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SUMMARY Conveying information about who, what, when and where
is a primary purpose of some genres of documents, typically news articles.
Statistical models that capture dependencies between named entities and
topics can play an important role. Although some relationships between
who and where should be mentioned in such a document, no statistical
topic models explicitly address in handling such information the textual
interactions between a who-entity and a where-entity. This paper presents
a statistical model that directly captures the dependencies between an arbi-
trary number of word types, such as who-entities, where-entities and top-
ics, mentioned in each document. We show that this multitype topic model
performs better at making predictions on entity networks, in which each
vertex represents an entity and each edge weight represents how a pair of
entities at the incident vertices is closely related, through our experiments
on predictions of who-entities and links between them. We also demon-
strate the scale-free property in the weighted networks of entities extracted
from written mentions.
key words: statistical topic models, multitype topic models, link prediction,
entity networks

1. Introduction

The primary purpose of documents such as news articles that
report factual events is to convey information on who, what,
when and where. Statistical entity-topic models [1] capture
the dependencies between the named entities, in such doc-
uments, that usually represent information on who or where
and latent topics that often convey information on what. In
spite of the fact that each entity type has different charac-
teristics and so it has a different distribution, these models
represent all types of entities as a single class. This pa-
per attempts to directly capture dependencies between mul-
tiple types of entities, especially (1) who-entities, such as
persons, organizations and nationalities, (2) where-entities,
such as locations, geographical/social/political entities and
facilities, and (3) other general words.

In this paper, we review a couple of statistical topic
models: one of which is called Latent Dirichlet Allocation
(LDA) [2], and the other is its variant, SwitchLDA [1] that
explicitly models entities mentioned in text. We then de-
velop a multitype topic model that can explicitly capture
dependencies between an arbitrary number of word types,
such as who-entity type, where-entity type and general word
type. As in [1] we take advantage of recent developments
in named entity recognition to identify entities mentioned in
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articles. We demonstrate that our model can predict who-
entities more effectively, comparing with two other different
topic models. We also exhibit that links between entities can
be effectively predicted using our model. We further demon-
strate the scale-free property in edge-weighted networks of
entities extracted from textual data.

2. Related Work

Statistical topic models (e.g., [2]–[6]) are based on the idea
that documents are mixtures of topics, where a topic is
a probability distribution over words. Blei et al. [2] pro-
posed one of the topic models called Latent Dirichlet Al-
location (LDA), introducing Dirichlet priors on a multino-
mial distribution over topics for each document and that over
words for each topic. More recently, Newman et al. [1] pro-
posed several statistical entity-topic models, extending the
LDA model. SwitchLDA is one of them. Those models at-
tempted to capture dependencies between entities and top-
ics, where the entities are mentioned in text; however, the
models did not distinguish specific types of entities, such
as who-entities and where-entities. Therefore, those mod-
els are hardly sufficient to represent factual events, each of
which consists of multiple types of entities. On the other
hand, our goal is to model the events that are mentioned in
text. As a step towards this goal, this paper develops a multi-
type topic model by extending the models mentioned above
to represent dependencies between an arbitrary number of
word types, such as who-entity type, where-entity type and
general word type.

One of the objectives of this paper is to explic-
itly generalize multitype topic models with an arbitrary
number of word types, as an extension of Newman et
al.’s SwitchLDA [1]. This direction was mentioned previ-
ously [1]; but it was never actually investigated. We demon-
strated through a couple of different experiments that this
generalization is especially crucial to adequately model fac-
tual events, such as where person names and location names
play important roles. We also analyzed edge-weighted en-
tity networks that are constructed using the multitype topic
models.

Topic allocations over words are usually unobserved in
a document collection, and so we need to infer the unknown
distributions from the documents. To estimate the LDA
model or its variants, Variational Bayesian inference [2] or
Collapsed Variational Bayesian inference [7] can be used.
Gibbs sampling method is an alternative approach to esti-
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mate the LDA model [5]. From a viewpoint of perplexity
of the estimated models, the Gibbs sampling method works
better than the others above when a sufficient number of it-
erations are performed [7]. Model estimation is not the main
focus of this paper, and so we used the Gibbs sampling ap-
proach in this paper.

3. Models

In this section we describe three graphical models. We start
with LDA, followed by SwitchLDA and GESwitchLDA.
The LDA is a popular model that can automatically infer
a set of topics from a collection of documents [2]. The
SwitchLDA was modeled by extending the LDA to cap-
ture dependencies between entities and topics, and its pre-
diction performance was shown to be stable over different
corpora [1]. The third model, GESwitchLDA is our model
that aims to better fit textual data with multiple types of ex-
pressions, such as of who-entities, where-entities and gen-
eral words, by generalizing the SwitchLDA model. We use
the LDA [2] as a baseline model for comparing with our
GESwitchLDA in the experiments in Sect. 4. We also use
the SwitchLDA as another baseline model.

Here we introduce the notation used in graphical mod-
els, generative processes and Gibbs sampling equations in
the rest of this paper: D is the number of documents, T is
the number of topics, and Nd is the total number of words in
document d. θ indicates a per-document topic distribution,
φ a per-topic word distribution, and ψ a per-topic word type
distribution. α and β are hyperparameters of Dirichlet priors,
and γ is a hyperparameter of Beta or Dirichlet prior. In the
case of the SwitchLDA, a tilde mark is used to denote the en-
tity version of a variable. In the case of the GESwitchLDA,
a tilde mark and a hat mark are used to denote the who-entity
version and where-entity version, respectively.

3.1 LDA

To explain the differences between the three graphical mod-
els, let us start with the LDA model shown in Fig. 1. The
LDA’s generative process is:

Fig. 1 LDA.

1. For all d documents sample θd ∼ Dirichlet(α)
2. For all t topics sample φt ∼ Dirichlet(β)
3. For each of the Nd words wi in document d:

a. Sample a topic zi ∼ Multinomial(θd)
b. Sample a word wi ∼ Multinomial(φzi)

Some estimation algorithms were applied to the LDA [2],
[5], [7]. Following [5], we use the Gibbs sampling to esti-
mate the LDA model. Note that the LDA does not distin-
guish specific types of words, and so this distinction was
made at post-processing stage (i.e., outside of the model)
when we made predictions about who-entities in Sect. 4.

3.2 SwitchLDA

SwitchLDA model shown in Fig. 2 was introduced in [1],
extending the LDA model. In this model, an additional bino-
mial distribution ψ (with a Beta prior of γ) was incorporated
to control the fraction of entities in topics. The generative
process of the SwitchLDA is:

1. For all d documents sample θd ∼ Dirichlet(α)
2. For all t topics sample φt ∼ Dirichlet(β), φ̃t ∼

Dirichlet(β̃) and ψt ∼ Beta(γ)
3. For each of the Nd words wi in document d:

a. Sample a topic zi ∼ Multinomial(θd)
b. Sample a flag xi ∼ Binomial(ψzi)
c. If (xi = 0) sample a word wi ∼ Multinomial(φzi)
d. If (xi = 1) sample an entity wi ∼ Multinomial(φ̃zi)

where xi is a binary indicator of whether word wi is an en-
tity or not. The estimation algorithm for the SwitchLDA
followed the Gibbs sampling approach, as described in [1].
Note that the SwitchLDA does not distinguish more specific
types of entities, and so this distinction was made at post-
processing stage (i.e., outside of the model) when we made
predictions about who-entities in Sect. 4.

Fig. 2 SwitchLDA.
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3.3 GESwitchLDA

In our GESwitchLDA model shown in Fig. 3, we general-
ize the SwitchLDA to handle an arbitrary number (M) of
word types, in order to achieve more flexible modeling of
latent topics for type-annotated documents, in which all the
word types are labeled. Therefore, instead of using bino-
mial distribution ψ with Beta prior distribution specified by
γ that were used in the SwitchLDA model, we redefine ψ
as multinomial distribution over M word types with Dirich-
let prior specified by γ. The multinomial distribution ψ
gives the fraction of word types on a given topic, or the
probability that a randomly chosen word on a given topic
falls in a specific word type. The generative process of the
GESwitchLDA is:

1. For all d documents sample θd ∼ Dirichlet(α)
2. For all t topics:

a. Sample ψt ∼ Dirichlet(γ)
b. For each word type y ∈ {0, · · · , M − 1}, sample
φ

y
t ∼ Dirichlet(βy)

3. For each of the Nd words wi in document d:

a. Sample a topic zi ∼ Multinomial(θd)
b. Sample a word type xi ∼ Multinomial(ψzi)
c. For each word type y ∈ {0, · · · , M − 1}:

• If (xi = y) sample a type-y word wi ∼
Multinomial(φy

zi
)

where xi indicates the word type with which wi is labeled.
The word w and word type x are observed variables, as

you can see in the graphical model representation of Fig. 3;
however, since the topic z is a latent variable, the following
have to be inferred statistically:

• θd : distribution over topics given document d,

Fig. 3 GESwitchLDA.

• ψz : distribution over word types given topic z,
• φx

z : distribution over words given word type x and
topic z.

We estimated the unknown distributions above using Gibbs
sampling in an unsupervised manner, as briefly described in
Appendix.

In the experiments in Sect. 4, we divided entities into
two classes, who-entity and where-entity, and thus the num-
ber of word types M = 3 in this case. The GESwitchLDA’s
generative process when M = 3 is:

1. For all d documents sample θd ∼ Dirichlet(α)
2. For all t topics sample φt ∼ Dirichlet(β), φ̃t ∼

Dirichlet(β̃), φ̂t ∼ Dirichlet(β̂) and ψt ∼ Dirichlet(γ)
3. For each of the Nd words wi in document d:

a. Sample a topic zi ∼ Multinomial(θd)
b. Sample a word type xi ∼ Multinomial(ψzi)
c. If (xi = 0) sample a word wi ∼ Multinomial(φzi)
d. If (xi = 1) sample a who-entity wi ∼

Multinomial(φ̃zi )
e. If (xi = 2) sample a where-entity wi ∼

Multinomial(φ̂zi )

4. Experiments

4.1 Data Sets

Our focus is unsupervised topic modeling over type-
annotated documents, in which all the word types are to-
tally labeled, and so we assume here that the named entity
tagging is already performed. For our experiments we used
the TDT2 and TDT3 collections [8], in which named enti-
ties were tagged by the BBN Identifinder [9]. They origi-
nally contained a mix of broadcast news and newswire sto-
ries. We used only the English stories in these collections,
not the stories in other languages or the metadata such as
pre-defined topics and categories. We used the TDT2 for
training and the TDT3 for testing. Statistics for the data sets
are summarized in Table 1. We removed the 418 stopwords
included in the stop list used in InQuery system [10], and
also removed words and entities that occurred in less than
10 documents.

4.2 Who-Entity Prediction

Who-entity prediction task is to fill in blanks with words

Table 1 Statistics for data sets.

TDT2 TDT3

Documents 45,260 26,770
Unique Words 27,685 21,954
Unique Who-entities 7,300 4,591
Unique Where-entities 1,637 1,121
Total Words 7,634,722 4,583,162
Total Who-entities 600,638 378,725
Total Where-entities 343,432 199,760
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Table 2 Who-entity prediction results example. The top row shows an excerpt from an article, with
redacted who-entities indicated by XXXXX. Middle row shows the list of relevant who-entities. The
bottom row shows the predicted who-entity list ordered by likelihood.

The XXXXX accord and XXXXX Camry are the most popular for buyers and auto thieves.
More on that from XXXXX . The latest XXXXX figures show that auto thefts were down overall
in , 1997 . By 4% , in fact. But that is little solace for the owners of the cars that
topped the national insurance crime bureau’s list of most stolen automobiles in the United
States. The XXXXX accord and XXXXX Camry occupy the number one and two spots on the list.

actual who-entity list: Honda, Toyota, Charles Feldman, FBI, CNN

predicted who-entity list: Italian, U.N., General Motors, Pakistani, GM, Chrysler ,
Americans , Indian , American , Ford , Supreme Court , Smith , U.S. , VOA ,
Congress , Annan , United Nations , Japanese , *FBI, *CNN, Volkswagen , *Honda,
European , BMW , Security Council , *Toyota

in each test document, in which all the blanks are known
to be who-entity type and all the other words are known
to be either where-entity or general words, as described
in Sect. 4.2.1. GESwitchLDA directly captures dependen-
cies between word types, as described in Sect. 3.3. On the
other hand, SwitchLDA and LDA indirectly do so as post-
processing, as noted in Sects. 3.1 and 3.2. Therefore, this
task reveals how well these models involve the word-type
dependencies. For each test document, the predicted who-
entities are ranked in order of likelihood, and so informa-
tion retrieval evaluation metrics can be used for the eval-
uation for the who-entity prediction task, as described in
Sect. 4.2.2.

4.2.1 Estimation and Prediction

We illustrate the process of the who-entity prediction in Ta-
ble 2 using an example from the TDT data. The first row
shows an excerpt from an article of the TDT3, with who-
entities indicated by XXXXX. Middle row shows the list of
actual who-entities. The bottom row shows the predicted
who-entity list ordered by the likelihood computed using
both words and where-entities (or using only words).

For the who-entity prediction task, the three models:
the LDA, the SwitchLDA and the GESwitchLDA are first
trained on words, who-entities, and where-entities using the
TDT2 collection. The models then make predictions about
who-entities over the TDT3 collection in the following two
ways:

1. using words and where-entities (“w+o”).
2. using only words (“w”).

We need to set the number of topics and hyperparame-
ters for the LDA, as well as for the SwitchLDA, and the
GESwitchLDA. For all of the experiments, we set the num-
ber of topics T = 100, 200, and 300 for each of the three
models. We fixed Dirichlet prior hyperparameters α = 50/T
and β = 0.01, which were reported to be appropriate for var-
ious collections [6]. The other hyperparameters were em-
pirically determined using the training data TDT2. Some
examples of the topics captured by the GESwitchLDA are
shown in Table 3.

The likelihood of a who-entity in each test document

is calculated by P(e|d) =
∑

t P(e|t)P(t|d), where P(e|t) is es-
timated during training via Gibbs sampling, and the topic
mixture in the test document P(t|d) is estimated by resam-
pling both all words and all where-entities (or by resampling
only all words) using learned word distribution P(w|t) and
where-entity distribution P(o|t).

4.2.2 Evaluation Metrics

After the model estimation, the models computed the likeli-
hood of every possible who-entity, and then listed the who-
entities in order of the likelihood. We computed MAP (mean
average precision) [11], and GMAP (geometric mean aver-
age precision) [12], as well as average best rank and average
median rank [1].

The MAP measure is given by the following equation:

1
|d|
∑

d∈d
AvgPrec(d) (1)

where d is a set of test documents, AvgPrec(d) is given by
the average precision, as below, of the predicted who-entities
in each test document d.

AvgPrec =
1
|r|
∑

r∈s
Prec(r) (2)

where s is a set of ranks of predicted who-entities for a test
document, r is a set of all relevant who-entities that actually
appear in the test document, and Prec(r) gives the precision
at a given cut-off rank r. MAP is a very well accepted eval-
uation criterion in information retrieval. It is also known to
be stable and understandable.

The GMAP measure is the geometric mean version of
the MAP measure, which is given by:

exp

⎛⎜⎜⎜⎜⎜⎜⎝
1
|d|
∑

q∈d
log AvgPrec(d)

⎞⎟⎟⎟⎟⎟⎟⎠ (3)

GMAP prefers robustness of the prediction.
The average best rank is defined as the average of the

best rank of relevant who-entities, and the average median
rank is the average rank of who-entities at median of relevant
who-entity ranked list.
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Table 3 Examples of topics captured by GESwitchLDA. In each topic, we list most likely words and
their probability at the top, who-entities at the middle, and where-entities at the bottom.

oil 0.1746 internet 0.0820 game 0.0408
prices 0.0669 web 0.0568 team 0.0379
production 0.0381 information 0.0457 coach 0.0308
price 0.0325 site 0.0454 basketball 0.0273
gas 0.0315 mail 0.0266 tournament 0.0229
crude 0.0215 sites 0.0261 national 0.0212
barrels 0.0182 online 0.0187 play 0.0179
cut 0.0176 computer 0.0166 college 0.0179
world 0.0146 service 0.0132 season 0.0166
silver 0.0142 users 0.0122 points 0.0157
gasoline 0.0133 world 0.0105 final 0.0133
barrel 0.0132 data 0.0096 win 0.0131
pipeline 0.0128 electronic 0.0092 championship 0.0122
natural 0.0123 wide 0.0092 point 0.0122
cents 0.0120 line 0.0091 four 0.0120
OPEC 0.4140 America Online 0.1271 Duke 0.0528
Texaco 0.1185 Reuters 0.1197 John 0.0518
Berkshire 0.0893 Bloomberg 0.0540 Stanford 0.0391
Shell 0.0536 Yahoo 0.0488 Kentucky 0.0332
Exxon 0.0503 AOL 0.0443 NCAA 0.0321
crisco 0.0503 NYT 0.0392 Rutgers 0.0307
Pertamina 0.0455 Excite 0.0325 Huskies 0.0303
Buffett 0.0422 Amazon.com 0.0310 Big East 0.0217
Caspian 0.0422 Online 0.0281 UConn 0.0184
Chevron 0.0406 Holmes 0.0229 Wildcats 0.0184
Turkmenistan 0.0972 Cambridge 0.0942 North Carolina 0.1261
Saudi Arabia 0.0938 Va. 0.0779 St. 0.1258
Caspian 0.0914 Honolulu 0.0747 Connecticut 0.0810
Azerbaijan 0.0868 Fla. 0.0714 Kentucky 0.0661
Olean 0.0845 Bridge 0.0649 Utah 0.0619
Venezuela 0.0752 Amazon 0.0617 Michigan 0.0474
Mexico 0.0590 San Francisco 0.0552 Princeton 0.0455
Caspian Sea 0.0579 Calif. 0.0487 Rhode Island 0.0436
Ecuador 0.0556 Dayton 0.0455 Arizona 0.0409
Baku 0.0498 Mass. 0.0422 Tennessee 0.0229

Table 4 Best results of who-entity prediction (without name identification).

model MAP GMAP avg best rank avg median rank
LDA (w+o, T=300) 0.1998 0.0818 118.10 482.93
SwitchLDA (w+o, T=300) 0.2036 0.0816 119.78 484.38
GESwitchLDA (w+o, T=300) 0.2048 0.0833 119.08 480.64

LDA (w, T=200) 0.1565 0.0558 135.13 549.86
SwitchLDA (w, T=300) 0.1603 0.0568 136.98 565.48
GESwitchLDA (w, T=300) 0.1595 0.0569 135.55 560.18

4.2.3 Results

The best results for the LDA, SwitchLDA and
GESwitchLDA models are shown in Table 4. To obtain
the best results, we determined through experiments that
T = 300 was the best parameter for all the three models, ex-
cept the case of the LDA using only words. We determined
that T = 200 was the best parameter for the LDA using only
words. We determined the best parameters β̃ = β̂ = 0.01 for
both the SwitchLDA and the GESwitchLDA, γ = 5.0 for the
SwitchLDA, and γ = 4.0 for the GESwitchLDA.

Given the best parameters in our experiments, our
GESwitchLDA model gave the best results, in terms of both
MAP and GMAP, over the other two models in the case of
using both words and where-entities for prediction. In terms
of MAP, the GESwitchLDA gave 2.5% improvement in this
case †, comparing with the best results of the LDA model un-
der the same condition. We further performed the Wilcoxon
signed-rank test (two-tailed) to the pair of GESwitchLDA

- LDA and the pair of GESwitchLDA - SwitchLDA. In
terms of MAP, the resulting p-values of these pairs were
less than 0.01 in the case of using both words and where-
entities. It means the the performance improvement of the
GESwitchLDA over both the SwitchLDA and the LDA was
statistically significant, in this case. As for the case of us-
ing only words, the improvement of the GESwitchLDA over
the LDA was also statistically significant at 0.01 level; how-
ever, that over the SwitchLDA was not. In terms of average
best rank and average median rank, we observed that few
very bad results made performance values unfairly poor. In
contrast, MAP was observed to be more stable in this sense.

We also calculated likelihood of who-entities in the
manner of not using resampling. In detail, we calculated

†Although this value is apparently small, it is statistically sig-
nificant, as described later. One possible reason for this small value
is that the evaluation values were averaged all over a large number
of test documents, as shown in Table 1; also, the predicted entities
that did not appear in a document were deemed to be irrelevant
even if some were closely related to the document content.
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Table 5 Best results of who-entity prediction without resampling (without name identification).

model MAP GMAP avg best rank avg median rank
GESwitchLDA (w+o, T=300) 0.1970 0.0784 110.17 461.82
GESwitchLDA (w, T=300) 0.1554 0.0613 120.72 516.01

Table 6 Best results of who-entity prediction with name identification of GESwitchLDA.

model MAP GMAP avg best rank avg median rank
GESwitchLDA (w+o, T=300) 0.2141 0.0893 114.21 439.21
GESwitchLDA (w, T=300) 0.1611 0.0605 128.28 505.01

Fig. 4 Overview of a constructed entity network.

the likelihood of an who-entity in each test document by
P(e|d) =

∑
t P(e|t)P(t|d), where P(t|d) =

∑
w P(t|w)P(w|d) +∑

o P(t|o)P(o|d), instead of resampling from the test docu-
ment in Sect. 4.2.1. In the equation above, w and o indi-
cate a word and a where-entity, respectively. In this man-
ner we can predict who-entities incrementally for a given
document. The results using the GESwitchLDA are shown
in Table 5. The results show that the model can predict
who-entities even for incoming streams of documents, keep-

ing fairly good prediction performance. Furthermore, we
also applied some heuristics for name identification at pre-
processing stage, such as, when only the first name of a
person appears in a document, replacing it with his/her full
name found by searching backward in the document. The
results of the GESwitchLDA are shown in Table 6, where
the performance was improved by applying the name iden-
tification processing.
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(a) Discrete degree distribution (b) Continuous degree distribution

Fig. 5 Degree distributions of an entity network with 7, 300 vertices. (a) Discrete degree distribution
with the average degree 〈k〉 = 12.24 and the dashed line with slope ξ = −1.295. (b) Continuous degree
distribution with 〈x〉 = 0.02525 and ξ = −1.458.

4.3 Entity Link Prediction

4.3.1 Network Analysis

We first computed affinity of a pair of who-entities ei and e j

by either of the following measures:

affinity1 : P(ei|e j)/2 + P(e j|ei)/2
affinity2 : P(ei|e j)P(e j|ei)

where P(ei|e j) =
∑

t P(ei|t)P(t|e j) is estimated during train-
ing over the TDT2 collection using the GESwitchLDA
model in the same manner in Sect. 4.2.1. We then listed
entity pairs in order of the affinity. The affinity1 was used in
[14], and the affinity2 indicates joint probability of P(ei|e j)
and P(e j|ei) assuming that these are independent of each
other.

Figure 4 shows an overview of an entity network con-
structed from the TDT2 collection, on the basis of the affin-
ity1 of who-entities that was mentioned above. In the entity
network, each vertex represents a who-entity and each edge
length represents strength of affinity between a pair of enti-
ties at the incident vertices. We then analyze the properties
of such networks. For this analysis, we use the affinity1 as
an inter-entity affinity measure, but the affinity2 can be used
alternatively. We counted how many vertices there are in the
entity network for each degree when a (discrete) degree k is
defined as the number of the edges that are connected to a
vertex, supposing every edge is assigned equal weight one,
under the condition that the corresponding inter-entity affin-
ity P(ei|e j)/2 + P(e j|ei)/2 ≥ 0.001. The resulting degree
distribution P(k) is shown in Fig. 5 (a). We also computed
degree distribution in another way, keeping edge weights
that were obtained by the affinity of entities, and suppos-
ing that a (continuous) degree x is defined as the sum of the
weights of the connected edges to a vertex, that is, the degree
of entity ei is obtained by x(ei) =

∑
j P(ei|e j)/2+ P(e j|ei)/2.

Table 7 Results of who-entity link prediction with name identification.

affinity metric model MAP accuracy
affinity1 LDA (T=100) 0.6062 0.5394

SwitchLDA (T=100) 0.6235 0.5552
GESwitchLDA (T=100) 0.6258 0.5564

affinity2 LDA (T=100) 0.6083 0.5401
SwitchLDA (T=100) 0.6310 0.5588
GESwitchLDA (T=100) 0.6328 0.5587

In order to draw a density curve of the continuous degree
distribution p(x), we set the number of classes to 200 and
the class interval as Δ = maxi x(ei)/200. As in the discrete
degree distribution, we ignored the cases when inter-entity
affinity P(ei|e j)/2 + P(e j|ei)/2 was less than 0.001. The re-
sulting degree distribution is shown in Fig. 5 (b). We can
observe that each of the degree distributions plotted in Fig. 5
conforms quite well to a power-law curve (i.e., straight line
on a double logarithmic scale). Therefore, it can be said
that the scale-free property [13] that are often seen in real-
world complex networks like social networks can be ob-
served even from the weighted relationship between who-
entities extracted from written mentions.

4.3.2 Link Prediction

We further carried out experiments in order to investigate the
predictive power of our GESwitchLDA model for unknown
entity links, comparing with the LDA and the SwitchLDA
models. Following [1], we generated two sets of who-entity
pairs: (1) the true pairs that contain pairs that were never
seen in any training document but were seen in test docu-
ments; and (2) false pairs that contain pairs that were never
seen in any training or test document. The number of true
pairs Nt and false pairs Nf were 104,721 and 98,977, re-
spectively. We computed the inter-entity affinity using ei-
ther the affinity1 or the affinity2, as defined in Sect. 4.3.1,
over all the true pairs and false pairs, and listed the entity
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Fig. 6 Examples of predicted entity networks.

pairs in order of the inter-entity affinity. The evaluation re-
sults can be seen in Table 7. We used a couple of evaluation
metrics: mean average precision (MAP) at the list of entity
pairs in order of the inter-entity affinity, and accuracy at the
top-ranked Nt predicted result. Our GESwitchLDA mod-
estly outperformed the other two models: the LDA and the
SwitchLDA, in terms of both MAP and accuracy. The affin-
ity2 works slightly better than the affinity1. The maximum
improvement given by GESwitchLDA was 4.03% over LDA
in terms of MAP in the case using the affinity2. Some ex-
amples of the predicted entity networks are shown in Fig. 6,
where each vertex represents a who-entity and each edge
length represents strength of affinity between a pair of enti-
ties at the incident vertices.

Although the networks of who-entities were discussed
above, more specific social networks (i.e., person-entity
networks) or mixed networks of who-entities and where-
entities can also be predicted in the same manner.

5. Conclusions

We developed a multitype topic model, GESwitchLDA, by
generalizing for an arbitrary number of word types such
as words, who-entities (i.e., persons, organizations, or na-
tionalities) and where-entities (i.e., locations, geographi-
cal/social/political entities, or facilities), in order to enable
to capture dependencies between them. We compared this
model with two other models on who-entity prediction task
and entity link prediction task, using real data of news ar-
ticles. We showed that the GESwitchLDA achieved sig-
nificant improvement over the previous models in terms of
some measures that are well-accepted in information re-
trieval research area, by distinguishing multiple types of en-
tities: in this case, who and where.

Using this multitype topic model, entity networks can
be effectively constructed from textual information. The en-
tity networks are similar to social networks, where each ver-
tex represents a person name; however, in the entity net-
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works, not only person names but also organization names
or where-entities can be involved, if necessary. Moreover,
the social networks are usually constructed from explicit
links between persons, such as from collaborations of film
actors, from coauthorships, or via a social networking ser-
vice [14]. On the other hand, our entity networks are ex-
tracted from written mentions and each edge is assigned
a weight that represents inter-entity affinity computed via
topic modeling. Even in the weighted networks of entities,
we demonstrated the scale-free property that is often seen in
social networks.

The multitype topic model can also be applied to other
multiple types of words. For example, this model can be
applied to documents that are manually or socially tagged,
such as in Wikipedia. This model can also be applied to cap-
ture multiple types of entities in bio-medical articles, such as
protein names, gene names and chemical compound names,
even if more than two entity types are involved. In another
direction of future work, we plan to extend the model to in-
corporate a temporal aspect of events. For entity network
analysis, applying other distributional similarity metrics are
left for the future work.
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Appendix

The following equations are used for Gibbs Sampling to es-
timate the GESwitchLDA model [1], [5].

P(zi = t|wi = v, x = y, z−i, x−i,w−i, α, β, γ) ∝
CTD

td,−i + α∑
t CT D

td,−i + Tα

ny
t,−i + γ

nall
t,−i + Mγ

C
WyT
wyt,−i + β

y

∑
w C

WyT
wyt,−i +Wβy

where ny
t =
∑

wy

C
WyT
wyt , nall

t =
∑

y

ny
t .

In the equations, α and β are Dirichlet priors, and γ is an-
other Dirichlet prior. βy corresponds to Dirichlet prior for
type-y words. T , D and Wy indicate the number of topics,
the number of documents, and the number of vocabulary
words of a specific word type y in the entire document col-
lection, respectively. CT D

td,−i indicates a count that a topic t
is assigned to a document d, but not including the current
assignment of zi. Similarly, C

WyT
wyt,−i indicates a count that a

type-y word wy is assigned to a topic t, but not including the
current assignment of zi.
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