in : the number of branches in partition Pi

)(tjiα : taken frequency of jth branch in partition Pi

)(ntjiα : not-taken frequency of jth branch in partition Pi

)(tb ji : is equal to 0 if BTP of the jth branch instruction in

Pi has been located at the same partition and it is equal to 1

if some or all instructions of BTP are not located in Pi.

)(ntb ji : is equal to 0 if BNTP of the jth branch instruction

in Pi has been located at the same partition and it is equal

to 1 if some or all instructions of BNTP are not located in

Pi.

)(iPCC : the number of clock cycles required for execution

of Pi on the accelerator.

i
pf : execution frequency of Pi. Total execution frequency

of Pi is the summation of the execution frequency of all

other partitions which their execution may cause to starting

Pi. For each partition which its execution is independent

from other partitions, execution frequency of its first

instruction is considered.

CDFGCycleCountOnCPU: number of clock cycles spent

for CDFG execution on the CPU in aggregate.

 Eq. 2 can be obtained by dividing numerator and

denumerator of Eq. 1 to CPUτ .

∑
=

∑ ++∑
=

=
N

i

i
n

j

nt
ji

nt
ji

bt
ji

t
ji

b

CPU

CRFU
N

i
i

PCC
i

p
f

ountOnCPUCDFGCycleC
FactorEfficiency

1

))().().(().(

1

)(. αα
τ

γ

 (2)

CPU

CRFU

τ

γ
denotes the reconfiguration time of the accelerator

in terms of processor clock cycle time. For example, for

the ratio equal to 2, accelerator reconfiguration time is

equal to duration of the two base processor clock periods.

Eq. 2 represents the number of clock cycles spent for DFG

execution on the base processor to the number of clock

cycles on the accelerator. In other words, it represents the

execution time ratio; therefore, larger amount of this factor

means lower delay and correspondingly higher speedup.

The first term of the denumerator represents the number of

clock cycles for CDFG execution on the accelerator and

the second term represents the time required to reconfigure

the accelerator in terms of the number of clock cycles.

Moreover,)))().().((
1

∑∑
=

+
N

i

n

j

jijijiji

i

ntntbttb αα denotes the

total number of reconfigurations.

Six applications of Mibench [16] were selected for

evaluation of the two proposed algorithms. These

applications have considerable number of branch

instructions and high potential to get enhanced

performance using the conditional execution supporting

features (Fig. 3). In addition, in these applications the large

MEHDIPOUR et al.: IMPROVING PERFORMANCE AND ENERGY SAVING IN A RECONFIGURABLE PROCESSOR

8

numbers of SSDFGs are generated due to the many short

distance branch instructions. Comparison of two NTPT

and execution frequency-based temporal partitioning

algorithms was accomplished with respect to the average

number of partitions (CDFGs) generated and the efficiency

factor defined by Eq. 2. According to Fig. 7, using NTPT

algorithm, fewer partitions are obtained for all of the

applications. We remove all small size CDFGs (CDFGs

with the length less than or equal to 5 instructions) from

the CDFGs generated by temporal partitioning algorithms.

0

1

2

3

4

5

6

ad
pc
m
c

ad
pc
m
d

bl
ow
fis
h(
en
c)

bl
ow
fis
h(
de
c) cr

c

di
jk
st
ra

A
v
e
ra
g
e
 P
a
rt
it
io
n
 N
o
.

NTPT Alg. Frequency Based Partitioning Alg.

Fig. 7. Comparison of the number of partitions

0

1

2

3

4

5

6

7

8

ad
pc
m
c

ad
pc
m
d

bl
ow
fis
h(
en
c)

bl
ow
fis
h(
de
c) cr

c

di
jk
st
ra

E
ff
ic
ie
n
c
y

NTPT Alg. Frequency Based Partitioning Alg.

Fig. 8. Comparison of the efficiency factor

 Fig. 8 depicts the NTPT algorithm has more or

equivalent efficiency compared to frequency-based

algorithm. Though, the NTPT algorithm is a simpler

approach for temporal partitioning, but it may bring about

more efficiency comparing with the more complicated

frequency-based algorithm. Some compilers employing for

VLIW processors move hot instructions to the not-taken

part of branch instructions to avoid the pipeline flushing

 [11] [23]. For the applications have been modified by this

kind of compliers, NTPT algorithm is suggested. However,

we do not claim that the NTPT algorithm does better for

all CDFGs. The following example elucidates this fact:

Analyzing different CDFGs show that for some of them,

NTPT is not a good choice. For example, Fig. 9 shows two

CDFGs extracted from blowfish(dec) application with

different properties. Their hot directions have been shown

in bold arcs. Using both of algorithms generates similar

results for CDFG of Fig. 9.a, since hot direction of branch

instructions are in the same direction of not-taken paths.

On the other hand, for CDFG of Fig. 9.b, hot direction of

branch instruction 2 corresponds to its taken path.

Therefore, different outputs are obtained for the two

temporal partitioning algorithms. Certainly, more

efficiency is achieved for the CDFG of Fig. 9.b through

frequency based algorithm.

(a)

(b)

Fig. 9. Sample CDFGs extracted from blowfish(dec)

6. Case study: Extending an Accelerator of an

Reconfigurable Processor to Support Conditional

Execution

As mentioned in Section 2, AMBER comprises a tight

integration of a reconfigurable functional unit (RFU) to a

RISC processor [17]. Performance enhancement is

achievable by executing hot portions on RFU and

remaining portions on the base processor. AMBER’s RFU

can not support conditional execution, here; we propose an

extended version of RFU with conditional execution

support. The basic requirements introduced in Section 4

are applied to the AMBER’s RFU.

6.1. Related Work

Several studies have examined the design of reconfigurable

processors and systems. In the case of reconfigurable

processors, PRISC [21], OneChip [3], MOLEN [27], and

XiRisc [11] are instances of tightly coupled integration of

a GPP with fine-grained programmable hardware and

ADRES [15] is a sample of a tightly coupled coarse-

grained accelerator. AMBER falls in the coarse-grained

category. AMBER unlike other reconfigurable processors,

neither needs for a new programming model and new

compiler nor rewriting and recompiling the source codes.

Consequently, the approach is applicable to cases where

the source code is not available. Loosely coupled systems

like MorphoSys [10] and Garp [6] suffer from the

overhead of transferring data between the base processor

and the coprocessor. Chimaera [5] adds a shadow register

to solve this issue. In AMBER, the input/output resources

are shared between the RFU and the processor functional

units. In the work proposed by Clark et al. [4] as the most

similar work to AMBER, hot portions of the application

IEICE TRANS.INF. & SYS.

9

are detected (limited to one basic block) using rePLay

framework [20] and then executed on a hardware

accelerator. rePLay unlike AMBER selects only one

direction in branches. When both directions are hot and the

branch does not bias in one direction, the hot trace is

terminated. In contrast to their design, the control signals

or configuration data for AMBER’s RFU are generated

offline to be more energy efficient. This eliminates the

need for more hardware. They also need to extend the

branch target address cache (BTAC) to store additional

information for replacing the DFG by an invocation of a

subgraph function. In our extension, generated CDFGs are

non-atomic and can include branches and multiple exit

points [18]. CDFGs also can accommodate both directions

of a branch if both are hot. This feature can save the

penalty cycles due to the misprediction of branches.

Finally, unlike their proposed accelerators, AMBER’s

extended RFU can support conditional execution.

6.2. Extending RFU to Support Conditional

Execution

In Section 4, basic requirements were presented for the

accelerator architecture featuring conditional execution.

Here, we extend AMBER’s RFU according to these

requirements and construct a conditional RFU (CRFU).

First, we propose conditional data selection muxes for

controlling selectors of muxes used for FU inputs and

outputs of the RFU. Fig. 10 (top portion) shows a RFU

(with 5 FUs) without conditional execution facilities. On

the other hand, the hardware has been modified as shown

in bottom part of Fig. 10 to support conditional data

execution. In the proposed architecture, the selector signals

of muxes used for choosing data for FU inputs (the Data-

Selection-Mux), along with the CRFU output and exit

point (not shown in the figure) are controlled by other

muxes (the Selector-Mux). The inputs of Selector-Mux

(one-bit width) originate from the FUs (which execute

branches) of the upper rows and the configuration memory

in order to control the selector signals conditionally, as

well as unconditionally. The selectors of Selector-Mux are

controlled by configuration bits. It should be noted the

outputs of FUs are only applied to the Selector-Muxes in

the lower-level rows, not in the same or upper rows. A

similar structure is used for selecting the valid output data

of the CRFU.

For example, suppose a CDFG containing nodes

(instructions) (3:subu), (6:beq), (7:subu) and (13:subu)

(Fig. 4) is to be mapped on the CRFU. The first source of

instruction 13 (R3) uses the output of instruction 3 when

instruction 6 is taken otherwise uses the output of

instruction 7. Instructions 3, 7, 6, and 13 are mapped to

FU1, FU2, FU3, and FU5, respectively, using the mapping

algorithm presented in [13]. In this architecture, the

selection bits for input muxes of FU4 and FU5 are

controlled by configuration bits. Assuming that outputs of

FU1, FU2, FU3, and the immediate value have been

assigned to inputs 1, 2, 3, and 0 of the Data Selection Mux

in the second input of FU5. The selector signals of

Selector-Mux i.e. Sel1 and Sel0 are configured to be driven

by Not Branch result from FU3 and Branch result from

FU3, respectively, using configuration bits. When FU3

(instruction 6) is taken, Sel1 is 0 and Sel0 is 1, therefore

the output of FU1 (instruction 3) is selected. When FU3 is

not-taken Sel1 is 1 and Sel0 is 0, therefore the output of

FU2 (instruction 7) is selected.

Fig. 10. Equipping the RFU to support conditional execution

6.3. Performance and Energy Evaluation

The CRFU was developed and synthesized using Synopsys

tools [25] and Hitachi 0.18µm. Its area is 2.1 mm
2
(gate

count of CRFU is 68,407 and 231,236 gates for the base

processor). Each CDFG totally needs 615 bits (~80bytes)

for its configuration on the CRFU. Profiling data was

provided by executing applications on the Simplescalar

 [22] as ISS. Integrated Framework introduced in [13] was

modified to use NTPT temporal partitioning algorithm to

generate mappable CDFGs for executing on the modified

AMBER’s RFU (CRFU). Total elapsed time by the

modified Integrated Framework for processing 487

CDFGs from 22 applications on a host machine (Intel Core

2 Duo 6600, 2400MHz, 2GB RAM) was less than 7sec.

The CRFU has variable delay for CDFG execution. This

idea has been proposed in [17]. The delay of CRFU for

CDFGs with various depths (critical path lengths) from 1

to 5 (maximum supportable depth) are 2.2ns, 4.2ns, 6.1ns,

7.9ns and 9.8ns, respectively. The required number of

clock cycles for executing each CDFG is determined

according to the depth of CDFG and base processor clock

frequency. Therefore, according to the clock frequency of

the AMBER’s base processor which is 300MHz

(according to Table 1) the number of clock cycled required

for executing CDFGs with depths 1 to 5 are 1, 2, 2, 3, 3

MEHDIPOUR et al.: IMPROVING PERFORMANCE AND ENERGY SAVING IN A RECONFIGURABLE PROCESSOR

10

clock cycles, respectively. Configuration of the AMBER’s

base processor is as Table 1.

Table. 1. Base processor configuration
Issue 4-way

Clock frequency 300MHz
L1- I cache 32K, 2 way, 1 cycle latency
L1- D cache 32K, 4 way, 1 cycle latency
Unified L2 1M, 6 cycle latency

Execution units 4 integer, 4 floating point
RUU size & Fetch queue size 64

Branch predictor Bimodal
Branch prediction table size 2048
Extra branch misprediction

latency
3

We evaluated the effectiveness of CDFGs versus DFGs

in the aspects of speedup and total energy reduction. The

average number of instructions included in DFGs is 5.43

instructions and for CDFGs is 8.32 instructions. Therefore,

extending DFG and covering control instructions results in

larger data flow graphs for acceleration, hence promising

more speedup. Fig. 11 shows the speedups obtained based

on CDFG and DFG compared to the base processor for

some applications. According to Fig. 11, using CDFG

achieves remarkable speedup compared to DFGs as

expected. The reason for the high speedup obtained by

adpcm is that it has a main loop with 56 instructions,

including 12 branches. For 7 of these branches, both taken

and not-taken instructions are hot, so that 27% of branches

are mispredicted. Therefore, a big part of executed clock

cycles belongs to penalty of the mispredicted branches

(18%). For those branches with both directions being hot,

the CDFGs include both directions, and hence, the CRFU

architecture eliminates cycles of mispredicted branches.

Also, since CDFGs are longer than DFGs, more ILP can be

exploited.

Other comparison was done based on the effect of

employing CDFG versus DFG in total energy reduction. In

our measurement, the configuration memory is assumed to

keep up to 100 CDFG configurations. Therefore, the size

of the configuration memory is 80x100 bytes SRAM with a

640-bit width data bus and in one clock cycle the

configuration can be loaded to the CRFU.

Verilog-XL from Cadence, Power Compiler from

Synopsys and 0.18µm technology cell library from Hitachi

were exploited to measure the power of CRFU. The power

consumption of the CRFU for 100,000 different test

vectors is 246.335mW. The configuration memory was

modeled using CACTI [26] in 0.18µm. The area is

0.77mm
2
 and the energy for each access is 0.198nJ. Also,

Wattch [2] which is based on Simplescalar [22] was used

for energy estimation of the base processor. The Wattch

was targeted for 0.18µm as well. Fig. 12 shows the total

energy reduction for the AMBER using CDFG compared

to the DFG for the clock frequency of 300MHz. This

figure concludes that using CDFG brings about noticeable

reduction in total energy compared to DFG.

Speedup Comparison

1
1.2
1.4
1.6
1.8
2

2.2
2.4
2.6
2.8
3

ad
pc
m
 (e
nc
)

ad
pc
m
 (d
ec
)

bl
ow
fis
h
(e
nc
)

bl
ow
fis
h
(d
ec
)

cr
c

di
jk
st
ra

A
ve
ra
ge

S
p
e
e
d
u
p

DFG

CDFG

Fig. 11. Speedup comparison of DFG vs. CDFG

Energy Saving

0
10
20
30
40
50
60
70
80

ad
pc
m
(e
nc
)

ad
pc
m
(d
ec
)

bl
ow
fis
h(
en
c)

bl
ow
fis
h(
de
c) cr

c

di
jk
st
ra

A
ve
ra
ge

T
o
ta
l
E
n
e
rg
y
 R
e
d
u
c
ti
o
n
 (
%
)

 C
D
F
G
 v
s
 D
F
G

DFG

CDFG

Fig. 12. Comparison of energy reduction using CDFG vs. DFG

Finally, we compared our proposed architecture with

two most similar architectures which employ the tightly

coupled reconfigurable accelerators augmented to a RISC

processor inside a reconfigurable processor. Table 2

summarizes this comparison. Although, our architecture

uses 0.18µm technology and variable delay accelerator and

on the other side they used 0.13µm technology with one

clock cycle delay accelerator, higher speedup in average

has been attained by ours. Moreover, in our architecture,

total power dissipation is reduced by 43.5% in average

whereas, no measurement is available for others.

7. Conclusion

In an effective method to enhance performance of an

embedded system, data flow graphs extracted from

frequently executed portions of an application are mapped

and executed on an accelerator. With respect to the result

of a branch in instruction sequences, one of its taken or

not-taken paths should be executed. In this paper, we

highlighted the main motivations for handling branch

instruction in DFGs and extending DFGs to CDFGs. In

addition, basic requirements for developing an accelerator

with conditional execution support were pointed out.

IEICE TRANS.INF. & SYS.

11

Table 2: Comparison of two similar approaches with ours

Approach Base

Processor

Accelerator

Coupling to

Processor

Technology

Size (µm)

Accelerator

Granularity

Accelerator

Delay (# of clock

cycles)

Average

Speedup

Energy

Reduction

(%)

Yehia et al.
 [28]

ARM
1-issue,
250MHz

Tight

0.13

Fine (LUT-
based)

1

1.47

N/A

Clark et al.
 [4]

ARM
4-issue,
250MHz

Tight

0.13

Coarse (FU-
based)

1

1.28

N/A

Ours

MIPS
4-issue,
300MHz

Tight

0.18

Coarse (FU-
based)

Variable

2.1

43.5

Also, two algorithms for CDFG temporal partitioning

and generating mappable CDFGs were proposed.

Mappable CDFGs satisfy the accelerator hardware

constraints and can be executed on accelerator. NTPT is a

temporal partitioning algorithm which tries to traverse not-

taken path of the branch instructions and partitions the

input CDFG. On the contrary, frequency-based temporal

partitioning algorithm considers the taken and not-taken

frequencies to partition input CDFG. In this approach, both

taken and not-taken paths associated to a branch can be

added to a partition simultaneously. Comparison of these

algorithms shows that though NTPT is a simple

partitioning algorithm but it generates small number of

CDFGs which bring about a comparable and even higher

speedup. To show the effectiveness of supporting

conditional execution in hardware, we applied our

proposals to the accelerator of an extensible processor

called AMBER. RFU was a matrix of functional units

which was extended (CRFU) to support the conditional

execution. We used an integrated framework based on

NTPT algorithm to generate mappable CDFGs on CRFU.

These CDFGs are executed on CRFU to accelerate the

application execution. Experimental results show the

noticeable effectiveness of covering branch instructions

and using CDFGs versus DFGs. Also, total energy

degrades by 43%. In addition, the designated architecture

obtains higher speedup in comparison with two similar

reconfigurable processors.

Acknowledgment

This research was supported in part by Core Research for

Evolutional Science and Technology (CREST) of Japan

Science and Technology Corporation (JST) and Grant-in-

Aid for Encouragement of Young Scientists (A),

17680005.

References

[1] Auguin, M. Bianco, L. Capella, L. Gresset, E. Partitioning

conditional data flow graphs for embedded system design,

Proc. of ASAP 2000 (2000) 339-348

[2] Brooks D. Wattch: a framework for architectural-level

power analysis and optimizations, In Proc. ISCA (2000)

[3] Carrillo, J. E. Chow, P. The effect of reconfigurable units in

superscalar processors, Proc. of the ACM/SIGDA FPGA

(2001) 141-150.

[4] Clark, N. Kudlur, M. Park, H. Mahlke S. Flautner, K.

Application-specific processing on a general-purpose

core via transparent instruction set customization. In

Proc. of the 37th Annual International Symp. on

Microarchitecture (2004) 30-40.
[5] Hauck, S. Fry, T. Hosler, M. Kao, J. The Chimaera

reconfigurable functional unit, IEEE Symp. on FPGAs for

Custom Computing Machines (1997) 206-217.

[6] Hauser, J.R. Wawrzynek, J. GARP: A MIPS processor with

a reconfigurable coprocessor, IEEE Symp. On FPGAs for

Custom Computing Machines (1997) 12-21.

[7] Karthikeya, M. Gajjala, P. Bhatia, D. Temporal partitioning

and scheduling data flow graphs for reconfigurable

computers, IEEE Transactions on Computers, 48 (6) (1999)

579-590.

[8] Kastner, R. Kaplan, A. Sarrafzadeh, M. Synthesis

techniques and optimizations for reconfigurable systems,

Kluwer-Academic Publishers (2004).

[9] Lee, J.E. Kim, Y. Jung, J. Choi, K. Reconfigurable ALU

array architecture with conditional execution, International

SoC Design Conference (2004) 222-226.

[10] Lee, M.H. Singh, H. Lu, G. Bagherzadeh, N. Kurdahi, F.J

Design and implementation of the MorphoSys

reconfigurable computing processor, Journal of VLSI and

Signal Processing-Systems for Signal, Image and Video

Technology (2000).

[11] Lodi, A. Toma, M. Campi, F. Cappelli, A. Canegallo, R.

Guerrieri, R. A VLIW processor with reconfigurable

instruction set for embedded applications, IEEE Journal of

Solid-State Circuits, Vol. 38, No. 11 (2003) 1876–1886.

[12] Mahlke, S. A. Hank, R. E. McCormick. J.E. August. D. A

comparison of full and partial predicated execution support

for ILP processors. In Proc. ISCA (1995) 138-150.

[13] Mehdipour, F. Noori, H. Saheb Zamani, M. Murakami, K.

Sedighi, K. Inoue, K. Custom instruction generation using

temporal partitioning techniques for a reconfigurable

functional unit, Proc. of EUC’06 (2006).

[14] Mehdipour, F. Saheb Zamani, M. Sedighi, M. An

integrated temporal partitioning and physical design

MEHDIPOUR et al.: IMPROVING PERFORMANCE AND ENERGY SAVING IN A RECONFIGURABLE PROCESSOR

12

framework for static compilation of reconfigurable

computing systems, Int. J. of Microprocessors and

Microsystems, Elsevier, Vol. 30, No. 1 (2006) 52-62.

[15] Mei, B. Vernalde, S. Verkest, D. Lauwereins, R. Design

methodology for a tightly coupled VLIW/Reconfigurable

matrix architecture, DATE (2004) 1224-1129.

[16] Mibench, www.eecs.umich.edu/mibench.

[17] Noori, H. Mehdipour, F. Murakami, K. Inoue, K. Saheb

Zamani, M. A reconfigurable functional unit for an adaptive

dynamic extensible processor, Proc. of FPL (2006) 781-784.

[18] Noori, H. Mehdipour, F. Murakami, K. Inoue, K. Goudarzi,

M. Generating and Executing Multi-Exit Custom

Instructions for an Adaptive Extensible Processor, Design-

Automation and Test in Europe (DATE'07) (2007).

[19] Park, J.C. Schlansker, M.S. On predicated execution,

Technical Report HPL-91-58. Hewlett Packard Laboratories

(1991).

[20] Patel, S. Lumetta, S. rePLay: A hardware framework for

dynamic optimization, IEEE Transanction Computer 50 (6)

(2001) 590-608.

[21] Razdan, R. Smith, M.D. A high-performance

microarchitecture with hardware-programmable functional

units, MICRO-27 (1994).

[22] Simplescalar, www.simplescalar.com

[23] Smith J.E, Sohi, G.S. The microarchitecture of superscalar

P. In Proc. IEEE, Vol. 83, (1995) 1609- 1624.

[24] Stitt, G. Lysecky, R. Vahid, F. Dynamic

hardware/software partitioning: a first approach, In Proc.

Design Automation Conference (2003) 25-255.

[25] Synopsys Inc. http://www.synopsys.com/roducts/logic/

design_compiler.html.

[26] Tarjan, D. Thoziyoor, Sh. Jouppi, N.P. Cacti 4.0, HP

Laboratories, Technical Report (2006).

[27] Vassiliadis, S. Gaydadjiev, G. Kuzmanov, G. The MOLEN

polymorphic processor, IEEE Transactions on Computers,

Vol. 53, No. 11 (2004) 1363-1375.

[28] Yehia, S. Clark, N. Mahlke, S. Flautner, K. Exploring the

design space of LUT-based transparent accelerators. In

Proc. of CASES’05 (2005).

Farhad Mehdipour received the B.Sc.

degree from Sharif University of

Technology in 1996, and the M.Sc. and

Ph.D. degrees in Computer Systems

Architectures from the Amirkabir

University of Technology in 1999 and

2006, respectively. He joined to Research

Institute for Information Technology,

Kyushu University in December 2006. His

research interests include reconfigurable

computing systems, physical design and

reconfigurable embedded processors.

Hamid Noori received the B.Sc.

degree from Sharif University of

Technology in 1996, and the M.Sc. degree

in Computer Systems Architectures from

the Amirkabir University of Technology in

1999. He is currently PhD candidate in

Graduate School of Information Science and

Electrical Engineering, Kyushu University,

Japan, since 2004. He is student member of

IEEE and his research interests include

reconfigurable processors and devices and

high performance, low power embedded processors.

Morteza Saheb Zamani received the

B.Sc. degree in Computer Engineering

from Isfahan University of Technology in

1989, and the M.Eng.Sc. and Ph.D. degrees

in Computer Engineering from the

University of New South Wales, Australia

in 1992 and 1996, respectively. He joined

Amirkabir University of Technology in

1996 and he is now an assistant professor at

IT and Computer Engineering department

and the head of "Computer Systems

Architectures" group.

Koji Inoue was born in

Fukuoka, Japan in 1971. He received the

B.E. and M.E. degrees in computer science

from Kyushu Institute of Technology,

Japan in 1994 and 1996, respectively. He

received the Ph.D. degree in Department of

Computer Science and Communication

Engineering, Graduate School of

Information Science and Electrical

Engineering, Kyushu University, Japan in

2000. In 1999, he joined Halo LSI Design

& Technology, Inc., NY, as a circuit

designer. He is currently an associate professor of the Department of

Informatics, Kyushu University. His research interests include power-

aware computing, high-performance computing, dependable processor

architecture, and secure computer systems. He is a member of the ACM,

the IEEE, the IEEE Computer Society, the IEICE, and the IPSJ

(Information Processing Society of Japan).

Kazuaki Murakami was born in Kumamoto, Japan in 1960. He

received the B.E., M.E., and Ph.D. degrees in computer science and

engineering from Kyoto University in 1982, 1984, and 1994,

respectively. From 1984 to 1987, he worked for the Fujitsu Limited,

where he was a Computer Architect of the mainframe computers. In

1987, he joined the Department of Information Systems of Kyushu

University, Japan. He is currently a Professor of the Department of

Informatics, and also the Director of the Computing and

Communications Center. He is a member of the ACM, the IEEE, the

IEEE Computer Society, the IPSJ, and the JSIAM.

