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Text-Independent Speaker Verification Using Artificially Generated 

GMMs for Cohorts

Yuuji MUKAI•õ, Nonmember, Hideki NODA•õa), Michiharu NIIMI•õ, and Takashi OSANAI•õ•õ
, Members

SUMMARY This paper presents a text-independent speaker verifica-
tion method using Gaussian mixture models (GMMs), where only utter-
ances of enrolled speakers are required. Artificial cohorts are used instead 
of those from speaker databases, and GMMs for artificial cohorts are gen-
erated by changing model parameters of the GMM for a claimed speaker. 
Equal error rates by the proposed method are about 60% less than those by a 
conventional method which also uses only utterances of enrolled speakers.
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score normalization, background model

1. Introduction

Speaker verification (SV) is the task of determining whether 
the claimed identity of a speaker is correct. Statistical ap-

proaches using Gaussian mixture models (GMMs) are com-
monly used for text-independent SV[1]. An important issue 
in the statistical approaches is that of score normalization, 
and several normalization methods have already been pro-

posed. Popular normalization methods, which are briefly 
reviewed in 2, are as follows: normalization using univer-
sal background model[1], cohort normalization method[2], 
and T-norm[3].

All of the above score normalization methods need 
speaker databases. However, preparation of a database is 
a burden particularly in a small scale SV system such as 
one for home security, where the number of enrolled speak-
ers is very small*. In such an SV system, it is desirable 
to perform SV using only utterances of enrolled speakers, 
if it is possible. In fact, this issue is already addressed in 
text-dependent SV using hidden Markov model[4] and text-
independent SV using GMM[5], though their purpose is to 
build a flexible and portable SV system running on portable 
devices such as palm-top computers and wireless phones.

In [5], a background model was estimated using the 
training data for a claimed speaker, i.e., the same data was 
used to build the claimed speaker model and its background 
model. The difference between the two models is the num-
ber of Gaussian mixtures, and 32-mixture GMM and 16-
mixture GMM were used for the claimed speaker model and 
its background model, respectively. However, SV perfor-

mance by this approach seems to be poor according to our 

experiments described in 4. This paper proposes an alter-

native approach for GMM-based text-independent SV using 

only utterances of enrolled speakers. We use artificial co-

horts instead of those from speaker databases. Considering 

that GMMs for cohorts for a claimed speaker are relatively 

close to that for the claimed speaker, we generate GMMs for 

cohorts by changing model parameters of the GMM for the 

claimed speaker.

2. Score Normalization Methods for Speaker Verifica-

 tion

Let Y={yt; t=1,•c,T} denote a sequence of fea-

ture vectors obtained from input speech, and let ps(yt) and 

po(yt) be probability density functions (pdfs) of yt for a 

claimed speaker (true speaker) and all other possible speak-

ers (impostors), respectively. Here both pdfs are modeled 

by GMMs. Assuming that yts are mutually independent and 

then ps(Y)=1 .ƒ®Tt=1ps(yt) and po(Y)=ƒ®Tt=1po(yt), log-

likelihood ratio S(Y) is given as

S(Y)=logps(Y)/po(Y) (1)

=

Tƒ°t=1

logps(yt)/po(yt). (2)

In fact, instead of ps(Y) and po(Y), the normalized likeli-
hood by the length T of the vector sequence Y (the number 
of frames), i.e., ps(Y)1/T and po(Y)1/T are usually used. In 
that case, the log-likelihood ratio S(Y) is given as

S(Y)=1op(Y)(3)

1T(4)

Using S(Y), the decision on the hypothesis that Y is from
*In general

, speaking and recording conditions influence SV 
performance and in particular, handset (microphone) variability 
causes significant performance degradation in SV systems [1]. If 
speaking and recording conditions in such an SV system are sim-
ilar to those under which speech data from many speakers have 
already been collected for a database, score normalization can be 
carried out using the universal background model or cohorts from 
the database. However in general, we cannot expect this coinci-
dence on speaking and recording conditions. Therefore, prepara-
tion of a database is almost always required for any SV system.
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the claimed speaker is made as follows.

S(Y)ƒÆ, accept the hypothesis (5)

S(Y)<ƒÆ, reject the hypothesis, (6)

where ƒÆ is a decision threshold.

Taking the aforementioned general procedure into ac-

count, we review popular score normalization methods: nor-

malization using universal background model[1], cohort 

normalization method[2], and T-norm[3].

(1) Use of universal background model Speech samples 

from a large number of speakers are used to train a sin-

gle GMM for po(yt), which is called a universal back-

ground model or a world model.

(2) Cohort normalization Cohort normalization uses a set 

of other speakers called cohorts whose pdfs are close 

to that for a claimed speaker. Cohorts for the claimed 

speaker are selected from speaker databases. Given the 

selected cohorts ci, i=1,•c,N and their pdfs pci(Y), 

the following po(Y),

po(Y)=1/NNƒ°i=1pci(Y) (7)

is used instead of the universal background model.

(3) T-norm T -norm extends the standard cohort normal-

ization. The log-likelihood for the claimed speaker 

logps(Y) is normalized using the mean ƒÊ and stan-

dard deviation ƒÐ of the log-likelihood for cohorts 

logpci(Y), i=1,•c,N:

ST=logps(Y)-ƒÊ/ƒÐ. (8)

The advantage of T-norm over the cohort normalization 

is the use of variance parameter ƒÐ which approximates 

the distribution of cohorts more accurately.

3. Artificial Cohort Model

After reviewing GMM, we describe how to generate GMMs 

for artificial cohorts.

3.1 Gaussian Mixture Model

A mixture of K Gaussian distributions is described as 

p(yt)=Kƒ°k=1akgk(yt; mk, ƒ°k), Kƒ°k=1ak=1, (9)

gk(yt; mk, ƒ°k)=1/(2ƒÎ)D/2|ƒ°k|1/2.

exp{-1/2(yt-mk)Tƒ°-1k(yt-mk)}, (10)

where yt is a D dimensional feature vector at t-th frame and 

ak is the mixing coefficient of the k-th Gaussian distribution 

 gk(yt; mk, ƒ°k) with mean vector mk and covariance matrix

ƒ°k. The model parameters, ak, mk, ƒ°k=1,•c,K are iter-

atively estimated by the EM method[6]. Explicit procedures 

of the EM method are found in [7], [8]. The initial values to 

start the iterative procedure are obtained by clustering train-

ing samples using the VQ method[9].

3.2 GMMs for Artificial Cohorts

Considering that the pdfs for cohorts for a claimed speaker 

are relatively close to that for the claimed speaker, it could 

be possible to generate them artificially by modifying the 

pdf for the claimed speaker. We make GMMs for artificial 

cohorts by changing model parameters of the GMM for the 

claimed speaker.

Given model parameters, ak, mk, ƒ°k, k=1,•c,K of 

the GMM ps(yt) for the claimed speaker, those parameters 

acik, mcik, ƒ°cik for artificial cohorts ci, i=1,•c,N are here set 

as 

acik=ak, (11)

mcik=mk+ƒ¿rcik, (12)

ƒ°cik=ƒÀk, (13)

where ƒ¿ and ƒÀ are parameters which should be set exper-

imentally, and rcik is a random vector whose components 

rcik,d, d=1,•c, D are uniformly distributed in the interval 

-1rcik,d1 . The parameter a controls variations of mcik 

for cohorts from mk, and the parameter ƒÀ>1 increases vari-

ances for cohorts from those for the claimed speaker. Ap-

propriate values of ƒ¿ and ƒÀ are described in 4.

4. Speaker Verification Experiments

For SV experiments, telephone speech data-set was used, 

which consists of isolated uttered Japanese 20 words pro-

duced two repetitions by 100 male speakers in two sessions 

spaced three to four months apart[10]. The speech data was 

low-pass filtered at 4.5kHz and digitized at 10kHz sam-

pling rate. The digitized speech was pre-emphasized with 

a first-order adaptive filter and subjected to 12th order LPC 

analysis with 25.6 msec Hamming window and 12.8 msec 

frame rate. In fact, the selective LPC analysis was applied 

to use the spectral information up to 4kHz considering that 

the speech data is telephone speech. The twelve LPC cep-

stral coefficients obtained by this analysis were used as a 

feature vector for each time frame.

The data-set was divided into two sets: one set con-

sists of first-uttered 20 words in two sessions and the other 

consists of second-uttered ones in two sessions. The for-

mer set was used for training and the latter set for test. In 

the following experiments, the covariance matrix ƒ°k of each 

Gaussian distribution gk(yi; mk, ƒ°k) is assumed to be diago-

nal. For text-independent SV experiments, word utterances 

of each speaker are connected and used in an endless way. 

The number of tests per speaker is 20 for utterances of the 

 same speaker and 20 for those of impostors, i.e., 2000 in

 total for both cases. In each test, starting point of input is
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Table 1 Equal error rates (EERs) in SV experiments using GMMs with 
several numbers of mixtures.

Table 2 Equal error rates (%) in SV experiments using artificial cohorts 

generated with different values of ƒ¿ and ƒÀ.

randomly selected and impostors are also randomly selected 

from 99 speakers excluding the relevant true speaker. SV 

performance is measured by equal error rate (EER).

In order to determine an appropriate number of mix-

tures for GMM, preliminary SV experiments were per-

formed using universal background model. The universal 

background model was here estimated by using training data 

from all 100 speakers. Results using 50 frames are shown in 

Table 1. Considering that the difference of EERs for 16 and 

32 mixtures is small, 16-mixture GMMs are hereafter used.

In order to determine appropriate values of ƒ¿ in (12) 

and ƒÀ in (13), preliminary SV experiments were performed 

using artificial cohorts generated with different values of 

ƒ¿ and ƒÀ. Results using 50 cohorts are shown in Table 2. 

It is shown that ƒÀ should be greater than 1, i.e., variances 

for cohorts should be increased from those for the claimed 

speaker.•õ Considering the results in Table 2, ƒ¿=0.2 and 

ƒÀ =2 are hereafter used.

The proposed SV method using artificial cohorts is 

evaluated by comparing it with several conventional meth-

ods: methods using the universal background model, real 

cohorts from the data-set, and a background model in [5], 

which we call pseudo background model. Additionally, 

SV experiments using a method without background model 

were also carried out where only the log-likelihood for 

a claimed speaker logps(Y) is used instead of the log-

likelihood ratio S(Y) in (1). In the use of cohorts, we use T 

norm as well as the cohort normalization. According to our 

preliminary experiments shown in Table 3, the number of 

cohorts used are 50 for both real and artificial cohorts. Re-

garding the method using pseudo background model[5], 32-

mixture GMM and 16-mixture GMM are recommended for 

a claimed speaker model and its pseudo background model, 

respectively. However we here use 32-mixture GMM for the 

claimed speaker model and 8-mixture GMM for the pseudo 

background model, since according to our preliminary ex-

periments, this combination was best among combinations 

of 32 and 16, 32 and 8, and 16 and 8 mixtures for the 

claimed speaker and its pseudo background model. Experi-

Table 3 Equal error rates (%) in SV experiments using different numbers 

of real and artificial cohorts.

Table 4 Equal error rates (%) by several SV methods with different num-

bers of frames.

mental results are shown in Table 4. It is seen that EERs by 

the proposed method using artificial cohorts are about 60% 

less than those by the method using the pseudo background 

model and are about 20% less than those by the method 

without background model. SV performance by the pro-

posed method using artificial cohorts is naturally worse than 

that using real cohorts. However, the difference in EERs 

between using artificial and using real cohorts can be de-

creased by increasing the number of frames used.

5. Conclusions

In this paper, we have proposed a GMM-based text-

independent SV method using only utterances of enrolled 

speakers, which means that it does not need speaker 

databases including utterances of many other speakers. Ar-

tificial cohorts are used instead of those from speaker 

databases, and GMMs for artificial cohorts are generated 

by changing model parameters of the GMM for a claimed 

speaker. In comparison with a conventional method and a 

method without background model which also do not need 

speaker databases, EERs by the proposed method are about 

60% less than those by the conventional method and are 

about 20% less than those by the method without back-

ground model. SV performance by the proposed method 

using artificial cohorts is naturally worse than that using real 

cohorts. However, the difference in EERs between using ar-

tificial and using real cohorts can be decreased by increasing 

the number of frames used.
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