
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.11 NOVEMBER 2008
2727

LETTER

Continuous Range Query Processing over Moving Objects

Yong Hun PARK†, Kyoung Soo BOK††, Nonmembers, and Jae Soo YOO†a), Member

SUMMARY In this paper, we propose a continuous range query pro-
cessing method over moving objects. To efficiently process continuous
range queries, we design a main-memory-based query index that uses
smaller storage and significantly reduces the query processing time. We
show through performance evaluation that the proposed method outper-
forms the existing methods.
key words: databases, location based services, moving objects, continuous
queries

1. Introduction

To provide high-quality location-based services, one of the
most important technical problems is the efficient query pro-
cessing methods of moving objects [1], [2]. When objects
frequently move, the results of many continuous queries
must be changed rapidly. Therefore, such continuous
queries are needed for location-based services. Continuous
range queries are used to monitor moving objects inside the
query ranges [6]. For an example, a taxi cab service com-
pany can dispatch a taxi to a customer at a specific location
using the result of a continuous range query such as “Find
all the taxi cabs currently located within 5 blocks away from
a specific location.” As another example, for a security ser-
vice, a continuous range query such as “Find all people who
enter a security range without permission.” can be used.

A method of continuous range query processing using
a query index was first proposed in [6] and many meth-
ods have been proposed until recently [3]–[5]. These meth-
ods are classified by disk-based methods [5], [6] and main-
memory-based methods [3], [4]. We only mention the main-
memory-based method because our method is based on
main-memory and the disk-based method is not as efficient
as the main-memory-based method even if the disk-based
methods are modified for main-memory access [4]. The
CES method shows better performance than other existing
methods [4].

The existing methods have performance limitations
caused by two characteristics of query indices. First, query
identifiers are used to find which queries are affected by the
movement of an object. In other words, for the affected

Manuscript received April 28, 2008.
Manuscript revised July 8, 2008.
†The authors are with the Department of Computer and

Communication Engineering, Chungbuk National University,
Cheongju, Korea.
††The author is with Korea Advanced Institute of Science and

Technology (KAIST), Daejeon, Korea.
a) E-mail: yjs@cbnu.ac.kr

DOI: 10.1093/ietisy/e91–d.11.2727

queries, it modifies the query results when an object en-
ters into query ranges newly or goes out from query ranges
in which the object lay previously. To efficiently process
continuous range queries, it is important to quickly and ef-
ficiently find which queries are affected by the movement
of objects. If the process is conducted with query identi-
fiers, it needs to compare between the set of query identi-
fiers which contain the previous position of an object and
the set of query identifiers which contain the new position
of an object. The process involves a number of operations
to compare objects of one set and objects of another set.
In addition, the process is conducted although there are no
queries affected by the movement of an object. Second, a
query identifier is redundantly stored in each cell contained
in the query range to manage the relationship between cells
and queries and leads to a waste of storage space. In the
memory based method [3], [4], the query index uses the grid
structure composed of the same-sized cells and the number
of redundantly saving query identifiers is increased accord-
ing to the growth of query range.

To overcome the limitations of the existing methods,
we propose a novel query index. Each query has a bit iden-
tifier and each cell in a grid has a bit pattern which repre-
sents the relationship between cells and queries. Using the
bit patterns, we can compute quickly which queries overlap
a cell in a grid and reduce the number of unnecessary oper-
ations by comparing the bit patterns without comparing the
query identifiers for query reevaluation when objects move.
In addition, the management of cells in the grid by groups
prevents from wasting the storage space through the increase
of the length of the bit pattern and increasing the comparison
costs of bit patterns. We also propose an efficient continuous
range query processing method with the index.

The rest of this paper is organized as follows. Section 2
proposes the novel query index and Sect. 3 shows the perfor-
mance evaluation. Finally, Sect. 4 presents the conclusions
of this paper.

2. Continuous Query Processing

2.1 The Proposed Query Index

We propose an efficient continuous range query processing
method and a new query index that uses smaller storage and
makes the processing time lower than the previous methods.
Figure 1 shows an example of the new query index struc-
ture. The entire index range is composed of the same-sized

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers

2728
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.11 NOVEMBER 2008

Fig. 1 An example of our proposed query index.

groups which include cells and a group that has a full list
and a part list. The size of the groups is 8 × 8 in Fig. 1. A
full list FL maintains the queries fully containing the group.
The FL uses the data structure of the general list to store the
query identifiers. A partial list PL maintains the queries par-
tially containing the group cell. For example, since Q6 fully
contains the group (2,1), and Q4 and Q5 partially contain it,
Q6 is stored in the FL, and Q4 and Q5 are stored in the PL
of the group.

In addition, the PL manages information such as a
query array (QA), a query array header (QAH), a real grid
(RGD), and the next pointer (NP). The query identifiers con-
tained in the group are stored in QA. QAH represents the
status of the QA, RGD represents the cells of size 1 × 1 in
the group as a bitmap table, and NP points to the next PL
node to support the scalability of the query index. A bit
identifier is assigned to each query as a query identifier in a
group and each cell has a bit pattern made by the combina-
tion of bit identifiers. The bit pattern represents the relation-
ship between the cells and the queries. If the length of QA
in PL is set as 8, the bit pattern of each cell is represented
in 8 bits. If more than 8 queries are inserted, a new PL node
with 8 queries is created and the remaining queries are in-
serted into the new PL node. The PL nodes are represented
in linked lists by NP.

Figure 2 shows the management of queries with bit
identifiers and the bit patterns which represent the rela-
tionship between cells and queries in a PL. As shown in
Fig. 2 (a), the bit identifiers of queries are related to the po-
sitions of the query identifiers in a query array, so the bit
identifiers don’t consume any storage cost. As shown in
Fig. 2 (b), the cells with the bit pattern ‘0000’ are not con-
tained in any query, and the cells with the bit pattern ‘0101’
are contained in Q1 and Q3. The query search in the query
index is conducted using the bit pattern of the cell.

To reduce the storage space and the computation cost,
the entire space is partitioned by groups according to the
following criteria. The groups are not overlapped each other
and their shapes are squares. All groups are also the same
in size and the size of a group is determined according to
the average size of queries related to Gpavg and G f avg in the
Eq. (3). Query identifiers only overlapped with the groups
are stored in the groups. Bit identifiers are assigned to
queries in a group. The length of a bit identifier in a group

Fig. 2 Query management and bit patterns of cells.

is the same as the number of query identifiers in the group.
Therefore, the length of a bit identifier is reasonable. The
bit identifier of queries in a group is the same as the length
of bit patterns in the group. The shorter a bit pattern is, the
smaller the comparison cost of the bit pattern is to process
continuous queries.

The Eq. (1) represents the storage cost (S pl) of a PL
node. S qid and S ptr represent the size of qid and the size
of pointer respectively. Lbp represents the length of the bit
pattern of a cell in a PL node. C represents the number of
cells in a group. ‘Lbp

∗S qid’ is the size of QA, ‘Lbp
∗1bit’ is

the size of QAH, ‘Lbp
∗C∗1bit’ is the size of RGD in a PL

node. ‘1∗S ptr’ is the size of a pointer for NP in a PL node.
The Eq. (2) represents the storage cost (S f l) of a FL node.

S pl = Lbp
∗S qid + Lbp

∗C∗1bit + Lbp
∗1bit + 1∗S ptr (1)

S f l = S qid + S ptr (2)

The Eq. (3) represents the total storage cost (S total) of
our index structure. |G| represents the number of groups in
the index and |Q| represents the number of queries inserted
into the index. Gpavg and G f age are the average number of
groups that a query overlaps partially and fully respectively.

S total = |G|∗S prt + |G|∗�(Gpavg
∗|Q|)/|G|�∗S pl

+G f avg
∗|Q|∗S f l (3)

‘|G|∗S prt’ is the storage cost for the grid structure.
‘|G|∗�(Gpavg

∗|Q|)/|G|�∗S pl’ is the storage cost of PL nodes
and ‘G f avg

∗|Q|∗S f l’ is the storage cost of FL nodes in the
index. As given in the equations, if the size of a group in-
creases, C increases, and Gpavg and G f avg decreases. Gpavg

and G f avg are also determined according to the size of
queries.

In the previous schemes, each cell manages the related
queries by query identifiers. However, in our scheme, each
cell manages the related queries by bits and the query iden-
tifiers are only managed on the group level. In the best case,
each cell spends just a bit on a query. So if the number
of queries is large, the increase of the storage cost in our
scheme is less than that in the previous schemes.

When a query is inserted, we first find all groups that
overlap with the query region, and insert the query in these
groups. For each group, the query is stored in QA, and the

LETTER
2729

position of the query stored in QA represents the bit iden-
tifier of the query. Then QAH is updated and the bit pat-
terns of all cells overlapped with the region of the query are
updated by bitwise OR with the bit identifier of the query.
When a query is deleted, the conducted operations are simi-
lar to the insertion. We first find all groups that overlap with
the query region, and delete the query in these groups. For
each group, it needs to find the position of the query stored
in QA to know the bit identifier of the query. Then QAH
and the bit patterns of all cells overlapped with the region of
the query are updated by bitwise XOR with the bit identifier
of the query. We assume that queries are static. Neverthe-
less, if a query moves, it can be conducted with the query
insertion and the query deletion.

2.2 Continuous Range Query Processing

To process continuous range queries, query reevaluation
should be conducted every time any object moves. If an ob-
ject has moved within a group, the query evaluation is per-
formed with the bit patterns of cells containing the old and
new positions of the moving object. If the bit patterns are
not the same, it means that the movement of the object af-
fected some queries. In addition, to find the queries affected
by the object, we need to compare only the bit patterns un-
like the existing methods. For the reasons, it is applicable
to frequent moving objects. If an object has moved out of
a group, we can not compare the bit patterns of cells con-
taining the old and new positions of the object. So, query
identifiers have to be used to find which queries are affected
by the object like the previous works.

Figure 3 (a) shows an example of the movement of an
object in a group. The point P1 is the old position of the ob-
ject, and P2 and P3 are its new positions. Figure 3 (b) shows
the query array and Fig. 3 (c) shows the comparison of the
two bit patterns in the two cases as an object moves within a
group. Through the comparison of the case1 that the object
moves to P2, we notice Q2 is affected by the movement of
the object and the object must be removed from the result
set of Q2. In the case2 of Fig. 3 (c), we notice Q1, Q2 and
Q3 are affected by the movement of the object and the ob-
ject must be removed from the result set of Q2 and Q3, and
inserted into the result set of Q1.

In previous works, query identifiers are used and the

Fig. 3 An example of the movement of an object.

cost can be represented by ‘m*n’, where m and n are the
number of queries with the old position of an object and the
number of queries with its new position, respectively. This is
because the two query lists have to be compared each other
to know whether the queries are different or not. In contrast,
we use the bit identifier assigned to each query in groups and
the cost can be represented by ‘m+n’ since each query needs
only one comparison to know that the query is affected by
the movement of an object. If an object has moved out of
a group, the cost of our method is the same as those of the
previous works.

3. Simulation

Our experiments were performed on a Dell PC with a 3-
GHz Pentium 4 processor and 1 Gbyte RAM running Win-
dows XP. We compare our proposed method (BitID) with
the CES because the CES outperforms other methods [4].
Therefore, the parameters for simulation are the same as the
parameters used in [4]. In the simulations, the index region
is defined by a 512 × 512 grid. The length of the bit pat-
tern in a node of a group was 8 bits. The number (|Q|) of
continuous range queries inserted into the query index was
8000. The number (|O|) of objects was 64,000. The maxi-
mal horizontal or vertical movement (M) of objects between
two consecutive reevaluations was 1, which is the same as
the side length of a cell. We assume a query is represented
in a rectangle and its side length is randomly generated from
0 to 80.

The size of a group impacts both the index storage cost
and continuous query reevaluation time. The CES uses par-
titions as the maximal size of a virtual construct. The side
length of groups ranges from 4 to 64. Figure 4 (a) shows
the total storage costs according to the size of a group. As

Fig. 4 The impact of the size of a group and the impact of |Q| and |O| on
reevaluation time.

2730
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.11 NOVEMBER 2008

shown in Fig. 4 (a), the BitID generally uses smaller stor-
age than the CES. Figure 4 (b) shows the query reevaluation
time according to the size of a group. The reevaluation time
is the total time for all range queries per each reevaluation.
The performance advantage of the BitID over the CES is
clearly observed. It is because the cost of bit comparison is
much less expensive than the cost of the identifier compar-
ison. In addition, the reevaluation time of the CES steadily
increases, but BitID is not significantly impacted by the size
of a group.

It shows the relationship between the size of a group
and the total storage of the index. If the size of a group
is too large, the number of groups is decreased and the re-
dundancy of the identifiers is avoided, but the length of bit
patterns in the groups is extraordinarily long. It causes the
high storage cost, but it does not have a big impact on the
computation cost since the comparison cost of bit patterns
is very small. If the size of a group is too small, the length
of a bit pattern in the group is very short, but the number of
groups is increased and the identifiers of queries are redun-
dantly stored in the groups. It also leads to the high storage
cost, too. In addition, the increase of the computation cost
occurs, according as the number of objects which move be-
tween groups is increased. There is trade-off between the
redundancy of the identifiers and the length of the bit pat-
terns for the storage cost. When the size of a group is too
small or large, the storage cost of our method is higher than
that of CES, so the appropriate size of a group is computed
initially.

We compare BitID and CES under various numbers of
continuous queries and moving objects. The default side
length of the group is 16 because both CES and BitID pro-
duce the best performance when the side length of a group
is 16. Both M = 1 and M = 5 are used. Figure 4 (c)
shows the impact of |Q| on reevaluation time. We varied |Q|
from 1,000 to 16,000. In all cases, the BitID achieves about
35% performance improvement over the CES in terms of
reevaluation time. Figure 4 (d) shows the impact of |O| on
reevaluation time. We varied |O| from 4,000 to 64,000. The
performance improvement becomes more prominent as the
number of moving objects increases.

4. Conclusion

We have proposed an efficient continuous range query pro-
cessing and query indexing method. We used bit identifiers
to represent queries and bit patterns to let cells represent the
relationship between cells and queries. In addition, the man-
agement of cells in the grid by group prevents the waste of
storage space through the increase of the length of the bit
pattern and increasing the comparison costs of bit patterns.

Acknowledgments

This work was supported by the Korea Science and En-
gineering Foundation (KOSEF) grant funded by the Korea
government (MOST) (No.R01-2006-000-1080900) and the
Korea Research Foundation Grant funded by the Korean
Government (MOEHRD) (The Regional Research Universi-
ties Program/Chungbuk BIT Research-Oriented University
Consortium)

References

[1] B.C. Ooi, K.L. Tan, and C. Yu, “Frequent update and efficient re-
trieval: An oxymoron on moving object indexes?,” Proc. 3rd Interna-
tional Conference on Web Information Systems Engineering Work-
shops, pp.3–12, 2002.

[2] D.L. Lee, J. Xu, B. Zheng, and W.C. Lee, “Data management in
location-dependent information services,” IEEE Pervasive Comput-
ing, vol.1, no.3, pp.65–72, 2002.

[3] D.V. Kalashnikov, S. Prabhakar, and S.E. Hambrusch, “Main memory
evaluation of monitoring queries over moving objects,” Distributed
and Parallel Databases, vol.15, no.2, pp.117–135, 2004.

[4] K.L. Wu, S.K. Chen, and P.S. Yu, “Incremental processing of con-
tinual range queries over moving objects,” IEEE Trans. Knowl. Data
Eng., vol.18, no.11, pp.1560–1575, 2006.

[5] M.F. Mokbel, X. Xiong, and W.G. Aref, “SINA: Scalable incremental
processing of continuous queries in spatio-temporal databases,” Proc.
ACM SIGMOD International Conference on Management of Data,
pp.623–634, 2004.

[6] S. Prabhakar, Y. Xia, D.V. Kalashnikov, W.G. Aref, and S.E.
Hambrusch, “Query indexing and velocity constrained indexing:
Scalable techniques for continuous queries on moving objects,” IEEE
Trans. Comput., vol.51, no.10, pp.1124–1140, 2002.

