
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.12 DECEMBER 2008
2757

PAPER

A Tight Upper Bound on Online Buffer Management for
Multi-Queue Switches with Bicodal Buffers

Koji KOBAYASHI†a), Nonmember, Shuichi MIYAZAKI††b), and Yasuo OKABE††c), Members

SUMMARY The online buffer management problem formulates the
problem of queuing policies of network switches supporting QoS (Quality
of Service) guarantee. In this paper, we consider one of the most standard
models, called multi-queue switches model. In this model, Albers et al.
gave a lower bound e

e−1 , and Azar et al. gave an upper bound e
e−1 on the

competitive ratio when m, the number of input ports, is large. They are
tight, but there still remains a gap for small m. In this paper, we consider
the case where m = 2, namely, a switch is equipped with two ports, which
is called a bicordal buffer model. We propose an online algorithm called
Segmental Greedy Algorithm (S G) and show that its competitive ratio is
at most 16

13 (� 1.231), improving the previous upper bound by 9
7 (� 1.286).

This matches the lower bound given by Schmidt.
key words: competitive analysis, multi-queue switches, buffer management

1. Introduction

When we consider the performance of Internet traffic, one
of the crucial problems is a buffer management for routers
or switches. The task of a switch is to receive a packet, find
its destination, and transmit it from an appropriate output
port. However, when the arrival rate of packets exceeds the
transmission capacity of a switch, some packets will be lost.
To ease this situation, buffers are introduced; when an arrival
rate of packets is bursty, we temporary store those packets
to buffers and process them when available. One of the key
strategies in managing buffers is to decide the acceptance of
packets. For example, we are to decide whether to accept
the current packet, or to reject it for more important ones
that may arrive in the future.

Recently, this kind of problem is formulated as online
problems, and a great amount of work has been done. Many
models have been proposed, and the most basic one is the
following [1]: A switch is equipped with a buffer of bounded
size B. An input is a sequence of events. Each event is an
arrival event or a send event. At an arrival event, one packet
arrives at an input port. Each packet is of unit size and has a
value that represents its priority. A buffer can store packets
provided that the total size of stored packets does not ex-
ceed B, namely, a switch can store up to B packets at the
same time. At an arrival event, if the buffer is full, the new
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packet is rejected. If there is a room for the new packet, an
online policy determines, without knowledge of the future,
to accept it or not. At each send event, the packet at the
head of the queue is transmitted. The goal of the problem
is to maximize the sum of the values of transmitted pack-
ets. The goodness of an online algorithm is evaluated by the
competitive analysis [8], [12]. If, for any input σ, an online
algorithm ALG gains value at least 1/c of the optimal offline
policy for σ, then we say that ALG is c-competitive.

Up to the present, several models have been consid-
ered. Among them, Azar et al. have introduced the Multi-
Queue Switches model [5]. In this model, a switch consists
of m input ports and one output port, and each packet has
a destination port. Each port has a buffer (FIFO queue),
which can simultaneously store up to B packets. An input
is a sequence of events. Each event is an arrival event or
a scheduling event (which is similar to the send event de-
scribed above). When a packet arrives at an arrival event,
an online algorithm determines to accept it (if the buffer has
room for the new packet) or reject it. The value of an ar-
riving packet is unit. Hence, there is no need to preempt a
packet since all packets have the same size and value. At a
scheduling event, an algorithm selects one nonempty buffer
and transmits the packet at the head of the queue through the
output port.
Previous Results and Our Results. In the Multi-Queue
Switches model, Albers et al. [3] gave a lower bound of
e/(e − 1)(� 1.581) for deteministic online algorithms for
any B and large enough m. On the other hand, Azar et al. [4]
showed an e/(e− 1)-competitive deterministic algorithm for
B > log m. Hence, the upper and lower bounds match for
large m, but there still remains a gap for small m. Usually,
the performance of an algorithm is evaluated by its asymp-
totic behavior, e.g., when m goes infinity. However, it is nat-
ural to assume that the number of output ports m is bounded
in real-world network, and hence, it is important to improve
the competitive ratio in the case that m is constant.

For the case of m = 2, which is called bicodal buffers,
Schmidt [11] presented a 9/7(� 1.286)-competitive deter-
ministic algorithm and proved that the competitive ratio of
any deterministic algorithm is at least 16/13(� 1.230) for
large enough B. Very recently, Bienkowski [7] presented a
16/13-competitive randomized algorithm, but the determin-
istic case remains an resolved issue.

In this paper, we improve the upper bound from
9/7 to 16/13, which matches the lower bound given by
Schmidt [11]. Let us briefly explain an idea of improvement.
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Our algorithm Segmental Greedy Algorithm (S G) divides
each queue into two segments S 0 and S 1, and we estimate
the number of packets transmitted from S 0 and S 1 indepen-
dently. For convenience, we also divide queues of OPT in
the same way as S G and compare the number of transmitted
packets. We first fix an input σ, and show that there exists
a desirable optimal offline algorithm OPT ∗ (depending on
σ) that transmits the same number of packets from S 0 with
S G. For the analysis of S 1 part, we modify σ and construct
another input σ′. Simply speaking, σ′ is constructed from
σ by using only packets processed by S G in S 1. To link the
number of packets transmitted from S 1 by OPT ∗ and S G,
we analyze the performance of greedy algorithm for σ′.

Related Results. Several results on the competitiveness of
the unit-value multi-queue model have been presented [3]–
[5]. Azar et al. [5] gave a lower bound of 1.366 − Θ(1/m)
for a deterministic algorithm for any B. Albers et al. [3]
showed that the competitive ratio of any greedy algorithms
is at least 2−1/B−Θ(m−1/(2B−2)) for any B and large enough
m. They also gave a 17/9(� 1.89)-competitive deterministic
algorithm for B ≥ 2, and it is optimal in the case B = 2.
Albers and Jacobs [2] performed an experimental study on
several online algorithms for the multi queue model for the
first time.

Much work has also been done for the case of multi-
value multi-queue models. In this model, α(≥ 1) is the ra-
tio between the largest and the smallest values of packets.
Azar et al. [5] gave a lower bound of 1.366 − Θ(1/m) for a
deterministic algorithm for any B. Azar et al. [6] gave a 3-
competitive deterministic algorithm for the preemptive case.
Itoh et al. [9] showed no non-preemptive algorithm can be
better than 1 + 1/(α ln(α/(α − 1)))-competitive. For the 2-
value multi-queue model, Itoh et al. [10] presented an upper
bound 3 − 1/α for the preemptive case. They also showed
that the competitive ratio of any online algorithms is at least
1.514 − Θ(0.559m).

2. Preliminaries

In this section, we formally define the problem studied in
this paper, which was originally proposed in [5]. Then, we
present Segmental Greedy Algorithm(S G) for this model
with 2 input ports.

2.1 Online Buffer Management Problem for Multi-Queue
Switches

A multi-queue switch has m input ports (FIFO queues) each
of which is equipped with a buffer whose size is B. The size
of a packet is one, hence each port can store up to B packets
simultaneously. All m queues are empty at the beginning.
The value of any packet is unit. In this paper, we consider
a switch with 2 input ports, namely m = 2, called bicodal
buffers.

An input is a sequence of events. An event is an arrival
event or a scheduling event. At an arrival event, a packet

(say, p) arrives at an input port (1 through m), and the task
of an online algorithm (or an online policy) is to select one
of the following actions: insert an arriving packet into the
corresponding queue (accept p), or drop it (reject p). If a
packet is accepted, it is stored at the tail of the corresponding
input queue. Since the value of all packets are the same, we
may assume that an arriving packet is accepted greedily if
the corresponding queue has a space. Further, we assume
that no more than one packets arrive at the same time. At a
scheduling event, an online algorithm selects one nonempty
input port from m ones and transmits the packet at the head
of the queue.

The gain of an algorithm is the sum of the number of
transmitted packets. Therefore, our goal is to maximize the
sum of the values of packets eventually transmitted. The
cost of an algorithm ALG for an input σ is denoted by
TALG(σ). If TALG(σ) ≥ TOPT (σ)/c for an arbitrary input σ,
we say that ALG is c-competitive, where OPT is an optimal
offline policy for σ. Also, we do not consider inputs includ-
ing packets which both OPT and an online algorithm reject.
For simplicity of analysis, we consider the algorithm which
transmits a packet at a scheduling event whenever its buffer
is not empty. Such an algorithm is called work-conserving.
(See [5], e.g.) Also, we assume that no arrival event happens
once both of an online algorithm’s buffers become empty.
These assumptions do not affect the analysis of the compet-
itive ratio.

For analysis, we give following definitions about
buffers. Since a value of each packet is unit, we do not need
to distinguish packets in buffers. Hence, we assume that an
algorithm can transmit an arbitrary packet in the buffer at a
scheduling event. In addition, we assign index numbers 1
through B to each position of a buffer from the head in an
increasing order. Also, the ith queue of the switch is denoted
as Q(i)(1 ≤ i ≤ m), and the jth position of Q(i) is denoted as
Q(i, j)(1 ≤ j ≤ B), which is called the jth cell of Q(i).

2.2 Segmental Greedy Algorithm (S G)

In this section, we give the definition of Segmental Greedy
Algorithm (S G), which we propose in this paper.

We give some definitions. For time t when an event
occurs, t− represents the moment before t and after the pre-
vious event occurred. Similarly, t+ is the moment after t and
before the next event occurs. For an algorithm A, �(i, j)A (t) is a
boolean variable that is 1 if A holds a packet in Q(i, j) at time
t when no event happens, and 0 otherwise. Even if �(i, j)A (t)
is a boolean variable, for convenience, we may sometimes
use it as natural numbers. x, k1, k2, k3 and τ are internal
variables which S G uses. S G’s execution is determined by
k1, k2 and k3. Actually, k1, k2, and k3 are redundant for spec-
ifying the execution of S G; we may define k =

∑3
j=1 k j and

use it instead of k1, k2, and k3. However, in the later anal-
ysis, we need to count the number of executions of some
cases of S G. For this purpose, we use these three variables
separately. Intuitively,

∑3
j=1 k j means the number of pack-

ets which OPT can transmit from S 1. τ is initially 0, and
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increases only at an arrival event. This is a monotonically
non-decreasing value that is used in S G as follows: For time
t when an event does not happen, let T (t) denote the value of
τ at time t. Using T (t), we divide each queue Q(i) (i = 1, 2)
of S G into two segments as follows (note that the way of
division changes according to time): Positions of Q(i) which
have index numbers T (t) + 1 through B (1 through T (t), re-
spectively) is called a Segment 0(S 0 for short) (Segment 1
(S 1 for short), respectively) at time t. H(i)

SG, j(t) denotes the

number of packets S G holds in Q(i) on S j at time t when
no event happens, namely, H(i)

S G,0(t) =
∑B

j=T (t)+1 �
(i, j)
S G (t) and

H(i)
S G,1(t) =

∑T (t)
j=1 �

(i, j)
S G (t).

Without loss of generality, we assume that when S G
transmits a packet from S 0 (S 1, respectively) of Q(i), it trans-
mits a packet at the position with the smallest (largest, re-
spectively) index. We now show the definition of S G.

An execution of S G is simple. At an arrival event, the
arriving packet is accepted to S 0 if there exists an empty
cell in S 0. Otherwise, it is accepted into S 1 if there ex-
ists an empty cell in S 1. Otherwise, it is rejected. At a
scheduling event, a packet is greedily transmitted from S 1 if
∑3

j=1 k j > 0, where “greedy” means to send a packet from
the queue having the more packets (see the description of the
algorithm for the precise definition). Otherwise, a packet is
greedily transmitted from S 0 if there exists a packet in S 0.
Otherwise, a packet is greedily transmitted from S 1. For
better understanding, we put an example of the execution of
S G in Appendix A.

Segmental Greedy Algorithm (S G)
Initialize: τ := 0, k1 := k2 := k3 := 0.

Arrival event at time t (Let p be a packet arriving at Q(i).)
Step A1: If τ � B, do the following:

Checking S 0 Step:
Initialize: x := τ + 1
Case A1.1 (�(i,x)

S G (t−) = 0):
Accept p to Q(i,x),
and execute one of the following cases.

Case A1.1.1 (�( j,x)
SG (t−) = 1 ( j � i)):

k3 := k3 + 1, τ := τ + 1, and stop.
(We call a packet at Q( j,x) mate of p.)

Case A1.1.2 (�( j,x)
SG (t−) = 0 ( j � i)): Stop.

Case A1.2 (�(i,x)
S G (t−) = 1):

Execute one of the following cases.
Case A1.2.1 (x = B and τ � 0):

Go to Step A2.
Case A1.2.2 (x = B and τ = 0):

Reject p, and stop.
Case A1.2.3 (x < B):

x := x + 1 and go to Case A1.1.
Step A2: Do the following:

Checking S 1 Step:
Initialize: x := τ

Case A2.1 (�(i,x)
SG (t−) = 0):

Accept p to Q(i,x), k2 := k2 + 1, and stop.
Case A2.2 (�(i,x)

SG (t−) = 1):
Execute one of the following cases.

Case A2.2.1 (x = 1):
Reject p, k1 := τ, k2 := 0, k3 := 0, and stop.

Case A2.2.2 (x > 1):
x := x − 1 and go to Case A2.1.

Scheduling event at time t
Case S1.1 (k1 + k2 + k3 > 0):

(Note
∑2

j=1 H( j)
S G,1 > 0 in this case.

See Lemma Appendix B.2.)
Execute Greedy Step (see below),
and then execute one of the following cases.

Case S1.1.1 (k1 > 0):
k1 := k1 − 1 and stop.

Case S1.1.2 (k1 = 0 and k2 > 0):
k2 := k2 − 1 and stop.

Case S1.1.3 (k1 = k2 = 0 and k3 > 0):
k3 := k3 − 1 and stop.

Case S1.2 (k1 = k2 = k3 = 0):
Execute one of the following cases.

Case S1.2.1 (H(1)
S G,0(t−) > 0 or H(2)

SG,0(t−) > 0):
(Note that only one queue can have a packet in
S 0 at any time. See Lemma Appendix B.1.)
Select a packet p from S 0 of the non-empty
queue, transmit p, and stop.

Case S1.2.2 (Otherwise):
Execute Greedy Step (if possible), and stop.

Greedy Step:
If H(1)

S G,1(t−) ≥ H(2)
S G,1(t−), transmit a packet from S 1

of Q(1). Otherwise, namely, if H(1)
SG,1(t−) < H(2)

S G,1(t−),
transmit a packet from S 1 of Q(2).

Here we give one remark on Step A1.2.2. Step A1.2.2
is executed for general inputs. However, we later restrict in-
puts in Sec. 3.2 to simplify analysis. For such inputs, Step
A1.2.2 is never executed. The reason is as follows: If τ = 0
when Step A1.2.2 is executed at time t, namely, a whole
buffer is S 0 in both queues at t, S G always executes Step
A1.1.2 at each arrival event between 0 and t by the definition
of S G. Therefore, if there exists a packet at Q(a) (a = 1, 2)
between 0 and t, there does not exist a packet at Q(b) (a � b).
Hence, at a scheduling event between 0 and t, OPT and S G
always transmit a packet from the same queue. Therfore,
since the buffer of OPT is full if that of S G is full, OPT re-
jects an arriving packet when S G executes A1.2.2 and reject
it.
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3. 16/13 Upper Bound

3.1 Overview of the Analysis

Recall that S G divides each queue into two segments. For
the purpose of analysis, we divide each queue Q(i) (i = 1, 2)
of OPT , in the same way as we have done for S G, namely,
positions of Q(i) which have index numbers T (t)+1 through
B (1 through T (t), respectively) is called a Segment 0 (S 0)
(Segment 1 (S 1), respectively) at time t. Note that T (t) here
is the variable used by S G. Hence, at any time, the size of
each segment is the same in S G and OPT . For an input σ
and an algorithm A, FA, j(σ) ( j = 0, 1) denotes the total num-
ber of packets which A transmits from S j. Using FA,i(σ), we
can write TA(σ) = FA,0(σ) + FA,1(σ).

For analysis, we first fix an arbitrary input σ. In Sec.
3.2, we show that there exists a desirable optimal offline al-
gorithm OPT ∗ for σ that satisfies FOPT ∗ ,0(σ) = FS G,0(σ).
In Sec. 3.3, we prove that FOPT ∗ ,1(σ) ≤ 16

13 FS G,1(σ). There-
fore, TOPT ∗ (σ) = FOPT ∗ ,0(σ) + FOPT∗ ,1(σ) ≤ FS G,0(σ) +
16
13 FS G,1(σ) ≤ 16

13 (FS G,0(σ) + FS G,1(σ)) = 16
13 TS G(σ). Hence,

we have the following theorem:

Theorem 3.1: The competitive ratio of S G is at most
16/13.

3.2 Evaluating S 0

At first, we restrict the input for simplicity of analysis. For
an algorithm A, h(i)

A (t) denotes the number of packets Q(i)

holds at time t when no event happens.

Lemma 3.2: Let ON be an online algorithm. For any in-
put σ, there exists another input σ′ that satisfies the fol-
lowing (i) and (ii): (i) TOPT (σ)

TON (σ) ≤
TOPT (σ′)
TON (σ′) . (ii) Let t be an

arbitrary time when arriving event happens at which ON re-
jects a packet, and suppose that this packet is destined for
Q(i). Also, let t′ be the scheduling time immediately after t.
Then, h(i)

ON(t′−) = h(i)
OPT (t′−) = B.

Proof. We assume that h( j)
ON(t′−) − h( j)

OPT (t′−) = x, and con-
struct σ′ from σ as follows: (i) σ′ includes all events in
σ. (ii) Add x arrival events in (t, t′) at which a packet ar-
rives at Q(i). (iii) Note that OPT may reject arriving packets
after t′ because of the operation (ii) above, and this hap-
pens at most x times. Remove all such arrival events from
σ′, and let y be the number of these removed arrival events.
(iv) Add x − y scheduling events to the end of σ′. Then,
h(i)

ON(t′−) = h(i)
OPT (t′−) = B holds. Also, since OPT accepts

x − y new arriving packets among x packets added by (ii)
for σ′, and can transmit them at scheduling events by (iv),
TOPT (σ′) = TOPT (σ) + x − y. On the other hand, ON can
accept none of x new arriving packets by (ii), and if OPT
reject a packet p at an arrival event, ON cannot accept p.
Hence, TON(σ′) = TON(σ). Therefore, TOPT (σ)

TON (σ) ≤
TOPT (σ′)
TON (σ′) .

By Lemma 3.2, we may consider only inputs that sat-
isfy the following: For any arrival event when an online al-
gorithm ON rejects a packet destined for Q(i), h(i)

ON(t′−) =
h(i)

OPT (t′−) = B holds, where t′(> t) is the time for the
scheduling event that happens immediately after t.

Without loss of generality, for the purpose of analysis,
we assume that OPT behaves in the same way as S G at ar-
rival events, namely, OPT accepts an arriving packet p into
S 0 if S 0 has a room. Otherwise, namely, if S 0 is full, OPT
accepts p into S 1. Also, we assume that when OPT accepts
a packet into S 0 (S 1, respectively) of Q(i), it stores a packet
at the position with the smallest (largest, respectively) index.
Furthermore, when OPT transmits a packet from S 0 (S 1, re-
spectively) of Q(i), it transmits a packet at the position with
the largest (smallest, respectively) index.

We impose the following rule to OPT ’s behavior at
scheduling events.

The Synchronizing Rule: Let t be a time for a
scheduling event when both S G and OPT transmit a packet,
and suppose that OPT transmits a packet from Q(i) at t.
Then, OPT decides the segment from which a packet is
transmitted according to the behavior of S G at t. (Note that
this rule is only for the purpose of analysis, and does not
affect the performance of OPT .) Namely, if S G transmits
from S j at t, then OPT also transmits a packet from S j if
OPT has at least one packet in S j of Q(i). (In this case, we
say that OPT and S G synchronize at t. ) If OPT does not
have a packet in S j of Q(i), OPT transmits a packet from
S 1− j of Q(i). We say that OPT and S G synchronize within
(t′, t) if OPT and S G synchronize at all scheduling events
that happen within (t′, t).

In the following analysis, we prove in Lemma 3.10 that
there exists a desirable OPT that can synchronize with S G
at any time. Using this lemma, we prove Lemma 3.11 to
evaluate the number of packets transmitted from S 0 by OPT
and S G. For this purpose, in the following lemmas, we show
some properties that hold within a period when OPT and
S G synchronize.

Lemma 3.3: Let t′ be a time when OPT and S G synchro-
nize within (0, t′).
Then, ∀t < t′,∀i H(i)

OPT,0(t) = H(i)
S G,0(t).

Proof. We prove the lemma inductively on time. At the be-
ginning, the statement is true since H(i)

OPT,0(0) = H(i)
S G,0(0) =

0. Let t(< t′) be a time when an event happens. We assume
that the statement is true at time t− and show that it is true
at t+, namely, we assume that H(i)

OPT,0(t−) = H(i)
S G,0(t−) and

show H(i)
OPT,0(t+) = H(i)

S G,0(t+).
Case 1. Scheduling event (Case S1.1, S1.2.2). Since

S G transmits a packet from S 1 and OPT and S G synchro-
nize at time t, OPT transmits a packet from S 1 also. There-
fore, H(i)

OPT,0(t+) = H(i)
SG,0(t+).

Case 2. Scheduling event (Case S1.2.1). We assume
that S G transmits from Q(i). Since S G transmits a packet
from S 0, H(i)

S G,0(t+) = H(i)
S G,0(t−) − 1. Since H(i)

SG,0(t−) > 0

and at least one S 0 of S G is empty, H( j)
SG,0(t−) = 0 (i � j).
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So, by the induction hypothesis, H( j)
OPT,0(t−) = 0. Since OPT

transmits a packet from S 0 according to the Synchronizing
Rule, it must send from Q(i) (since S 0 of Q(i) is empty), and
hence H(i)

OPT,0(t+) = H(i)
OPT,0(t−)−1. Therefore, H(i)

OPT,0(t+) =

H(i)
S G,0(t+) and H( j)

OPT,0(t+) = H( j)
S G,0(t+).

We then consider the case that the event at t is an arrival
event. Assume that an arriving packet p is destined for Q(i).
We consider the following three cases.

Case 3. Arrival event (Case A1.1.1). Since
�

( j,T (t+))
S G (t−) = 1 ( j � i), H( j)

SG,0(t−) > 0 and H(i)
S G,0(t−) = 0

by the definition of S G. Also, since T (t+) = T (t−) + 1
and S G accepts p into Q(i,T (t+)), H( j)

S G,0(t+) = H( j)
S G,0(t−) − 1

and H(i)
S G,0(t+) = H(i)

S G,0(t−) hold. By the induction hypoth-

esis, H( j)
OPT,0(t−) = H( j)

S G,0(t−) and H(i)
OPT,0(t−) = H(i)

S G,0(t−).
Since OPT decides the position into which p is stored in
the same way as S G, OPT accepts p into Q(i,T (t+)). Hence,
H( j)

OPT,0(t+) = H( j)
OPT,0(t−) − 1 and H(i)

OPT,0(t+) = H(i)
OPT,0(t−).

Case 4. Arrival event (Case A1.1.2). Since
�

( j,T (t+))
S G (t−) = 0 by the definition of S G, H( j)

SG,0(t−) = 0

and H(i)
S G,0(t−) ≥ 0. Also, H(i)

S G,0(t+) = H(i)
S G,0(t−) + 1

and H( j)
S G,0(t+) = H( j)

S G,0(t−) hold. H( j)
OPT,0(t−) = H( j)

SG,0(t−)

and H(i)
OPT,0(t−) = H(i)

SG,0(t−) by the induction hypothesis.
Hence, since OPT accepts p into S 0 of Q(i) similarly to S G,
H(i)

OPT,0(t+) = H(i)
OPT,0(t−) + 1 and H( j)

OPT,0(t+) = H( j)
OPT,0(t−).

Therefore, H( j)
OPT,0(t+) = H( j)

SG,0(t+) and H(i)
OPT,0(t+) =

H(i)
S G,0(t+).

Case 5. Arrival event (Case A2.1, A2.2). By the in-
duction hypothesis, H(i)

OPT,0(t−) = H(i)
S G,0(t−) = B − T (t−)

and H( j)
OPT,0(t−) = H( j)

S G,0(t−) = 0. Since S G accepts p
into S 1 of Q(i), the number of packets in S 0 of S G does
not change. Since S 0 of Q(i) of OPT is also full, OPT ac-
cepts p into S 1 and the number of packets in S 0 does not
change. Therefore, H(i)

OPT,0(t+) = H(i)
SG,0(t+) = B − T (t−)

and H( j)
OPT,0(t+) = H( j)

S G,0(t+) = 0.
We have shown that the statement is true at time t+.

For each t when no event happens, we denote the value of
k j ( j = 1, 2, 3) at t by K j(t).

Lemma 3.4: Let t and t′ (t′ < t) be times, and b ∈ {0, 1}
such that (i) OPT and S G synchronize within (0, t), (ii)
∑3

j=1K j(t) = 0, and (iii) OPT does not transmit a packet
from S 1 of Q(b) during (t′, t). Then, if a packet p arrives at
t′′ ∈ (t′, t) such that H(a)

OPT,1(t′′+) = H(a)
OPT,1(t′′−) + 1 (a � b),

OPT transmits p within (t′′, t).

Proof. Let a-packet be a packet which arrives at Q(a) within
(t′, t) and is accepted to S 1. Let t-packet be a packet trans-
mitted from S 1 within (t′, t). Let x, y and y′ be the numbers
of a-packets, t-packets which are a-packets, and t-packets
which are not a-packets, respectively. Obviously, y ≤ x. By
the condition (iii), every t-packet is transmitted from S 1 of
Q(a). When an a-packet arrives at t̃ ∈ (t′, t),

∑3
j=1K j(t̃+) ≥

∑3
j=1K j(t̃−) + 1 holds because S G executes one of Cases

A1.1.1, A2.1, and A2.2 at t̃. By the condition (ii) and the
above inequality, since S G transmits packets in LIFO order,
max{

∑3
j=1K j(t′+) − y′, 0}+max{x − y, 0} ≤

∑3
j=1K j(t) = 0.

Therefore, y ≥ x, and hence x = y, which means that all
a-packets are also t-packets. This completes the proof.

Using Lemma 3.4, we have the following corollary.

Corollary 3.5: Let t be a time, and b ∈ {0, 1} such that (i)
OPT and S G synchronize within (0, t), (ii)

∑3
j=1K j(t) = 0,

and (iii) OPT does not transmit a packet from S 1 of Q(b)

during (0, t). Then, H(a)
OPT,1(t−) = 0 (a � b).

Proof. By Lemma 3.4, if a packet p arrives at Q(a) at
time t′(< t), OPT transmits p within (t′, t). Therefore,
H(a)

OPT,1(0) = H(a)
OPT,1(t−) = 0.

Next, we show a relation between 2T (t)−
∑2

i=1H(i)
OPT,1(t)

andT (t)−
∑3

j=1K j(t) when OPT and S G synchronize within
(0, t). The former is the number of empty cells of S 1 of
OPT ’s buffer at time t, and the latter is the lower bound on
the number of packets transmitted from S 1 before t.

Lemma 3.6: Let t′ be a time when OPT and S G synchro-
nize within (0, t′). Then, ∀t < t′ T (t) +

∑3
j=1K j(t) ≥

∑2
i=1 H(i)

OPT,1(t).

Proof. We prove the lemma by induction on time. At the
beginning, the statement is true since T (0) +

∑3
j=1K j(0) =

0 and
∑2

i=1 H(i)
OPT,1(t) = 0. Let t(< t′) be a time when an

event happens. We assume that the statement is true at time
t− and show that it is true at t+, namely, we assume that
T (t−) +

∑3
j=1K j(t−) ≥

∑2
i=1 H(i)

OPT,1(t−) and prove T (t+) +
∑3

j=1K j(t+) ≥
∑2

i=1 H(i)
OPT,1(t+). We will consider six cases

according to the execution of S G.
We first consider the cases where an arrival event hap-

pens.
Case 1. Arrival event (Case A1.1.2).

∑2
i=1 H(i)

OPT,1(t+)

=
∑2

i=1 H(i)
OPT,1(t−), T (t+) = T (t−), and

∑3
j=1K j(t+) =

∑3
j=1K j(t−) hold. From the above equalities and the induc-

tion hypothesis, T (t+) +
∑3

j=1K j(t+) ≥
∑2

i=1 H(i)
OPT,1(t+).

Case 2. Arrival event (Case A1.1.1). Since
∑2

i=1 H(i)
OPT,1(t+) =

∑2
i=1 H(i)

OPT,1(t−) + 2, T (t+) = T (t−) + 1,

and
∑3

j=1K j(t+) =
∑3

j=1K j(t−) + 1, by the induction hy-
pothesis, the statement is true.

Case 3. Arrival event (Case A2.1). We have that
∑2

i=1 H(i)
OPT,1(t+) =

∑2
i=1 H(i)

OPT,1(t−) + 1, T (t+) = T (t−), and
∑3

j=1K j(t+) =
∑3

j=1K j(t−)+ 1. By the above equalities and
the induction hypothesis, the statement is true.

Case 4. Arrival event (Case A2.2.1). ∀i H(i)
OPT,1(t+) ≤

T (t+) and
∑3

j=1K j(t+) = T (t+) hold. Hence, the statement
is true.

Next, we consider the case where a scheduling event
happens at t. Note that T (t−) = T (t+) by the definition of
S G.
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Case 5. Scheduling event (Case S1.1).
∑3

j=1K j(t+) =
∑3

j=1K j(t−) − 1 holds and S G transmits a packet from
S 1. OPT transmits a packet from S 1 also, since S G
and OPT synchronize at t. Therefore,

∑2
i=1 H(i)

OPT,1(t+) =
∑2

i=1 H(i)
OPT,1(t−) − 1. By the above equalities and the induc-

tion hypothesis, the statement is true.
Case 6. Scheduling event (Case S1.2). Since

∑3
j=1K j(t+) =

∑3
j=1K j(t−), and

∑2
i=1 H(i)

OPT,1(t+) ≤
∑2

i=1 H(i)
OPT,1(t−) hold, by the induction hypothesis, the state-

ment is true. We have shown that the statement holds at t+.

Next, we will prove an important property on H(i)
OPT,1(t)

when OPT and S G synchronize during (0, t).

Lemma 3.7: Let t and t′ (t′ < t) be times, and b ∈ {0, 1}
such that (i) OPT and S G synchronize within (0, t), (ii)
∑3

j=1K j(t) = 0, (iii) OPT does not transmit a packet from
S 1 of Q(b) during (t′, t), and (iv) ∃t̃ ∈ (t′, t) such that
h(b)

OPT (t̃) = B. Then, H(a)
OPT,1(t) = 0 (a � b) holds.

Proof. By the condition (iv), H(b)
OPT,1(t̃) = T (t̃) holds. Now,

let z = H(a)
OPT,1(t̃)(≤ T (t̃)) (a � b). Then

∑2
i=1 H(i)

OPT,1(t̃) =

T (t̃) + z. So, using Lemma 3.6, T (t̃) +
∑3

j=1K j(t̃) ≥
∑2

i=1 H(i)
OPT,1(t̃). From the above two equalities,

∑3
j=1K j(t̃) ≥

z. Now, let a′-packet be a packet which arrives at Q(a) within
(t̃, t) and is accepted to S 1. Let t′-packet be a packet trans-
mitted from S 1 within (t̃, t). Let x, y and y′ be the numbers
of a′-packets, t′-packets which are a′-packets, and t′-packets
which are not a′-packets, respectively. By the condition (iii),
each t′-packet is transmitted from S 1 of Q(a). When an a′-
packet arrives at t̃ ∈ (t′, t),

∑3
j=1K j(t̃+) ≥

∑3
j=1K j(t̃−) + 1

holds since S G executes one of Cases A1.1.1, A2.1, and
A2.2. By the above definitions, H(a)

OPT,1(t) = z + x − y − y′

holds. By the condition (ii) and the above inequality, since
S G transmits packets in LIFO order, 0 =

∑3
j=1K j(t) ≥

max{
∑3

j=1K j(t̃) − y′, 0} + max{x − y, 0} ≥ max{z − y′, 0} +
max{x − y, 0}. Hence, z ≤ y′ and x ≤ y. By the above
inequalities, H(a)

OPT,1(t) = z + x − y − y′ ≤ 0.

Lemma 3.8: Let t and t′ (t′ < t) be times when scheduling
events happen, and b ∈ {0, 1} such that (i) OPT transmits a
packet from S 1 of Q(b) at t, (ii) OPT transmits a packet from
S 1 of Q(a) (a � b) at t′, (iii) ∀t′′ ∈ (t′, t), h(a)

OPT (t′′) ≤ B − 1,
and (iv) ∀t′′ ∈ (t′, t) such that H(b)

OPT,1(t′′) ≥ 1. Consider an
online algorithm A that acts as follows: (v) A transmits a
packet from S 1 of Q(a) at t, (vi) A transmits a packet from
S 1 of Q(b) at t′, and (vii) at any scheduling event (other than
t and t′) A selects the same queue and segment as OPT to
transmit a packet. (Note that there is no guarantee that A can
transmit a packet whenever OPT transmits.) Then, A is an
optimal offline algorithm.

Proof. We evaluate the number of packets transmitted by A
and OPT at each time.

First, we consider the period (0, t′). By the condition
(vii), the number of packets transmitted by A is equal to that
by OPT , and ∀i, j H(i)

OPT, j(t
′−) = H(i)

A, j(t
′−).

Next, we consider the period (t′, t). First, we an-
alyze Q(b). By the conditions (i) and (vi), H(b)

A,1(t′+) =

H(b)
OPT,1(t′+) − 1. Also, by the condition (iv), OPT does

not transmit a packet from S 1 of Q(b) at time t̃ such that
H(b)

OPT,1(t̃) = 1 (t̃ ∈ (t′, t)). Hence, by the condition (vii),

H(b)
A,1(t̂) = H(b)

OPT,1(t̂) − 1 (t̂ ∈ (t′, t)), and therefore, A can ac-
cept all packets which arrive at Q(b) within (t′, t), and the
number of packets which OPT transmits within (t′, t] from
Q(b) is the same as the number of packets which A transmits
within [t′, t) from Q(b). So, ∀ j H(b)

OPT, j(t+) = H(b)
A, j(t+).

We then consider Q(a). By the conditions (ii) and (v),
h(a)

A (t′+) = h(a)
OPT (t′+) + 1 holds, and by the condition (iii),

a packet does not arrive at Q(a) at time t̃ (t̃ ∈ (t′, t)) such
that h(a)

OPT (t̃) = B − 1. Hence, A can accept all pack-
ets which arrive at Q(a) within (t′, t). Also, by the condi-
tion (vii), H(a)

A,0(t̂ ) = H(a)
OPT,0(t̂ ) (t̂ ∈ (t′, t)) and H(a)

A,1(t̂ ) =

H(a)
OPT,1(t̂ )+1 (t̂ ∈ (t′, t)). Hence the number of packets which

OPT transmits within [t′, t) from Q(a) is equal to the number
of packets which A transmits within (t′, t] from Q(a), and so,
∀ j H(a)

OPT, j(t+) = H(a)
A, j(t+).

Finally, we consider the period after t. By the condition
(vii) and the above equalities, namely, ∀i, j H(i)

OPT, j(t+) =

H(i)
A, j(t+), the number of packets transmitted by A is the same

as that by OPT .

Lemma 3.9: Let t be a time when no event happens, and
a ∈ {0, 1} such that (i) OPT and S G synchronize within
(0, t), (ii)

∑3
j=1K j(t) > 0, and (iii) H(a)

OPT,0(t) > 0. Then,

H(a)
OPT,1(t) > 0.

Proof. Let t′ be a time when an arrival event happens, and
assume that ∀t̃ ∈ (t′, t)

∑3
j=1K j(t̃) > 0. We first show a few

important properties that will be used several times in the
following arguments. By the definition of t′, the segment
from which S G transmits a packet during (t′, t) is always
S 1. Since OPT and S G synchronize within (0, t) by the con-
dition (i), the segment from which OPT transmits a packet
within (t′, t) is also S 1. Property (1): Assume that S G exe-
cutes Case A2.1 or Case A2.2.1 in (t′, t), and let t̃ ∈ (t′, t)
be a time when S G executes Case A2.1 or Case A2.2.1.
Then, note that by the condition (iii), at t OPT still holds
some packets existed in S 0 at t̃. Hence H(a)

OPT,0(t̃+) > 0.
Property (2): By the above property (1) and the condition
(i), if S G executes Case A2.1 at time t̂ ∈ (t′, t), H(a)

A,1(t̂+) =

H(a)
A,1(t̂−) + 1 (A = OPT, S G) since a packet arrives at Q(a)

at t̂. Property (3): Also, if S G executes Case A1.1.1 at time
t̂ ∈ (t′, t), H(a)

A,1(t̂+) = H(a)
A,1(t̂−) + 1 (A = OPT, S G) since

T (t̂+) = T (t̂−) + 1.
Case 1. K1(t) > 0. If K1(t) > 0, S G executes

Case A2.2.1 before t by the definition of S G. Hence, let
t̂ ∈ (t′, t] be the time when S G executes Case A2.2.1 and
does not execute Case A2.2.1 within (t̂, t). Then, by the
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definition of S G, K1(t̂+) = T (t̂+). Since h(a)
OPT (t̂+) =

h(a)
SG(t̂+) = B by Lemma 3.2 and the above property (1),

H(a)
OPT,1(t̂+) = H(a)

S G,1(t̂+) = T (t̂+). Also, since S G always
executes Case S1.1.1 at a scheduling event which happens
within (t̂, t) by the definition of t̂, S G executes Case S1.1.1
K1(t̂+) − K1(t) times within (t̂, t). Therefore, H(a)

OPT,1(t) ≥
H(a)

OPT,1(t̂+) − (K1(t̂+) − K1(t)) = T (t̂+) − K1(t̂+) +K1(t) =
T (t̂+) − T (t̂+) +K1(t) > 0.

Case 2. K1(t) = 0. First, we consider the case
∃t̃ ∈ (t′, t] K1(t̃) > 0. Let t̂ ∈ (t′, t] be the time when
S G executes Case A2.2.1 and does not execute Case A2.2.1
within (t̂, t). By the definition of S G, K1(t̂+) = T (t̂+).
By Lemma 3.2 and the above property (1), H(a)

OPT,1(t̂+) =

H(a)
S G,1(t̂+) = T (t̂+) since h(a)

OPT (t̂+) = h(a)
SG(t̂+) = B. Then,

let t′′ be the time when a scheduling event occurs such
that ∀t′′′ ∈ (t′′, t] K1(t′′−) > 0 and K1(t′′′) = 0. Since
K2(t̂+) = K3(t̂+) = 0 by the definition of t̂, S G exe-
cutes Case A2.1 and Case A1.1.1 K2(t′′+) and K3(t′′+)
times, respectively, within (t̂, t′′). The number of packets
which S G (OPT ) transmits from Q(a) within (t̂, t′′) is at
most K1(t̂+). So, H(a)

OPT,1(t′′+) ≥ H(a)
OPT,1(t̂+) + K2(t′′+) +

K3(t′′+) −K1(t̂+) ≥ T (t̂+) +K2(t′′+) +K3(t′′+) −T (t̂+) ≥
K2(t′′+) + K3(t′′+). Suppose that S G executes Case A2.1
and Case A1.1.1 within (t′′, t) x and y times, respectively.
By the above property (2) and (3), x + y packets are ac-
cepted into S 1 of Q(a) by OPT within (t′′, t). Then, the
number of scheduling events which occur within (t′′, t) is
K2(t′′+) + x + K3(t′′+) + y − K2(t) − K3(t). Therefore,
H(a)

OPT,1(t) ≥ H(a)
OPT,1(t′′+)+ x+ y− (K2(t′′+)+ x+K3(t′′+)+

y − K2(t) − K3(t)) ≥ K2(t) +K3(t) > 0.
Next, we consider the case ∀t̃ ∈ (t′, t) K1(t̃) = 0. Sup-

pose that S G executes Case A2.1 and Case A1.1.1 z and w
times, respectively, within (t′, t). By the properties (2) and
(3), z+w packets are accepted into S 1 of Q(a) by OPT within
(t′, t). Then, since the number of scheduling events which
happen within (t′, t) isK2(t′+)+z+K3(t′+)+w−K2(t)−K3(t),
H(a)

OPT,1(t) ≥ H(a)
OPT,1(t′+) + K2(t′+) + z + K3(t′+) + w −

(K2(t′+)+z+K3(t′+)+w−K2(t)+K3(t)) ≥ K2(t)+K3(t) > 0.

Now, we show the following lemma using above lem-
mas.

Lemma 3.10: There exists an optimal offline algorithm
which synchronizes with S G at any scheduling event when
S G transmits a packet.

Proof. Consider an arbitrary optimal offline algorithm
OPT . We consider scheduling events when S G transmits
a packet from the head of the input σ, and if OPT does not
synchronize with S G, then we modify OPT so that it syn-
chronizes with S G.

Let t0 be the time when a first scheduling event hap-
pens. Since we assume that OPT always transmits a packet
at a scheduling event, it does so at t0. Also, since there are
no scheduling evetns before t0, S G and OPT acts exactly
the same way, the number of packets stored in each segment

of both OT P and S G are exactly the same. Hence they can
syncronize. So, S G can also transmit a packet at t0. So, this
is the first scheduling event when S G transmits a packet. As
we impose the Synchronizing Rule to OPT , OPT synchro-
nizes at t0, namely the statement is true at t0.

Let t(≥ t0) be a time when a scheduling event happens
and S G transmits a packet, and assume that OPT synchro-
nizes with S G within (0, t−). We modify OPT so that it
synchronize with S G at t.

Case 1: S G transmits a packet from S 1. First, we con-
sider the case

∑3
j=1K j(t−) = 0, namely, S G executes Case

S1.2.2 at t. By the condition of Case S1.2.2, H(1)
S G,0(t−) = 0

and H(2)
S G,0(t−) = 0. Also, by Lemma 3.3, H(1)

OPT,0(t−) =

H(1)
S G,0(t−) and H(2)

OPT,0(t−) = H(2)
S G,0(t−). So, OPT transmits

a packet from S 1 at t. Hence, the statement is true. Next,
we consider the case

∑3
j=1K j(t−) > 0, namely, S G executes

Case S1.1 at t. We assume OPT transmits a packet from
Q(a) at t. If H(a)

OPT,0(t−) = 0, OPT transmits a packet from S 1

since H(a)
OPT,1(t−) > 0. Therefore, OPT and S G synchronize

at t. On the other hand, If H(a)
OPT,0(t−) > 0, H(a)

OPT,1(t−) > 0 by
Lemma 3.9. So, by the Synchronizing Rule, OPT transmits
a packet from S 1 at t. Therefore, the statement is true.

Case 2: S G transmits a packet from S 0. We consider
the case S G transmits a packet from S 0 of Q(b) at time
t, namely, S G executes Case S1.2.1 at t. By the condi-
tion of Case S1.2.1,

∑3
j=1K j(t−) = 0, H(b)

S G,0(t−) > 0, and

H(a)
S G,0(t−) = 0 hold. First, assume that OPT transmits a

packet from Q(b) at t. Since H(b)
OPT,0(t−) = H(b)

SG,0(t−) > 0 by
Lemma 3.3, OPT transmits a packet from S 0 by the Syn-
chronizing Rule. Hence, the statement is true. Hence, in
what follows, we assume that OPT transmits a packet from
Q(a) at t. Then, H(a)

OPT,1(t−) > 0 holds and OPT transmits a

packet from S 1 of Q(a) since H(a)
OPT,0(t−) = H(a)

S G,0(t−) = 0 by
Lemma 3.3. Now, if OPT always transmits a packet from
S 1 when it transmits from Q(a) within (0, t), H(a)

OPT,1(t−) = 0

holds by the fact
∑3

j=1K j(t−) = 0 and Corollary 3.5, which
contradicts the assumption that OPT trasmits a packet from
S 1 of Q(a). Therefore, OPT transmits at least one packet
from S 1 of Q(b) within (0, t). Then, define t′(< t) be a time
when a scheduling event occurs such that OPT transmits a
packet from S 1 of Q(b) and does not transmit a packet S 1

of Q(b) within (t′, t). If a packet p which arrives to Q(a)

at t̂ ∈ (t′, t) is accepted to S 1, p is transmitted within (t̂, t)
by Lemma 3.4. Therefore, ∀t̃ ∈ [t′−, t) H(a)

OPT,1(t̃) > 0.

If ∃t̃ ∈ (t′, t), h(b)
OPT (t̃) = B, H(a)

OPT,1(t−) = 0 (a � b) by
Lemma 3.7. This equality contradicts the above assump-
tion that OPT transmits a packet from S 1 of Q(a). Hence,
∀t′′ ∈ (t′, t) h(b)

OPT (t′′) < B. Now, by the above three in-
equalities (H(a)

OPT,1(t′−) > 0, ∀t′′ ∈ (t′, t) h(b)
OPT (t′′) < B, and

∀t̃ ∈ [t′−, t) H(a)
OPT,1(t̃) > 0), and Lemma 3.8, we may mod-

ify OPT into OPT ′ such that OPT ′ transmits a packet at t
from S 1 of Q(b), transmits a packet at t′ from S 1 of Q(a), and
acts in the same way as OPT at any time other than t and
t′. Since H(b)

OPT ′ ,0(t−) = H(b)
S G,0(t−) > 0 by Lemma 3.3, OPT ′
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can transmit a packet from S 0 of Q(b). Therefore, OPT ′ and
S G synchronize at t, and the statement is true, which com-
pletes the proof.

In the following analysis, we denote the optimal offline
algorithm obtained by Lemma 3.10 as OPT ∗. Now, we are
ready to prove the main lemma.

Lemma 3.11: FOPT ∗ ,0(σ) = FS G,0(σ).

Proof. Recall that OPT ∗ and S G transmit a packet at a
scheduling event whenever the buffer is not empty. So, using
Lemma 3.3 and Lemma 3.10, we can conclude that OPT ∗

transmits a packet from S 0 at t if and only if S G transmits a
packet from S 0 at t.

3.3 Evaluating S 1

The analysis in this section goes as follows. Let σ be an
input we are considering, and OPT ∗ be the optimal offline
algorithm obtained in Sec. 3.2. We first construct another
input σ′ from σ. We then regard this σ′ as an input for
another problem, and prove that its optimal value is equal to
FOPT ∗ ,1(σ), which we want to estimate. Finally, we bound
this optimal value.

Now, let us first explain how to construct σ′ from σ.
We use the following procedure.

(i) From σ, remove all scheduling events at which
OPT ∗ does not transmit a packet from S 1. Let σ1 be the
resulting input.

(ii) From σ1, remove all arrival events at which a
packet that will be transmitted from S 0 arrives. Let σ2 be
the resulting input.

(iii) Let T be the time after the final event ofσ happens.
Then, since τ is 0 at the beginning, and it is incremented
only when S G executes A1.1.1, S G executes A1.1.1 T (T )
times for σ. Let tk (1 ≤ k ≤ T (T )) be the time when S G
executes Case A1.1.1 kth time, and let pk be the packet ar-
rived at tk. Also, let qk be the mate of pk, and rk be the time
when qk arrived. (See the description of Case A1.1.1 in the
algorithm in Sec. 2.2 for the definition of mate.) From σ2,
remove all 2T (T ) arrival events at tk and rk. Let σ3 be the
resulting input.

(iv) Before the first event ofσ3, addT (T ) arrival events
where arriving packets are destined for Q(1), and the same
number of arrival events where arriving packets are destined
for Q(2). Call these 2T (T) packets I-packets. Let σ′ be the
resulting input.

We then consider the 2-port Multi-queue buffer man-
agement problem on σ′, where each buffer size is T (T )
(hereafter, we call this model “a new model”). For an al-
gorithm A for this problem, write its cost as TA(σ′). Let
OPTτ be an optimal offline algorithm for this problem.

Lemma 3.12: FOPT ∗ ,1(σ) = TOPTτ (σ
′).

Proof. Note that σ2 contains events for which OPT ∗ uses

only S 1 when computing on σ, and the size of S 1 is at most
T (T ). In the new model, an algorithm has buffers each of
which has size T (T ). Hence, we can define the algorithm
that acts, for each event on σ2, exactly the same way as
OPT ∗ for the corresponding event on σ. Let us call this
algorithm A. From the above argument, it is easy to see that
the cost of A onσ2 is the same to that of OPT ∗ onσ, namely,
FOPT ∗ ,1(σ) = TA(σ2).

In the following, we extend A and define A′ as fol-
lows: A′ accepts all I-packets at the beginning, and acts
in the same way as A for other events. We show that
TA(σ2) = TA′ (σ′), which completes the proof of the lemma
since if this is true, A′ transmits all packets of σ′ and hence
is an optimal offline algorithm for σ′. Recall that when
S G executes A1.1.1, it increments τ, which means that the
newly arriving packet and its mate exists in the largest po-
sition of S 1 at this moment. Hence, 2T (T ) packets pk and
qk (k = 1, . . . ,T (T )) are stored in different cells. Also, by
the above argument, these packets are the first packets in σ2

that arrive at the corresponding cell. Now, note that when
constructing σ′ from σ2, we remove all these packets. In-
stead, we add 2T (T ) I-packets that fill the whole buffer. It
is then obvious that A′ can accept all packets ofσ′ and hence
TA(σ2) = TA′ (σ′).

Next, we give the definition of an algorithm Greedy
Algorithm(GR).
Greedy Algorithm (GR): At a scheduling event at time t, if
h(1)

GR(t−) ≥ h(2)
GR(t−), transmit a packet from Q(1). Otherwise,

namely, if h(1)
GR(t−) < h(2)

GR(t−), transmit a packet from Q(2).
In what follows, we show the relation between the

number of packets which S G transmits from S 1 for σ and
the number of packets which GR transmits for σ′ in the new
model.

Lemma 3.13: FS G,1(σ) = TGR(σ′).

Proof. Let FS G,1(σ, t) be the number of packets transmit-
ted by S G for an input σ until t (including t), namely,
FS G,1(σ, T ) = FS G,1(σ). Also, Let TGR(σ′, t) be the num-
ber of packets transmitted by an algorithm GR for an in-
put σ′ until t (including t), namely, TGR(σ′, T ) = TGR(σ′).
Also, let e(i)(t) (respectively, E(i)(t)) be the number of empty
cells in Q(i) of GR (respectively, S 1 of Q(i) of S G) at t,
namely e(i)(t) = T (T ) − h(i)

GR(t) (respectively, E(i)(t) =
T (t) − H(i)

S G,1(t)). Let t′ be the time when the first event hap-
pens after the final I-packet arrived in σ′. Note that the
event at t′ is also the first event of σ2.

Now, we prove that the following equation holds,
which gives the relation of the performances between S G
for σ2 and GR for σ′: ∀t̃ ∈ [t′, T ] TGR(σ′, t̃) = FS G,1(σ, t̃).
From this equation, we can obtain TGR(σ′, T ) = FS G,1(σ, T ),
namely, TGR(σ′) = FS G,1(σ), which is exactly what we want
to show. To make the induction proof simpler, we simulta-
neously prove the following: ∀t̃ ∈ [t′, T ]∀i e(i)(t̃) = E(i)(t̃).

Now, we start the proof of induction. We first show that
the equalities are true at time t′+. A scheduling event does
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not happen by the construction method (i) of σ since OPT ∗

does not hold a packet at time t′−. Hence, TGR(σ′, t′+) =
TSG(σ2, t′+) = 0, and An arrival event occurs at t. Re-
call that, by the construction of σ2, t′ = r1 and q1 is
the arriving packet. Then, since S G accepts q1 into S 0,
E(1)(t′+) = 0, and E(2)(t′+) = 0. On the other hand, the
event at t′ is removed in σ′ by the construction method (ii)
of σ′. Hence, GR does nothing and so TGR(σ′, t′+) = 0,
e(1)(t′+) = T (T )−T (T)+T (T )−T (T ) = 0, and e(2)(t′+) =
T (T )−T (T )+T (T )−T (T ) = 0. By the above equalities, we
have that TGR(σ′, t′+) = FS G,1(σ, t′+), E(1)(t′+) = e(1)(t′+),
and E(2)(t′+) = e(2)(t′+).

Next, let t(> t′) be a time when an event happens in
σ2 (note that there is no time between t′ and T where an
event occurs only in σ′). We assume that the statement
is true at time t− and show that it is true at t+, namely,
we assume that TGR(σ′, t−) = TS G(σ2, t−), E(1)(t−) =
e(1)(t−), and E(2)(t−) = e(2)(t−), and show that TGR(σ′, t+) =
TSG(σ2, t+), E(1)(t−) = e(1)(t+), and E(2)(t−) = e(2)(t+).

Case 1. Scheduling event (S1.1). By Lemma Ap-
pendix B.2, S G necessarily transmits a packet from S 1 since
∑2

j=1 H( j)
S G,1(t−) > 0. e(2)(t−) − e(1)(t−) = E(2)(t−) − E(1)(t−)

holds since ∀i E(i)(t−) = e(i)(t−) by the induction hypoth-
esis. By the above equality and the definition of E(i)(t−)
and e(i)(t−), e(2)(t−) − e(1)(t−) = h(1)

GR(t−) − h(2)
GR(t−) and

E(2)(t−) − E(1)(t−) = H(1)
SG,1(t−) − H(2)

S G,1(t−). Then, we have

that h(1)
GR(t−) − h(2)

GR(t−) = H(1)
S G,1(t−) − H(2)

SG,1(t−) by the two
above equalities. Next, at first, we consider the case where
h(1)

GR(t−) − h(2)
GR(t−) = H(1)

S G,1(t−) − H(2)
S G,1(t−) ≥ 0. Then,

E(1)(t+) = E(1)(t−) + 1 and E(2)(t+) = E(2)(t−) since S G
transmits a packet from Q(1) by the definition of Greedy
Step of S G. Also, E(1)(t−) < T (t−) ≤ T (T ) since S G
has a packet at Q(1) at t−. By the induction hypothesis,
E(1)(t−) = e(1)(t−) holds. By the inequality and equality and
the definition of e(1)(t−), h(1)

GR(t−) > 0 holds, namely, GR has
a packet at Q(1) at t−. Hence, by h(1)

GR(t−) − h(2)
GR(t−) > 0

and the definition of GR, GR transmits a packet form Q(1),
namely, e(1)(t+) = e(1)(t−) + 1, and e(2)(t+) = e(2)(t−).
Therefore, by the above equality and the induction hypoth-
esis, E(1)(t+) = e(1)(t+) = E(1)(t−) + 1 = e(1)(t−) + 1,
and E(2)(t+) = e(2)(t+) = E(2)(t−) = e(2)(t−). Also, by
TGR(σ′, t+) = TGR(σ′, t−)+1, FS G,1(σ, t+) = FS G,1(σ, t−)+
1, and the induction hypothesis, TGR(σ′, t+) = FSG,1(σ, t+).

Next, we consider the case where h(1)
GR(t−) − h(2)

GR(t−) =
H(1)

S G,1(t−)−H(2)
SG,1(t−) < 0. By the definition of Greedy Step

in S G, E(1)(t+) = E(1)(t−), and E(2)(t+) = E(2)(t−)+ 1 since
S G transmits a packet from Q(2). By h(1)

GR(t−)− h(2)
GR(t−) < 0,

GR has a packet at Q(2) at t−. Hence, by the definition of
GR, GR also transmits a packet from Q(2), namely, e(1)(t+) =
e(1)(t−), and e(2)(t+) = e(2)(t−) + 1. Therefore, by the above
equality and the induction hypothesis, E(1)(t+) = e(1)(t+) =
E(1)(t−) + 1 = e(1)(t−) + 1, and E(2)(t+) = e(2)(t+) =
E(2)(t−) = e(2)(t−). Also, TGR(σ′, t+) = FS G,1(σ, t+) by
the indcution hypothsis since TGR(σ′, t+) = TGR(σ′, t−)+ 1,
and FSG,1(σ, t+) = FS G,1(σ, t−) + 1.

Case 2. Scheduling event (S1.2.1). By the defini-
tion of S G, E(1)(t+) = E(1)(t−), E(2)(t+) = E(2)(t−), and
FS G,1(σ, t+) = FS G,1(σ, t−) since S G transmits a packet
from S 0 at t. On the other hand, OPT ∗ transmits a packet
from S 0 since OPT ∗ and S G synchronize at t. Hence,
e(1)(t+) = e(1)(t−), e(2)(t+) = e(2)(t−), and TGR(σ′, t+) =
TGR(σ′, t−) since an event does not occur at t in σ′ by the
construction method (i) of σ′. By the above equalities and
the induction hypothesis, TGR(σ′, t+) = FS G,1(σ, t+) and
∀i e(i)(t+) = E(i)(t+).

Case 3. Scheduling event (S1.2.2). When S G has a
packet in its buffer at t−, we can do the same argument as
Case 1, and hence the proof is omitted.

Hence, we consider the case where there does not exist
a packet in S G’s buffer at t−, namely, ∀i E(i)(t−) = T (t−)
holds. When the buffer of S G is empty at t−, an arrival
event does not happen after t− by the assumption given in
Sec. 2.1. Hence, T (t−) = T (T ) holds since S G does not ex-
ecute Case A1.1.1 after t−. Therefore, ∀i E(i)(t−) = T (T ).
Now, ∀i e(i)(t−) = T (T ) since ∀i E(i)(t−) = e(i)(t−) by the
induction hypothesis. Since ∀i T (T )−h(i)

GR(t) = T (T ) by the
definition of e(i)(t−), h(i)

GR(t) = 0. Hence, the buffer of S G is
also empty at t−. By the above argument, S G and GR do not
transmit a packet, and the number of packets in each queue
does not change. Therefore, TGR(σ′, t+) = FS G,1(σ, t+), and
∀i E(i)(t+) = e(i)(t+).

Next, we consider cases where an arrival event happens
at t. At an arrival event, since TGR(σ′, t+) = TGR(σ′, t−)
and FS G,1(σ, t+) = FS G,1(σ, t−), we have that TGR(σ′, t+) =
FS G,1(σ, t+) by the induction hypothesis.

Case 4. Arrival event (A1.1.1). By the definition of
S G, since ∀i H(i)

S G,1(t+) = H(i)
S G,1(t−)+1 andT (t+) = T (t−)+

1, ∀i E(i)(t+) = T (t+) − H(i)
S G,1(t+) = T (t−) − H(i)

SG,1(t−) =
E(i)(t−). On the other hand, ∀i e(i)(t+) = e(i)(t−) since an
event does not occur at t in σ′ by the construction method
(iii) of σ′. Therefore, ∀i e(i)(t+) = E(i)(t+) by the induction
hypothesis.

Case 5. Arrival event (A1.1.2). By the definition
of S G, S G accepts an arriving packet p into S 0. Hence,
∀i E(i)(t+) = E(i)(t−). On the other hand, an event does
not occur at t in σ′ by the construction method (ii) of σ′

if p will be transmitted from S 0 by S G. Also, an event
does not happen at t in σ′ by the construction method (iii)
of σ′ if p will be transmitted from S 1 by S G. Therefore,
∀i e(i)(t+) = E(i)(t+) by the induction hypothesis.

Case 6. Arrival event (A2.1). We assume that a
packet p arrives at Q(a) at t. Then, by the definition of
S G, E(a)(t+) = E(a)(t−) − 1 and E(b)(t+) = E(b)(t−).
Also, since ∀i e(i)(t−) = E(i)(t−) by the induction hypoth-
esis, GR can accept p when S G accepts p. Therefore,
e(a)(t+) = e(a)(t−) − 1 and e(b)(t+) = e(b)(t−) hold. Hence,
∀i e(i)(t+) = E(i)(t+) by the induction hypothesis.

Case 7. Arrival event (A2.2.1). By the definition of
S G, ∀i E(i)(t+) = E(i)(t−) holds. Since ∀i e(i)(t−) = E(i)(t−)
by the induction hypothesis, GR rejects an arriving packet
at t when S G rejects it. Hence, ∀i e(i)(t+) = e(i)(t−). There-
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fore, we have that ∀i e(i)(t+) = E(i)(t+) by the induction hy-
pothesis.

We have shown that the statement is true at time t+.

Now, we analyze the competitive ratio of GR for σ′ in
the new model. Without loss of generality, we can assume
that OPT accepts all arriving packets (General discussion
can be found in p.302 of [11]). In what follows, we consider
the case for large enough B and T (T ). (In other cases, the
competitive ratio of S G is smaller than 16/13 in general.
See Appendix C.)

Lemma 3.14: TOPTτ (σ
′) ≤ 16

13 TGR(σ′).

Proof. Let t′ be the time for the first scheduling event. Note
that h(2)

GR(t′−) = h(1)
GR(t′−) = h(2)

OPTτ
(t′−) = h(1)

OPTτ
(t′−) = T (T )

by the construction of σ′. First of all, note that if GR does
not reject a packet, GR gains the same cost as OPTτ, in
which case, the competitive ratio is 1.

So, suppose that GR rejects at least once, and let t1 be
the time when GR rejects an arriving packet for the first
time. Let p be the rejected packet. For simplicity, we as-
sume that p arrives at Q(1). (The other case, namely, the
case that p arrives at Q(2) can be argued similarly, and hence
we omit it here.) This means that Q(1) of GR is full at t1−,
namely, h(1)

GR(t1−) = T (T ) (recall that buffer size is T (T )).
Hence h(1)

GR(t1−) − h(1)
OPTτ

(t1−) = T (T ) − h(1)
OPTτ

(t1−). Let
x1 be this quantity. We define the time t̃1(< t1) for the
scheduling event as follows: h(1)

GR(t̃1−)−h(1)
OPTτ

(t̃1−) = x1 −1,

h(1)
GR(t̃1+)−h(1)

OPTτ
(t̃1+) = x1. Since there is no packet only GR

accepts and OPT and S G hold the same number of packets
before t1, h(2)

OPTτ
(t̃1+)−h(2)

GR(t̃1+) = h(1)
GR(t̃1+)−h(1)

OPTτ
(t̃1+). By

the definition of t̃1, GR transmits a packet from Q(2) at t̃1.
Hence, by the definition of GR, h(2)

GR(t̃1+) ≥ h(1)
GR(t̃1+). From

the above argument, T (T ) ≥ h(2)
OPTτ

(t̃1+) = h(2)
GR(t̃1+) + x1 ≥

h(1)
GR(t̃1+) + x1 holds. So, GR transmits at least x1 packets

from Q(1), accepts at least x1 packets before t̃1+, and accepts
at least x1 packets within (t̃1, t1). SinceT (T ) ≥ h(2)

OPTτ
(t̃1+) =

h(2)
GR(t̃1+)+x1 ≥ h(1)

GR(t̃1+)+x1 = h(1)
OPTτ

(t̃1+)+2x1,T (T ) ≥ 2x1

holds. Let c1 be the number of packets that arrived within
(t′, t1). From the above argument, c1 ≥ x1 holds. GR ac-
cepts all these c1 packets by the definition of t1. Now,
let t′′1 (> t1) be the time when an event happens such that
h(1)

GR(t′′1 −) = h(1)
OPTτ

(t′′1 −) = T (T ) holds for the first time.
The number of packets which OPTτ accepts before t′′1 − is
2T (T ) + c1 + x1, and the number of packets which GR ac-
cepts before t′′1 − is 2T (T) + c1. If GR never rejects a packet

after t′′1 , TOPTτ (σ
′)

TGR(σ′) =
2T (T )+c1+x1

2T (T )+c1
≤ 2T (T )+2x1

2T (T )+x1
≤ 6

5 .
If GR rejects a packet after t′′1 , let t2 be the time when

GR first rejects a packet after t′′1 . We first consider the case
that a packet arrives at Q(1) at t2. Define x2 as follows: At
t2−, x2 = h(2)

GR(t2−) − h(2)
OPTτ

(t2−) = T (T ) − h(2)
OPTτ

(t2−). We
then define the scheduling time t̃2 that satisfies t′′1 < t̃2 < t2,
h(1)

GR(t̃2−)− h(2)
OPTτ

(t̃2−) = x2 − 1, and h(1)
GR(t̃2+)− h(2)

OPTτ
(t̃2+) =

x2. Since there are no packets only GR accepts, h(2)
OPTτ

(t̃2+)−

h(2)
GR(t̃2+) = x1 + h(1)

GR(t̃2+) − h(1)
OPTτ

(t̃2+). By the definition of
t̃2, GR transmits a packet from Q(2) at t̃2. Hence by the defi-
nition of GR, h(2)

GR(t̃2+) ≥ h(1)
GR(t̃2+) holds. From the above

arguments, T (T ) ≥ h(2)
OPTτ

(t̃2+) = h(2)
GR(t̃2+) + x1 + x2 ≥

h(1)
GR(t̃1+) + x1 + x2 holds. So, GR transmits at least x1 + x2

packets from Q(1) within (t′′1 , t̃2+), and accepts at least x1+x2

packets into Q(1) within (t̃2, t2). Futhermore, since T (T ) ≥
h(2)

OPTτ
(t̃2+) = h(2)

GR(t̃2+) + x1 + x2 ≥ h(1)
GR(t̃1+) + x1 + x2 =

h(1)
OPTτ

(t̃1+) + x1 + 2x2, T (T ) ≥ x1 + 2x2 holds. Let c2 be the
number of packets that arrived within (t′′1 , t2). Then, from
the above arguments, c2 ≥ x1 + x2 holds, and by the def-
inition of t2, GR accepts all these c2 packets. Also, define
t′′2 (> t2), as the first time h(2)

GR(t′′2 −) = h(2)
OPTτ

(t′′2 −) = T (T )
holds. The number of packets OPTτ accepted before t′′2 −
is 2T (T ) + c1 + x1 + c2 + x2, and the number of packets
GR accepted before t′′2 − is 2T (T) + c1 + c2. If GR accepts

all arriving packets after t′′2 , TOPTτ (σ
′)

TGR(σ′) =
2T (T )+c1+x1+c2+x2

2T (T )+c1+c2
≤

2T (T )+3x1+2x2

2T (T )+2x1+x2
≤ 3T (T )+2x1

5
2T (T )+ 3

2 x1
≤ 16

13 holds. We can do a similar

argument for the case that a packet arrives at Q(1) at t1, and
a packet arrives at Q(2) at t2.

Finally, we do not have to consider the case that GR
rejects a packet after t′′2 by Corollary 1 in Sec.4 in [11].

Lemma 3.15: FOPT ∗ ,1(σ) ≤ 16
13 FS G,1(σ).

Proof. Using Lemma 3.12, Lemma 3.13 and Lemma 3.14,
the statement is true.

4. Concluding Remarks

In this paper, we proposed the algorithm S G in the multi-
queue switches model for m = 2, and proved that its com-
petitive ratio is 16

13 . This matches the lower bound given by
Schmidt [11].
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Appendix A: Example of an Execution of SG

Here, we explain behavior of S G using an example. We
consider the case B = 8. The left top of Fig. A· 1 illustrates
buffers. The upper and the lower rows correspond to Q(1)

and Q(2), respectively. For each cell, the label (i, j) is given,
which means that the cell is the jth position of Q(i), namely,
Q(i, j). The bold vertical bar represents a border between S 0

and S 1.
The input is given in the top right table. In this exam-

ple, each event happens at an integer timeslot. For example,
at times 1, 2, and 3, arrival events happen, and arriving pack-
ets are destined for Q(2), Q(2), and Q(1), respectively. Then at
time 4, a scheduling event happens. Corresponding to each
event, the column denoted by “action” shows which case
S G executes.

At times 1 and 2, packets a and b arrive at Q(2). S G ex-
ecutes Case A1.1.2 and accepts these packets. (In the figure,
a packet just accepted is highlighted by a square.) Next, at
time 3, the packet c arrives at Q(1), and S G accepts it. This
time, Case A1.1.1 is executed since the first position of the
other queue already holds a packet. Then, S G increments
the value of τ, and the size of S 0 decreases by 1 (and ac-
cordingly, the S 1 part appears). Now, the current values of
k1, k2, and k3 are 0, 0, and 1, respectively.

At time 4, S G executes a transmission. Since k1 + k2 +

k3 > 0, it selects Case S1.1, and since k1 = k2 = 0 and
k3 = 1. it selects Case S1.1.3. So, S G executes Greedy Step.
Since H(1)

S G,1(t−) = H(2)
SG,1(t−) = 1, it selects Q(1), and the

pacekt c is transmitted. Each transmitted packet is denoted
by a black square. In addition, k3 is decremented by one.

In this way, the computation continues up to time 24.
We stop detailed explanation because of space restriction.

Appendix B: The Properties of SG

In this section, we show two lemmas about the properties of
S G.

Lemma Appendix B.1: At any time t, if H(a)
S G,0(t) > 0,

H(b)
S G,0(t) = 0 (a � b).

Proof. We show the proof by induction. At the beginning,
S 0 of both queues are empty. First, note that at scheduling
events, the invariant is not broken, so consider arrival events.
When a packet is stored in S 0, if both S 0 are empty, then the

invariant still holds. So, suppose that S 0 of one queue, say
Q(a), is empty but S 0 of the other queue, say Q(b), is non-
empty. If a new packet is stored in S 0 of Q(b), the invariant
holds again since Q(a) is still empty. If a new packet is stored
in S 0 of Q(a), then Case A1.1.1 is executed, and τ is incre-
mented by one. As a result, the cell for the newly stored
packet moves from S 0 to S 1 and hence S 0 of Q(a) becomes
empty again. This completes the proof.

Lemma Appendix B.2:
∀t
∑2

i=1 H(i)
S G,1(t) ≥

∑3
j=1K j(t).

Proof. We prove the lemma inductively on events. Let
t1 be the time when the first event happens. When a
scheduling event occurs at t1, Case S1.2 is executed at
t1 and

∑3
j=1K j(t1+) =

∑3
j=1K j(0) = 0 holds. Also,

since there does not exist a packet at t1,
∑2

i=1 H(i)
SG,1(t1+) =

∑2
i=1 H(i)

S G,1(0) = 0. When an arrival event happens

at t1, Case A1.1.2is executed at t1 and
∑3

j=1K j(t1+) =
∑3

j=1K j(0) = 0. By the definition of S G, since the

packet arriving at t1 is accepted to S 0,
∑2

i=1 H(i)
SG,1(t1+) =

∑2
i=1 H(i)

S G,1(0) = 0. Therefore, the statement is true at t1.
Let t be a time when an event happens. We assume that

the statement is true at time t− and show that it is true at t+,
namely, we assume that

∑2
i=1 H(i)

SG,1(t−) ≥
∑3

j=1K j(t−) and

show
∑2

i=1 H(i)
S G,1(t+) ≥

∑3
j=1K j(t+).

At first, we consider the case where a scheduling event
happens at t.

Case 1. Scheduling event (S1.1). By the def-
inition of S G,

∑3
j=1K j(t−) ≥ 1 and

∑3
j=1K j(t+) =

∑3
j=1K j(t−) − 1. Also,

∑2
i=1 H(i)

S G,1(t−) ≥
∑3

j=1K j(t−) by

the induction hypothesis. Therefore, since
∑2

i=1 H(i)
S G,1(t+) ≥

∑2
i=1 H(i)

S G,1(t−) − 1,
∑2

i=1 H(i)
S G,1(t+) ≥

∑3
j=1K j(t+) by the

above equalities.
Case 2. Scheduling event (S1.2). By the definition of

S G, since
∑3

j=1K j(t+) =
∑3

j=1K j(t−) = 0, the statement is
true.

Next, we consider the case where an arrival event oc-
curs at t.

Case 3. Arrival event (A1.1.1, A2.1). By the def-
inition of S G,

∑2
i=1 H(i)

SG,1(t+) ≥
∑2

i=1 H(i)
S G,1(t−) + 2 and

∑3
j=1K j(t+) =

∑3
j=1K j(t−) + 1. By the induction hypothe-

sis,
∑2

i=1 H(i)
S G,1(t+) ≥

∑3
j=1K j(t+).

Case 4. Scheduling event (A1.1.2). By the definition
of S G,

∑2
i=1 H(i)

S G,1(t+) =
∑2

i=1 H(i)
SG,1(t−) and

∑3
j=1K j(t+) =

∑3
j=1K j(t−). Therefore, by the induction hypothesis,
∑2

i=1 H(i)
S G,1(t+) ≥

∑3
j=1K j(t+).

Case 5. Scheduling event (A2.2.1). By the definition of
S G,
∑3

j=1K j(t+) = T (T ) holds, and
∑2

i=1 H(i)
S G,1(t+) ≥ T (T )

since there exists at least one queue of S G which is full.
Hence,

∑2
i=1 H(i)

S G,1(t+) ≥
∑3

j=1K j(t+).
We have shown that the statement is true at time t+.
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Fig. A· 1 Example of an execution of S G.

Appendix C: Competitive Ratios for Small T (T)

To analyze the competitive ratio TOPT∗ (σ)
TS G (σ) =

FOPT ,0(σ)+FOPT ,1(σ)
FS G,0(σ)+FS G,1(σ) ,

we estimated the gains incurred by S 0 and S 1 separately
when we considered large enough B and T (T ). However,
in the case where T (T ) is not large for B, the above analysis
does not work, namely, the ratio we obtain becomes larger
than the actual value. To overcome this, we will adopt a
different way of analysis, as seen in the following corollary.
Namely, we evaluate the gains of S 0 and S 1 together, as we
have done in the proof of Lemma 3.14.

Corollary Appendix C.1: TOPT∗ (σ)
TS G (σ) ≤

2B+2T (T)
2B+ 5

4T (T )
.

Proof(sketch). The proof is similar to that of Lemma 3.14:
The number of packets accepted by OPT ∗ (S G, respec-
tively) to S 1 before t′′2 − is estimated as 2T (T)+c1+ x1+c2+

x2 (2T (T) + c1 + c2, respectively). On the other hand, S G
executes Case A2.2.1 before t′′1 − and within (t′′1 , t

′′
2 ). Hence,

OPT ∗ and S G accept 2(B − T (T )) packets to S 0 before

t′′2 −. Therefore, we have that TOPT ∗ (σ)
TS G(σ) =

FOPT ,0(σ)+FOPT ,1(σ)
FS G,0(σ)+FS G,1(σ) ≤

2(B−T (T))+3T (T )+2x1

2(B−T (T ))+ 1
2T (T )+ 3

2 x1
≤ 2(B−T (T ))+2T (T )+c1+x1+c2+x2

2(B−T (T ))+2T (T )+c1+c2
≤ 2B+2T (T)

2B+ 5
4T (T )

.

By this corollary, in the case where B is larger than
T (T ), namely, in the case where B is large enough andT (T )
is small, we have that TOPT∗ (σ)

TS G(σ) � 1. In what follows, we can
show the competitive ratio for small B and small T (T ) in the
same way as the proof of Lemma 3.14. Note that B ≥ T (T )
and FOPT,0(σ) = FS G,0(σ) ≥ B − T (T ).
T (T) = 0: TOPT∗ (σ)

TS G (σ) = 1.

T (T) = 1: TOPT∗ (σ)
TS G (σ) ≤

B−1+3
B−1+2 =

B+2
B+1 ≤

3
2 = 1.5.

T (T) = 2: TOPT∗ (σ)
TS G (σ) ≤

B−2+8
B−2+6 =

B+6
B+4 ≤

8
6 � 1.334.

T (T) = 3: TOPT∗ (σ)
TS G (σ) ≤

B−3+12
B−3+9 =

B+9
B+6 ≤

12
9 � 1.334.

T (T) = 4: TOPT∗ (σ)
TS G (σ) ≤

B−4+20
B−4+16 =

B+16
B+12 ≤

20
16 = 1.25.

T (T) = 5: TOPT∗ (σ)
TS G (σ) ≤

B−5+25
B−5+20 =

B+20
B+15 ≤

25
20 = 1.25.

T (T) = 6: TOPT∗ (σ)
TS G (σ) ≤

B−6+24
B−6+19 =

B+18
B+13 ≤

24
19 � 1.264.

T (T) = 7: TOPT∗ (σ)
TS G (σ) ≤

B−7+28
B−7+22 =

B+21
B+15 ≤

28
22 = 1.273.
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T (T) = 8: TOPT∗ (σ)
TS G (σ) ≤

B−8+32
B−8+26 =

B+24
B+18 ≤

16
13 � 1.231.
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