
2568
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.11 NOVEMBER 2008

PAPER Special Section on Knowledge, Information and Creativity Support System

Mining Regular Patterns in Transactional Databases

Syed Khairuzzaman TANBEER†a), Chowdhury Farhan AHMED†, Nonmembers, Byeong-Soo JEONG†∗, Member,
and Young-Koo LEE†, Nonmember

SUMMARY The frequency of a pattern may not be a sufficient criterion
for identifying meaningful patterns in a database. The temporal regularity
of a pattern can be another key criterion for assessing the importance of
a pattern in several applications. A pattern can be said regular if it ap-
pears at a regular user-defined interval in the database. Even though there
have been some efforts to discover periodic patterns in time-series and se-
quential data, none of the existing studies have provided an appropriate
method for discovering the patterns that occur regularly in a transactional
database. Therefore, in this paper, we introduce a novel concept of mining
regular patterns from transactional databases. We also devise an efficient
tree-based data structure, called a Regular Pattern tree (RP-tree in short),
that captures the database contents in a highly compact manner and en-
ables a pattern growth-based mining technique to generate the complete
set of regular patterns in a database for a user-defined regularity threshold.
Our performance study shows that mining regular patterns with an RP-tree
is time and memory efficient, as well as highly scalable.
key words: data mining, pattern mining, regular pattern, periodic pattern

1. Introduction

Mining patterns that appear frequently in transactional
databases [1], [2], [7], [14] has been widely studied for over
a decade. The rationale behind mining frequent patterns is
that only patterns occurring at a high frequency are of in-
terest to users. However, the utility of frequent patterns is
dependent on several application-specific criteria. For ex-
ample, the cost, profit, or price of an item might be more im-
portant factors for business data analysis than the frequency
of an item in sales transactions. Another important crite-
rion for determining the importance of a pattern might be
the shape of occurrence, i.e., whether the pattern occurs pe-
riodically, irregularly, or mostly in a specific time interval.

In a retail market, some products may be sold more
regularly than other products. Thus, even though both of the
products are sold frequently over the entire selling history or
for a specific time period (e.g., for a year), the products still
need to be managed independently. That is, it is necessary
to identify a set of items that are sold together at a regular
interval for a specified time period. Also, to improve web
site design, a site administrator may be interested in regu-
larly visited web page sequences rather than web pages that

Manuscript received April 9, 2008.
Manuscript revised July 4, 2008.
†The authors are with the Department of Computer Engineer-

ing, Kyung Hee University, 1 Sochun-ri, Kihung-eup, Youngin-si,
Kyonggi-do, 446–701, South Korea.

∗Corresponding author, E-mail: jeong@khu.ac.kr
a) E-mail: tanbeer@khu.ac.kr

DOI: 10.1093/ietisy/e91–d.11.2568

are heavily hit only for a specific period. As for genetic data
analysis, scientists might be interested in identifying the set
of all genes that co-occur at a fixed interval in the DNA se-
quence.

In the above examples, we can see that users may be in-
terested on the appearance behavior (regularity) of patterns
rather than just the frequency of occurrence. The pattern
regularity can also be a useful metric in applications related
to network monitoring or the stock market, among other ap-
plications. Therefore, temporal regularity plays an impor-
tant role in the discovery of interesting patterns for a wide
variety of applications. We define regularly appearing pat-
terns in a database as regular patterns.

Consider the transactional database in Table 1, in which
the patterns “a”, “d” and “be” have support values of 5,
5 and 4, respectively, and occur more frequently in cer-
tain parts of the database (i.e., “a” at the beginning, “d”
at the end, and “be” in the middle of database). Such pat-
terns may be frequent across the whole database. However,
their appearance behaviors do not follow a temporal regu-
larity. In contrast, the appearances of patterns “c”, “bc”,
“ce”, “e f ” etc., are almost evenly distributed throughout the
database. Although these patterns are relatively less fre-
quent in a database, they may be important patterns in terms
of their regularity of appearance. Traditional frequent pat-
tern mining techniques fail to uncover such regular patterns
because they focus only on the high frequency patterns.

Motivated by these examples and discussion, in this
paper, we address the problem of discovering regular pat-
terns in a transactional database. We define a new regularity
measure for a pattern determined by the maximum interval
at which the same pattern occurs in a database. Therefore,
regular patterns, defined in such way, satisfy the downward
closure property [1], i.e., if a pattern is found to be regu-
lar, then all of its non-empty subsets will be regular. Thus,
if a pattern is not regular, then none of its supersets can
be regular. In order to mine regular patterns based on the
downward closure property, we propose a novel tree struc-
ture, called an RP-tree (Regular Pattern tree), to capture the

Table 1 A transactional database.

Id Transaction Id Transaction Id Transaction
1 a d 4 a b c e 7 c d e
2 a b c e 5 a b e f 8 d e f
3 a b e f 6 b c d 9 b c d

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers

TANBEER et al.: MINING REGULAR PATTERNS IN TRANSACTIONAL DATABASES
2569

database contents in a highly compact manner. To ensure
that the tree structure is compact and informative, only reg-
ular length-1 items will have nodes in the tree and more
frequently occurring items are located at the upper part of
the tree to have a better chance of prefix sharing. We use a
pattern growth approach to mine regular patterns from our
RP-tree. Our extensive performance study on both real and
synthetic datasets shows that discovering regular patterns
with an RP-tree is highly memory and time efficient.

The rest of the paper is organized as follows: in Sect. 2,
we summarize the existing algorithms to mine periodic and
cyclic patterns that are mostly related to our work; Section 3
introduces the problem definition of regular pattern mining;
Section 4 provides the details of the structure of RP-tree
and the regular pattern mining algorithms; Section 5 reports
our experimental results; Section 6 is a discussion of some
adaptability and limitation issues of the proposed method;
and finally, Sect. 7 concludes the paper.

2. Related Work

Han et al. [2] proposed the frequent pattern tree (FP-tree)
and the FP-growth algorithm to mine frequent patterns in a
memory and time efficient manner. The performance gain
achieved by FP-growth is mainly based on the highly com-
pact nature of the FP-tree, which stores only the frequent
items in a support-descending order. However, the sup-
port metric-based frequent pattern mining models are not
appropriate for discovering the special occurrence (i.e., pe-
riodic or cyclic) characteristics of patterns. Mining frequent
patterns, periodic patterns and cyclic patterns in a static
database have been well-addressed over the last decade.

Periodic pattern mining problems for time-series data
can be categorized into two types; (i) full periodic patterns
mining [3], [8], where every point in time contributes to the
cyclic behavior of the time-series and (ii) partial periodic
patterns mining [4], [10], the more general type, which spec-
ifies the behavior of the time-series at some point but not at
all points in the time-series. However, although periodic
pattern mining is closely related to our work, it cannot be
directly applied in the discovery of regular patterns from a
transactional database because it considers time-series data.

Periodic pattern mining has also been studied as part of
sequential pattern mining [11]–[13], [9] in recent years. In
[11], the authors extended the basic form of sequential pat-
terns to cyclically repeated patterns, which is a generaliza-
tion of the former mining approach. A progressive time list-
based verification method to mine periodic patterns from
a sequence of event sets was proposed in [9]. The tech-
nique presented in [13] also generalizes the sequential pat-
tern mining by considering temporal information from the
transactions. The above periodic pattern mining approaches
are also not appropriate for finding regular patterns from a
transactional database.

Ozden et al. [3] proposed a method to discover the
association rules [1] occurring cyclically in a transactional
database. This method decomposes the whole database into

several non-overlapping segments of fixed time intervals de-
fined by the user. Then it outputs the set of rules that main-
tains a cyclic appearance behavior among all the database
segments. The main limitation of this method results from
segmenting the database into a series of fixed-sized seg-
ments, which may suffer from the border effect. That is,
if a sufficient number of occurrences of a pattern (to become
frequent) occur at the borders of two consecutive segments,
the pattern might be ignored to generate association rules.

3. Problem Definition

In this section, we give the preliminaries to formally explain
the concept of regular pattern mining and we provide related
definitions.

Let L = {i1, i2, . . . , in} be a set of literals, which are
items that have been used as a unit of information for an ap-
plication domain. A set X = {i j, . . . , ik} ⊆ L, where j ≤ k
and j, k ∈ [1, n], is called a pattern (or an itemset), or an
l-itemset if it contains l items. A transaction t = (tid, Y)
is a couple where tid represents a transaction-id (or time of
transaction occurrence), and Y is a pattern. A transactional
database DB over L is a set of transactions T = {t1, . . . , tm},
m = |DB|, where |DB| be the size of DB, i.e., total num-
ber of transactions in DB. If X ⊆ Y, then t contains X or
X occurs in t and is denoted as tX

j , j ∈ [1,m]. Therefore,
T X = {tX

j , . . . , t
X
k }, j ≤ k and j, k ∈ [1,m] is the set of all

transactions where pattern X occurs.

Definition 1 (a period of pattern X): Let tX
j and tX

j+1, j ∈
[1, (m − 1)] be two transactions in which pattern X appears
consecutively. The number of transactions or the time dif-
ference between tX

j+1 and tX
j can be defined as a period of

pattern X, say pX . That is, pX = tX
j+1 − tX

j , j ∈ [1, (m − 1)] .
For simplicity in period computation, we consider that there
has been a ‘null’ transaction with no item at the beginning
of DB, i.e., t f irst = null, where t f irst is the first transaction to
be considered. At the same time, tlast, the last transaction to
be considered, is the mth transaction in DB, i.e., tlast = tm.
For instance, in Table 1 the set of transactions where pattern
“bf” appears is T b f = {3, 5}. Therefore, the periods for this
pattern are 3 (i.e., 3−t f irst), 2 (i.e., 5−3), and 4 (i.e., tlast−5),
where t f irst = 0 and tlast = 9.

Definition 2 (max period): For a T X , let PX be the set of
all periods of pattern X, i.e., PX = {pX

1 , . . . , p
X
r }, where r is

the total number of periods of X in T X . Then, max period
of X, is the period with the largest value among all pk, k ∈
[1, r]. So, pX

max = Max(tX
j+1− tX

j), j ∈ [1, (m−1)]. Therefore,

in the database of Table 1, Pb f = {3, 2,4}, and pb f
max = 4.

A pattern will not be regular if, at any stage in the database,
it fails to satisfy the user-defined regularity threshold. The
max period of a pattern carries the information about the
highest interval (in the number of transactions or in the time
period) between two consecutive occurrences in a database.
Therefore, we use max period to determine if a pattern is
regular or not. So, the regularity of a pattern X in a DB,

2570
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.11 NOVEMBER 2008

denoted as reg(X), is the max period of that pattern i.e.,
reg(X) = pX

max. A pattern is called a regular pattern if its reg-
ularity is no more than a user-defined maximum regularity
threshold max period, λ, with 1 ≤ λ ≤ |DB|. Thus, pattern
X is a regular pattern if reg(X) ≤ λ. The regularity thresh-
old can also be given as the percentage of database size e.g.,
max reg = 10% of |DB| may indicate λ = 0.1 × |DB|. The
regular pattern mining problem, given a λ and a DB, is to
discover the complete set of regular patterns in the DB hav-
ing regularity of no more than λ. RDB refers to a set of all
regular patterns in a DB for a given max reg.

4. RP-Tree: Design, Construction and Mining

In this section, we first describe the structure of the RP-
tree, which was created for efficient regular pattern mining.
Then, we provide the details of the mining procedure that
can be applied to generate a complete set of regular patterns
from the RP-tree.

Since regular patterns follow the downward closure
property, regular length-1 items will play an important role
in regular pattern mining. Therefore, it is necessary to per-
form one database scan to identify the set of length-1 regu-
lar items. The objective of this scan is to collect the support
count and the regularity of each item in a database. Con-
sequently, for further processing we can ignore all irregular
items from each transaction. Let R be the set of all items that
are found regular at this stage. An RP-tree is constructed in
such a way that, it only contains nodes for items in R. To fa-
cilitate the construction of a highly compact tree structure,
the items in the tree are arranged in support-descending item
order (the support information for each item is obtained dur-
ing the first database scan). It has been shown and proven
in [2], [14] that a support-descending tree can provide not
only a highly compact tree structure (as FP-tree in [2] and
CP-tree in [14]), but also a platform for efficient mining pro-
cess using pattern growth mining technique (as FP-growth
in [2]). We refer interested readers to [2] and [14] for fur-
ther reading on the influence of sort order on tree structure
and pattern growth mining. Inspired by this observation, we
follow a mining technique similar to FP-growth mining on
a highly compact RP-tree. A detailed discussion on mining
on the RP-tree is given in the remaining part of this section.

4.1 The Regular Table

To facilitate the tree traversal and to store all length-1 items,
an item header table, called a regular table (R-table in short),
is built. This table also contains the support information of
each item and is created with the first scan of DB. The struc-
ture of the table is as follows. Each entry consists of four
fields in sequence (i, s, tl, r); item name (i), support (s), tid of
the last transaction where i occurred (tl), and the regularity
of i (r). The item name is just a symbol to identify each
item; the total support of an item is reported in s; the value
of tl is used to calculate the interval length of the item’s most
recent occurrence period; and the maximum period, which

Fig. 1 R-table maintenance.

Fig. 2 R-table population for the DB in Table 1.

is the regularity of i, is dynamically maintained in r. Let
tcur and pcur denote the tid of the current transaction and the
most recent period for an item X, respectively. The R-table
is, therefore, maintained according to the process given in
Fig. 1. Figure 2 shows how the R-table is populated with a
single scan of the database from Table 1. The first transac-
tion, {ad}, initializes all R-table entries for items ‘a’ and ‘d’,
as shown in Fig. 2 (a). According to the procedure given in
Fig. 1, since tcur is the first occurrence of both items, the val-
ues (for both items) for fields tl and r are set to tcur (tcur = 1)
and s to 1. The next transaction (tcur = 2) {abce} initial-
izes R-table entries for items ‘b’, ‘c’ and ‘e’ with the values
{s; tl; r} = {1; 2; 2}. Item ‘a’ also appears in tcur = 2, which is
reflected in the entries for ‘a’ by updating its s and tl values.
However, the value of pcur for ‘a’ (pcur = 2−1) is not found
to be greater than the current value of r (1). Therefore, the
updated R-table entries for item ‘a’ will be {2; 2; 1}. Fig-
ure 2 (b) shows the status of the R-table after processing the
second transaction. The R-table after scanning all transac-
tions (i.e., up to tid = 9) is given in Fig. 2 (c). To reflect the
correct regularity for each item in the table, the whole table
is refreshed (as mentioned in line 7 of Fig. 1) by updating
the r values of each item at the end of database. During this
update, the tid of the last transaction (i.e., tlast) is consid-
ered as tcur to calculate the pcur for each item in the R-table.
The values of the r fields of all items are, therefore, updated
by satisfying the condition in line 5. Figure 2 (d) represents
the final contents of the R-table after the first database scan.
Note that, due to the refreshing of the R-table, we obtain
the correct regularity (r = 4) for item ‘a’, which is different
from the regularity (r = 1) it carried up to the end of the
database. Values of r for other items are unchanged, since
pcur in each case is less than the current r.

Once the R-table is built, we generate R by removing
items that are not regular. The support values of items in R

TANBEER et al.: MINING REGULAR PATTERNS IN TRANSACTIONAL DATABASES
2571

are then used for sorting the R-table in support-descending
order to facilitate the RP-tree construction. In the next sec-
tions, we describe the structure and construction of the RP-
tree.

4.2 Structure of the RP-Tree

Before discussing the construction process of an RP-tree in
detail, we give a brief description of the RP-tree structure.
The structure of an RP-tree consists of one root node re-
ferred to as the “null”, a set of item-prefix sub-trees (chil-
dren of the root) and an R-table, consisting of each distinct
item with relative regularity and a pointer pointing to the
first node in the RP-tree that carries the item. The RP-tree
contains nodes representing an itemset in the path from the
root up to that node. With the help of a transaction-id list,
called tid-list, which is kept only at every last node for every
transaction, the tree explicitly maintains the occurrence in-
formation for the same transactions in the tree. Hence, there
are two types of nodes maintained in an RP-tree; ordinary
nodes and tail-nodes. The former one is the type of node
used in an FP-tree [2] whereas the latter one can be defined
as follows:

Definition 3 (tail node): Let t = {i1, i2, . . . , in} be a trans-
action that is sorted according to the R-table order. If t is
inserted into the RP-tree in this order, the node that repre-
sents the last item i.e., in is defined as the tail-node for t.
Each tail-node maintains a list to explicitly store the tids of
transactions when it is the last node.

Irrespective of the node type, no node in the RP-tree needs to
maintain a support count value. Like the FP-tree, each node
in the RP-tree maintains parent, children, and node traver-
sal pointers. In addition, each tail-node maintains a tid-list.
Therefore, the structures of an ordinary node and a tail-node
are as follows:

For ordinary node: N, where N is the item name of the
node.

For tail-node: N[t1, t2, . . . , tn], where N is the item
name of the node and ti, i ∈ [1, n], (with n being the total
number of transactions ending at node N) is a transaction-id
in the tid-list, indicating that N is the tail-node for transac-
tion ti.

Therefore, from the above definitions we can deduce
the following lemma.

Lemma 1: A tail-node in an RP-tree inherits an ordinary
node; but not the vise versa.

Proof: According to the structure of an ordinary node, it ex-
actly and explicitly maintains three types of pointers: a par-
ent pointer, a list of children pointers, and a node traversal
pointer. Like an ordinary node, a tail-node explicitly main-
tains all such information. Moreover, it maintains another
tid-list, which is additional information. Therefore, there is
an ordinary node in every tail-node and, in contrast, there
is no tail-node in an ordinary node, since the tid-list is not
maintained in an ordinary node. �

In the next subsection we show the construction of the
RP-tree in detail.

4.3 Construction of the RP-Tree

As mentioned before, the construction of an RP-tree re-
quires exactly two database scans: one to collect the R in
the R-table with the respective regularities of each item and
the other to construct the RP-tree based on the R-table sorted
in support-descending order. We use an example (in Fig. 3)
to illustrate the step-by-step construction process of the RP-
tree for the transactional database of Table 1 for λ = 3.

Figure 3 (a) shows the support-descending R-table for
λ = 3, which is constructed through the first database scan
by removing the items with regularity > λ (e.g., items ‘a’
and ‘d’) from the R-table of Fig. 2 (d). Only the items in the
R-table of Fig. 3 (a), therefore, are involved in RP-tree con-
struction. Initially the RP-tree is empty (i.e., starts with a
“null” root node). It follows the FP-tree construction tech-
nique to insert any sorted transaction into the tree. To sim-
plify the figures, we do not show the node traversal point-
ers in the trees, although they are maintained as in an FP-
tree. The first inserted transaction is {abce} (i.e., tid = 2),
since all the items in tid = 1 are irregular. After remov-
ing irregular items from tid = 2 (i.e., ‘a’) and sorting the
remaining regular items according to the sort order of the
R-table in Fig. 3 (a), we insert {abce} in the form and an or-
der of {bec} in the tree with node “c : 2” being the tail-node
that carries the tid information for the transaction, as shown
in Fig. 3 (b). For the next transaction (i.e., tid = 3), as in
Fig. 3 (c), since its (ordered) regular item list (b, e, f) shares
a common prefix (b, e) with the existing path (b, e, c), one
new node (“ f : 3”) is created as a tail-node with value 3 in
its tid-list and linked as a child of node (“e”). After scanning
all the transactions and inserting them in a similar fashion,
the final RP-tree for the database of Table 1 and on λ = 3 is
shown in Fig. 3 (d).

Based on the R-table building technique discussed in
Sect. 4.1 and the above example, we have the following
property and lemma of an RP-tree.

Let R be the set of all regular items for a regularity
threshold max reg for a given DB. For each transaction t in
a DB, reg(t) is the set of all regular items in t, i.e., reg(t) =
item(t)

⋂
R, and is called the regular item projection of t.

Property 1: An RP-tree maintains a complete set of regu-
lar item projections for each transaction in a DB only once.

Lemma 2: Given a transactional database DB and a reg-

Fig. 3 Construction of the RP-tree.

2572
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.11 NOVEMBER 2008

ularity threshold max reg, the complete set of all regular
item projections of all transactions in a DB can be derived
from the RP-tree for the max reg.

Proof: Based on the RP-tree construction mechanism,
reg(t) of each transaction t is mapped to only one path in
the RP-tree and any path from the root up to a tail-node
maintains the complete projection for exactly n transactions
(where n is the total number of entries in the tid-list of the
tail-node). �

The RP-tree constructed in the previous example can
achieve a highly compact tree structure while keeping infor-
mation about regular items in a DB. One can assume that
the structure of the RP-tree may not be memory efficient,
since it explicitly maintains tids for each of the transactions
in the tree structure. But we argue that the RP-tree achieves
memory efficiency by keeping such transaction information
only at the tail-nodes and avoiding the support count field at
each ordinary node in the tree. The number of tail-nodes in
an RP-tree depends on the similarity of the transactions in
a DB. In the worst case, if all the transactions are different,
then this number is equal to the number of transactions in a
DB. On the other hand, the best case is when every transac-
tion is the same, with the number of tail-nodes being one.
Moreover, keeping the tid information in a tree structure has
also been found in literature discussing the efficient min-
ing of frequent patterns [5]–[7]. To a certain extent, some
of those approaches additionally maintain a support count
and/or the tid information [6], [7] in each tree node. There-
fore, based on the above discussion we can deduce the fol-
lowing lemma on the size of an RP-tree.

Lemma 3: The size (without the root node) of an RP-tree
for a transactional database DB with a regularity threshold
max reg is bounded by

∑
t∈DB |reg(t)|.

Proof: Based on the RP-tree construction process, Property
1 and Lemma 2, each transaction t contributes at best one
path of the size |reg(t)| to an RP-tree. Therefore, the total
size contribution of all transactions is

∑
t∈DB |reg(t)| at best.

However, since there are usually a lot of common prefix pat-
terns among the transactions, the size of an RP-tree is nor-
mally much smaller than

∑
t∈DB |reg(t)|. �

In the next subsection, we discuss the mining of regular
patterns from an RP-tree.

4.4 Mining with an RP-Tree

Construction of a highly compact RP-tree enables the sub-
sequent mining of regular patterns to be performed with a
rather compact data structure. In this subsection, we study
how regular patterns can be generated from an already con-
structed RP-tree.

As mentioned before, regular pattern mining is simi-
lar to pattern growth mining [2]; the basic operations in the
mining approach are (i) counting regular items, (ii) con-
structing a conditional pattern-base for each regular item,

and (iii) constructing a new conditional tree from each con-
ditional pattern-base. The regular pattern mining technique
proceeds to recursively mine an RP-tree of decreasing size
to generate regular patterns without candidate generation or
an additional database scan. It does so by examining all the
conditional trees of the RP-tree, which consists of the set
of regular patterns occurring with a suffix pattern. Before
discussing these operations in detail, we explore the follow-
ing important property and lemma of an RP-tree related to
mining phase.

Property 2: Each tail-node in an RP-tree maintains the oc-
currence information of all the nodes in the path (from that
tail-node to the root) in the transactions of its tid-list.

Lemma 4: Let Z = {a1, a2, . . . , an} be a path in an RP-tree
where node an, being the tail-node, carries the tid-list of the
path. If the tid-list is pushed-up to node an−1, then node
an−1 maintains the information on the occurrence of path
Z′ = {a1, a2, . . . , an−1} for the same set of transactions in the
tid-list without any loss.

Proof: Based on Property 2, the tid-list in node an explicitly
maintains the information about the occurrence of the path
Z′ for the same set of transactions. Therefore, the same tid-
list at node an−1 maintains exactly the same information for
Z′ without any loss. �

Using the features revealed by the above property and
lemma, we give, in detail, how conditional pattern-bases and
corresponding conditional trees can be constructed during
the mining of regular patterns.

Counting regular items: Counting regular items is
facilitated with the help of the R-table containing each dis-
tinct item along with its respective regularity. For example,
the R-table in Fig. 3 (a) represents the set of regular items
for the RP-tree in Fig. 3 (d) for λ = 3.

Conditional pattern-base construction: The condi-
tional pattern-base is constructed starting from the item at
the bottom of the R-table. While creating the conditional
pattern-base, a small R-table for that item is also created.
The conditional pattern-base for an item i, PBi and the cor-
responding R-tablei are created as follows. Since i is the
bottom-most item in the R-table, each node in the RP-tree
labeled i must be a tail-node. To facilitate the construc-
tion of a conditional pattern-base for the next item in the
R-table, based on Lemma 4, the tid-lists of all such tail-
nodes are pushed-up to their respective parent nodes in the
original RP-tree and in PBi. Therefore, each parent node
is converted to a tail-node if it was an ordinary node, oth-
erwise, the tid-list is merged with its previous tid-list. Only
the prefix sub-paths of nodes labeled i in the RP-tree are then
accumulated as PBi. All nodes labeled i and the entry for an
item i are, thereafter, deleted from the original RP-tree and
corresponding R-table. Figure 4 (a) shows the structure of
the RP-tree and the corresponding R-table of Fig. 3 (d) af-
ter creating the conditional pattern-base for item ‘ f ’. Each
parent of node “ f ” in Fig. 3 (d) (nodes “e” in this example)
becomes a tail-node by receiving the tid-list of its child “ f ”.

TANBEER et al.: MINING REGULAR PATTERNS IN TRANSACTIONAL DATABASES
2573

Fig. 4 Conditional pattern-base and conditional tree construction with
the RP-tree.

All nodes of ‘ f ’ in the RP-tree and its entry in the R-table
are deleted thereafter.

The structure of the R-tablei is different from that of
the original R-table and consists only of the items present
in PBi with their corresponding regularities. To compute
the regularity of each item j in the R-tablei, based on Prop-
erty 2, we map the tid-list of every node of i to all items in
the respective path explicitly in a temporary array (one for
each item), while constructing PBi. Upon completion of the
construction of PBi, the contents of a temporary array for
j in the R-tablei represent the T i j (i.e., set of all tids where
items i and j occur together) in PBi. Therefore, it is a rather
simple calculation to compute reg(j) from T i j by generat-
ing Pi j. Figure 4 (b) shows the conditional pattern-base for
‘ f ’, PBf and the corresponding R-table f constructed from
the original RP-tree of Fig. 3 (d).

Conditional tree construction: The conditional tree
for i CTi is, then, constructed from its conditional pattern-
base PBi by removing all irregular items and their respec-
tive nodes from the R-tablei and PBi. If the deleted node is
a tail-node, its tid-list is pushed-up to its parent node. For
example, the conditional tree of Fig. 4 (c) can be generated
for ‘ f ’ by removing irregular item ‘b’ from the R-table f and
PB f .

Let j be the bottom-most item in R-tablei of CTi. Then
the pattern “i j” is generated as a regular pattern with the
regularity of j in the R-tablei. The same process of creating
a conditional pattern-base and its corresponding conditional
tree is repeated for further extensions of pattern “i j”. The
whole process is repeated if R-table � Ø.

With the above mining process, one can see that, from
an RP-tree constructed on a DB, the complete set of regular
patterns for a given max reg can be generated with the pat-
tern growth technique. The technique is efficient due to the
support-descending item order in the RP-tree structure. Fur-
thermore, performing the mining operation from the bottom
to the top dramatically shrinks the search space during the
mining process. In the next section, we present the experi-
mental results of finding regular patterns.

5. Experimental Results

In this section, we present a comprehensive experimental
analysis and performance results on mining regular patterns
with our RP-tree. All programs are written in Microsoft Vi-
sual C++ 6.0 and run in a time-sharing environment with
Windows XP operating system on a 2.66 GHz dual core ma-

chine with 1 GB of main memory. The runtime specifies the
total execution time, i.e., CPU and I/Os. The runtime re-
ported in different figures in this section are the average of
multiple runs in each case.

To perform the experimental study, we use the
datasets frequently used in frequent pattern mining ex-
periments, since such datasets maintain the character-
istics of a transactional database. Several synthetic
datasets (e.g., T10I4D100K, T5I2, T20I6), developed at
the IBM Almaden Quest research group and obtained
from http://cvs.buu.ac.th/mining/Datasets/synthesis data/,
and real datasets (e.g., chess, mushroom, connect-4,
Kosarak) from UCI Machine Learning Repository (Univer-
sity of California - Irvine, CA) were considered. We ob-
tained consistent results for all of the above datasets. How-
ever, in the remaining part of this section, due to space con-
straints, we report only the experimental results on a sub-
set of theses datasets (T5I2, T10I4D100K, chess, mushroom
and Kosarak). Among these datasets chess and mushroom
are dense, but the others are sparse; and T10I4D100, T5I2
(with around 100K transactions) and Kosarak (with around
1M transactions) are reasonably large datasets. We divide
the experimental analysis into four parts. First, we show
the strengths of the RP-tree structure over a traditional tree
structure such as FP-tree; second, we study the compactness
of the RP-tree; third, we show its performance with mining
the set of regular patterns; and finally, we provide the re-
sults to prove the scalability of mining regular patterns with
an RP-tree.

5.1 Tree Structure Comparison

As discussed previously, to achieve a highly compact tree
structure with as much prefix sharing among the patterns
as possible, the RP-tree captures the regular items from the
transactions with a support-descending order of items. A
support metric-based FP-tree also has an extremely compact
tree structure [2], [14] to capture the database content with a
minimum time requirement. In this subsection, we compare
both of the above tree structures in mining regular patterns.
However, one limitation of such a comparison is that the FP-
tree is not designed to capture regular items, but rather, it
stores frequent items with a given support threshold. There-
fore, for an appropriate comparison with a common param-
eter, we use the following mapping mechanism between the
regularity threshold used in RP-tree and the support thresh-
old used in FP-tree in order to ensure that the FP-tree con-
tains the complete set of regular patterns (as the RP-tree
does) with the given max reg value. The support count of
all regular patterns in a DB for max reg = λmust be at least
|DB|/λ. For example, the support count of all regular patterns
in the T10I4D100K dataset (with 100,000 transactions) for
max reg = 0.3% of |DB| (i.e., λ = 300) must be at least 334
(i.e., 100,000/300). Thus, we can say that the set of all frequent
patterns (FDB) satisfying the support threshold |DB|/λ must
contain RDB for max reg = λ. Therefore, an alternate ap-
proach for discovering the RDB for λ can be to mine FDB for

2574
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.11 NOVEMBER 2008

Table 2 Required memory (MB).

Dataset max reg(%) FP-tree RP-tree

T10I4D100K

0.3 13.70 1.96
0.4 13.96 5.12
0.5 14.07 7.08
0.6 14.14 9.06

chess

0.1 0.54 0.01
0.2 0.70 0.04
0.3 0.73 0.07
0.4 0.74 0.18

Table 3 Tree construction time (Sec.).

Dataset max reg(%) FP-tree RP-tree

T10I4D100K

0.3 93.25 67.86
0.4 94.75 72.25
0.5 95.80 75.41
0.6 97.49 79.66

chess

0.1 5.98 5.91
0.2 6.03 5.88
0.3 6.11 5.89
0.4 6.06 5.94

|DB|/λ threshold from the FP-tree using the FP-growth min-
ing technique and then to find RDB with an additional scan
of DB. It has been observed in our experiment that mining
regular patterns from an FP-tree is multiple orders of mag-
nitude slower compared to our proposed method, because
of the extra processing cost for the additional database scan
and finding RDB from FDB. For instance, the mining time
required for an FP-tree to find RDB for the regularity thresh-
old of 0.1% of |T10I4D100K| (with appropriately mapping
the threshold) is about 2,000 seconds. RP-tree, on the other
hand, requires less than 1 second for mining the same set of
regular patterns. Therefore, we only show the comparison
of tree size and construction time between an RP-tree and
an FP-tree for a fixed max reg over different datasets.

We report the results for a sparse (T10I4D100K) and
a dense (chess) dataset in Table 2 and Table 3 for the com-
parison of required memory and tree construction time, re-
spectively, between two tree structures. It is noteworthy
that RP-tree requires significantly less memory for different
max reg values for both datasets. Although the tree con-
struction costs are almost similar for chess, the FP-tree re-
quires a higher time for T10I4D100K. The reasons for the
advantage of the RP-tree over the FP-tree are two-fold. First,
even though all the frequent items for the support thresh-
old mapped for the max reg may not be regular, the FP-
tree maintains a complete set of such items. RP-tree, on
the other hand, captures only the length-1 regular items for
the same max reg, which is normally a subset of length-
1 frequent items. Second, RP-tree avoids maintaining the
support count field at each node in the tree structure.

Therefore, with no additional overhead compared to
FP-tree, the RP-tree can capture database contents for min-
ing regular patterns in both memory and time efficient man-
ner.

Fig. 5 Compactness of the RP-tree.

Table 4 Pattern count on dataset and max reg.

Dataset
max reg # of

Dataset
max reg # of

(%) pattern (%) pattern

mushroom
1.0 977

T10I4D100K
0.2 19

2.5 8829 0.6 309

chess
0.1 5

T5I2
0.5 78

0.6 4839 3.0 1522

5.2 Compactness of the RP-Tree

The memory consumptions of RP-tree for different values
of max reg over several dense and sparse datasets are re-
ported in Fig. 5. The x-axis in the graph indicates the change
in max reg values as a percentage of the data point. The
figure demonstrates that the higher the max reg value, the
more memory required by an RP-tree. However, the rate
of memory consumption is almost steady in dense datasets
compared to in sparse datasets. This steady rate is due
to less variation in pattern regularities with the change in
the max reg value for dense datasets compared to sparse
datasets. The results for chess and mushroom reflect this
scenario, while memory requirements for T10I4D100K and
T5I2 greatly vary with max reg as shown in the figure.
However, it is clear from the figure that, the structure of the
RP-tree can easily be handled in a memory efficient man-
ner irrespective of the dataset type (dense or sparse) or size
(large or small). In the next experiment, we focus on the ex-
ecution time requirement for mining regular patterns with
the RP-tree.

5.3 Execution Time Performance of the RP-Tree

In this subsection, we report the execution time that the
RP-tree requires for mining regular patterns over datasets
of different types on changes in the max reg. The execu-
tion time encompasses all the phases of R-table construc-
tion, the RP-tree building and the corresponding mining.
Due to space limitations, we report only the results on one
sparse (T10I4D100K) and one dense (chess) dataset. How-
ever, the total numbers of regular patterns in RDB generated
by our experiments for different max reg values across sev-
eral datasets are provided in Table 4. We can observe from

TANBEER et al.: MINING REGULAR PATTERNS IN TRANSACTIONAL DATABASES
2575

the table that the higher the value of max reg, the greater
the numbers of regular patterns in all datasets. This is due
to the fact that as the max reg increases, there is a greater
possibility of getting more regular patterns compared to low
max reg values. This is why we need a longer execution
time for higher max reg values, which are shown in Fig. 6
for the chess and T10I4D100K datasets. To grasp the effect
of mining on the variation in size of such datasets, we per-
formed regular pattern mining while increasing the size of
both of the datasets from 1K to 3K (full dataset) for chess
and 25K to 100K (full dataset) for T10I4D100K. Thus, the
plots for 3K and 100K represent the results for the full size
of both datasets, respectively. The graphs show that both of
the datasets require more execution time when mining larger
datasets. As the database size and max reg value increase,
the tree structure size increases. Therefore, a comparatively
longer time is needed to generate regular patterns from large
trees. However, when the whole database and reasonably
high max reg values are concerned, we see that mining reg-

Fig. 6 Execution time on the RP-tree.

Fig. 7 Scalability of the RP-tree.

ular patterns from the corresponding RP-tree is rather time
efficient for both sparse and dense datasets. The scalability
studies we perform in the next subsection also reflect this
scenario.

5.4 Scalability of the RP-Tree

We study the scalability of the RP-tree by varying the num-
ber of transactions in the database and the value of the reg-
ularity threshold. We use Kosarak dataset for the scalability
experiment, since it is a huge sparse dataset with a large
number of distinct items (41,270) and transactions. To test
the scalability on execution time and memory consumption,
we divided this dataset into ten portions with 0.1 million
transactions per portion. Then we investigated the perfor-
mance of the RP-tree after combining each portion with pre-
vious parts by performing regular pattern mining each time.
We fix the max reg value to 0.1% of the database size. The
experimental results are shown in Fig. 7 (a) and Fig. 7 (b).
The time in the y-axis of Fig. 7 (a) specifies the total exe-
cution time with the increase in database size. The tree-
building time includes the tree construction time from the
first transaction up to the number of transactions for the data
point on the x-axis. Clearly, as the database size increases,
the overall tree construction and mining time, and required
memory (Fig. 7 (b)) increase. However, the RP-tree shows
a stable performance with a linear increase in runtime and
memory consumption as the database size increases. The
execution times of RP-tree on Kosarak with the max reg in-
creasing from 0.02% to 0.1% of the database size are shown
in Fig. 7 (c), which demonstrates that the RP-tree can mine
RDB on this dataset for a reasonably large value of max reg
with a considerable amount of execution time. Therefore,
the scalability results in the graphs show that the RP-tree
is highly scalable for database size, memory, and max reg
values.

6. Discussions

In Sect. 4.4, we have shown that during mining regular pat-
terns from an RP-tree the conditional pattern-bases explic-
itly provide the tid-lists of all patterns along with respective
suffixing patterns. In this paper, the maximum occurrence
interval (i.e., max period) of a pattern (calculated from the
tid-list) in a database is considered to be its regularity. How-

2576
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.11 NOVEMBER 2008

ever, other parameters such as the arithmetic mean or vari-
ance of occurrence intervals can also be considered as the
measures of regularity for finding interesting patterns from
a database. Since the RP-tree maintains the occurrence in-
formation for each transaction in the tree structure and the
mining phase provides the complete tid-list for each pattern,
computing such parameters can also be simple similar to
computing the maximum occurrence interval for a pattern.
However, the technique to find all length-1 regular items
with the first scan of a database needs to be revised to com-
pute the regularity accordingly to new measures. It can be
noted that the sets of patterns discovered with different reg-
ularity measures might be different, since they are depen-
dent on the definition of the regularity measure. Although
in this paper we focus on the patterns generated by consid-
ering max period as the regularity measure with a minor
computation tuning the proposed tree structure and the min-
ing technique can easily be adapted to above new measure
of regularity.

One limitation of using the max period measure for
the regularity calculation might be its susceptibility to er-
roneous or noisy data. For example, the set of all transac-
tions where pattern “b” occurs in the database of Table 1 is
T b = {2, 3,4, 5, 6, 9}. For a value of max reg = 3, pattern
“b” is a regular pattern, since reg(b) = 3. If the interference
of noise or error causes any transaction between tid = 2 to
tid = 5 to be deleted or modified to remove item ‘b’, the pat-
tern “b” still remains as a regular pattern. However, if item
‘b’ from tid = 9 is deleted anyhow (due to noise or error),
the pattern becomes irregular for the given max reg. There-
fore, temporal location of noisy data in database sometimes
might be an issue as per as the degree of robustness of the
proposed method is concerned.

7. Conclusions

In this paper, we introduce the concept of regular pattern
mining on a transactional database, and we provide a highly
compact tree structure, the RP-tree, to capture the database
contents and a pattern growth-based mining technique to
discover the complete set of regular patterns with user-
defined maximum regularity over a database. To make our
RP-tree more memory efficient, we used a novel concept of
maintaining transaction information only at the tail-nodes,
without explicitly maintaining the support information at the
other nodes. We have shown that the technique of pushing-
up the transaction information from the tail-nodes upward
during the mining phase enables the RP-tree to efficiently
and completely mine regular patterns. We discussed our ex-
perimental results in detail and demonstrated that our RP-
tree can provide time and memory efficiency during regular
pattern mining. Moreover, our method is highly scalable for
time, memory, and regularity threshold.

Acknowledgements

We would like to express our deep gratitude to the review-

ers of this paper. Their useful and constructive comments
have played a significant role in improving the quality of
this work.

This research was supported by a grant of the Korea
Health 21 R&D Project, Ministry for Health Welfare and
Family Affairs, Republic of Korea (A020602).

References

[1] R. Agrawal, T. Imielinski, and A.N. Swami, “Mining association
rules between sets of items in large databases,” Proc. ACM SIG-
MOD Conf. on Management of Data, pp.207–216, 1993.

[2] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candi-
date generation,” Proc. 2000 ACM SIGMOD International Conf. on
Management of Data, pp.1–12, 2000.

[3] B. Ozden, S. Ramaswamy, and A. Silberschatz, “Cyclic association
rules,” Proc. 14th International Conf. on Data Engineering, pp.412–
421, 1998.

[4] J. Han, G. Dong, and Y. Yin, “Efficient mining of partial periodic
patterns in time series database,” Proc. 15th International Conf. on
Data Engineering, pp.106–115, 1999.

[5] Y. Chi, H. Wang, P.S. Yu, and R.R. Muntz, “Catch the moment:
Maintaining closed frequent itemsets over a data stream sliding win-
dow,” Knowledge and Information System, vol.10, no.3, pp.265–
294, 2006.

[6] M.J. Zaki and C.-J. Hsiao, “Efficient algorithms for mining closed
itemsets and their lattice structure,” IEEE Trans. Knowl. Data Eng.,
vol.17, no.4, pp.462–478, April 2005.

[7] X. Zhi-Jun, C. Hong, and C. Li, “An efficient algorithm for frequent
itemset mining on data streams,” Proc. International Conf. on Man-
agement of Data, ed. P. Perner, pp.474–491, 2006.

[8] M.G. Elfeky, W.G. Aref, and A.K. Elmagarmid, “Periodicity de-
tection in time series databases,” IEEE Trans. Knowl. Data Eng.,
vol.17, no.7, pp.875–887, 2005.

[9] K.-Y. Huang and C.-H. Chang, “Mining periodic patterns in se-
quence data,” Proc. DaWaK, eds. Y. Kambayashi, M.K. Mohania,
and W. Wöß, pp.401–410, 2004.

[10] G. Lee, W. Yang, and J.-M. Lee, “A parallel algorithm for mining
multiple partial periodic patterns,” Inf. Sci., vol.176, pp.3591–3609,
2006.

[11] I.H. Toroslu and M. Kantarcioglu, “Mining cyclically repeated pat-
terns,” Proc. DaWaK, eds. Y. Kambayashi, W. Winiwarter, and M.
Arikawa, pp.83–92, 2001.

[12] M. Zhang, B. Kao, D.W. Cheung, and K.Y. Yip, “Mining peri-
odic patterns with gap requirement from sequences,” ACM Trans.
Knowledge Discovery from Data, vol.1, no.2, article 7, 2007.

[13] F. Maqbool, S. Bashir, and A.R. Baig, “E-MAP: Efficiently mining
asynchronous periodic patterns,” International Journal of Computer
Science and Network Security, vol.6, no.8A, pp.174–179, Aug.
2006.

[14] S.K. Tanbeer, C.F. Ahmed, B.-S. Jeong, and Y.-K. Lee, “CP-tree:
A tree structure for single-pass frequent pattern mining,” Proc.
PAKDD, eds. T. Washio, E. Suzuki, K.M. Ting, and A. Inokuchi,
pp.1022–1027, 2008.

TANBEER et al.: MINING REGULAR PATTERNS IN TRANSACTIONAL DATABASES
2577

Syed Khairuzzaman Tanbeer received his
B.S. degree in Applied Physics and Electronics
and M.S. degree in Computer Science from Uni-
versity of Dhaka, Bangladesh in 1996 and 1998
respectively. Since 1999, he has been working
as a faculty member in Department of Computer
Science and Information Technology, Islamic
University of Technology, Dhaka, Bangladesh.
Currently he is pursuing his Ph.D. degree in De-
partment of Computer Engineering, Kyung Hee
University, South Korea. His research interests

include data mining and knowledge engineering.

Chowdhury Farhan Ahmed received
his B.S. and M.S. degrees in Computer Sci-
ence from University of Dhaka, Bangladesh in
2000 and 2002 respectively. During 2003–
2004 he worked as a faculty member in In-
stitute of Information Technology, University
of Dhaka, Bangladesh. In 2004, he joined as
a faculty member in Department of Computer
Science and Engineering, University of Dhaka,
Bangladesh. Currently he is pursuing his Ph.D.
degree in Department of Computer Engineering,

Kyung Hee University, South Korea. His research interests are in the area
of data mining and knowledge discovery.

Byeong-Soo Jeong received his B.S. degree
in Computer Engineering from Seoul National
University, Korea in 1983, M.S. degree in Com-
puter Science from the Korea Advanced Insti-
tute of Science and Technology, Korea in 1985
and Ph.D. degree in Computer Science from
Georgia Institute of Technology, Atlanta, USA
in 1995. In 1996, he joined Kyung Hee Univer-
sity, Korea. He is now an Associate Professor
at the College of Electronics & Information at
Kyung Hee University. From 1985 to 1989, he

was a research staff at the Data Communications Corp., Korea. From 2003
to 2004, he was a visiting scholar at Georgia Institute of Technology, At-
lanta. His research interests include database systems, data mining, and
mobile computing.

Young-Koo Lee received his B.S., M.S.
and Ph.D. in Computer Science from Korea Ad-
vanced Institute of Science and Technology, Ko-
rea. He is a professor in the Department of Com-
puter Engineering at Kyung Hee University, Ko-
rea. His research interests include ubiquitous
data management, data mining, and databases.
He is a member of the IEEE, the IEEE Com-
puter Society, and the ACM.

