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PAPER

Component Reduction for Gaussian Mixture Models

Kumiko MAEBASHI†a), Nonmember, Nobuo SUEMATSU†, and Akira HAYASHI†, Members

SUMMARY The mixture modeling framework is widely used in many
applications. In this paper, we propose a component reduction technique,
that collapses a Gaussian mixture model into a Gaussian mixture with fewer
components. The EM (Expectation-Maximization) algorithm is usually
used to fit a mixture model to data. Our algorithm is derived by extend-
ing mixture model learning using the EM-algorithm. In this extension, a
difficulty arises from the fact that some crucial quantities cannot be evalu-
ated analytically. We overcome this difficulty by introducing an effective
approximation. The effectiveness of our algorithm is demonstrated by ap-
plying it to a simple synthetic component reduction task and a phoneme
clustering problem.
key words: mixture model, EM-algorithm, maximum likelihood, hierarchi-
cal clustering

1. Introduction

Component reduction is the process whereby a mixture
model is collapsed into a mixture with fewer components.
Since mixture models are used in a wide variety of applica-
tions, component reduction techniques are becoming more
important. As an example, consider the case where data
is compressed and represented as a mixture model and the
original data is lost. We might use a component reduction
technique to analyze this data further. Moreover, by iterat-
ing the component reduction, hierarchical mixture models
can be constructed in a bottom-up manner. The hierarchical
mixture model is a useful tool for analyzing data at various
levels of granularity [1].

Component reduction can be regarded as the process of
fitting a mixture model to another mixture with more com-
ponents. The EM-algorithm [2], [3] is broadly applied to fit
a mixture model to a set of data points [4]. We devise a com-
ponent reduction algorithm by extending this application of
the EM-algorithm to the case in which a Gaussian mixture
model is fitted to another Gaussian mixture with more com-
ponents.

In deriving the algorithm, we first formulate the ap-
plication of the EM-algorithm to component reduction.
Although this formulation provides an EM-procedure, it
cannot be performed in practice because some quantities
needed in the EM-procedure cannot be calculated analyti-
cally. Therefore, we propose an approximated version of
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the EM-procedure.
The organization of this paper is as follows. Section 2

provides the background and our motivation for this study.
The EM-algorithm is described in Sect. 3. In Sect. 4, we for-
mulate the application of the EM-algorithm to component
reduction and obtain an EM-procedure. Then, in Sect. 5, we
derive an approximation of the EM-procedure. Section 6
discusses three related algorithms. In Sect. 7, we apply our
proposed method and the three related methods to synthetic
data and a phoneme clustering problem.

2. Background and Motivation

The EM-algorithm alternates between performing an expec-
tation step (E-step) and a maximization step (M-step). The
probabilities of assigning the data points to the components
of the mixture are calculated in the E-step. These proba-
bilities determine the responsibilities of the components in
representing the data points. In the M-step, each of the com-
ponent parameters is updated so that its likelihood for the
data points, weighted by the responsibilities, is maximized.

A straight-forward approach to component reduction
is to generate samples from the given mixture model, and
then to apply the EM-algorithm to these samples. This is,
however, computationally inefficient.

By simply replacing “the data points” with “the com-
ponents of the original mixture” in the EM-algorithm, we
can obtain the outline of a class of algorithms for fitting a
mixture model to another mixture model. The existing com-
ponent reduction algorithms [1], [5], [6] can be regarded as
members of this class, and are described in Sect. 6.

Since each of the components of the original mixture
is spatially extended, unlike in the case of data points, the
probabilities of properly assigning the original components
to the components being fit, should be position dependent.

Existing members of the class of algorithms described
above, such as [1], [5] and [6], do not adequately take this
into account. To illustrate this problem, we consider the sim-
ple component reduction task shown in Fig. 1, in which we
try to fit a two component mixture model to the three com-
ponent mixture. When we consider the assignment of the
original component in the middle, we should split it into two
parts (illustrated by dashed lines) according to the spatial
relationships of the two components of the fitted mixture.
Each of the two parts should then be incorporated into its
corresponding component. However, this splitting process
cannot be done by the current algorithms in the above class.
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Fig. 1 An example of the fitting problem.

In this paper, we devise a component reduction algorithm
which overcomes this limitation.

3. Fitting Mixture Models to Data

We have devised a component reduction algorithm based on
the application of the EM-algorithm for fitting mixture mod-
els to data. First, we review the application formulated by
Dempster [2].

Let us consider approximating a data distribution with
the mixture model,

fΘ(x) =
C∑

j=1

π j p(x|θ j), (1)

where C is the number of mixture components, p(x|θ j) is the
probability density with parameter vector θ j, π j is a nonneg-
ative quantity such that for j = 1, . . . ,C, 0 ≤ π j ≤ 1 and∑C

j=1 π j = 1, and Θ = {π1, . . . , πC , θ1, . . . , θC} is the set of all
the parameters in the mixture model.

Given a set of data points, X = {x1, . . . , xN }, when
we apply the EM-algorithm, it is assumed that each data
point xi has been drawn from one of the components of
the mixture model. Then, we introduce unobservable vec-
tors yi = (yi1, . . . , yiC) indicating the component from which
xi was drawn: where for every j, yi j is 1 if xi was drawn
from the j-th component and 0 otherwise. Let Y = {yi j|i =
1, . . . ,N, j = 1, . . . ,C}. The log-likelihood ofΘ for the com-
plete data (X,Y) is given by

L(Θ|X,Y) =
N∑

i=1

C∑
j=1

yi j log{π j p(xi|θ j)}. (2)

SinceY is unobservable, we take the expectation of the log-
likelihood with respect to Y under the given observed data
X and the current estimate Θ(t). The expected value of the
log-likelihood is

Q(Θ|Θ(t)) = E[L(Θ|X,Y) | X,Θ(t)]

=

N∑
i=1

C∑
j=1

hi j log{π j p j(xi|θ j)}, (3)

where hi j = E[yi j | xi,Θ
(t)].

Starting with an initial guess Θ(0), the EM-algorithm
generates successive estimates, Θ(1),Θ(2), . . ., by iterating
the following E- and M-steps:

E-step: Compute {h(t)
i j }, using current estimate Θ(t).

M-step: Set Θ(t+1) = Θ which maximizes Q(Θ|Θ(t))
given {h(t)

i j }.

The iteration is terminated when the sequence of estimates
converges.

4. Fitting a Mixture Model to Another Mixture Model

In this section, we formulate a straight-forward application
of the EM-algorithm to fit a mixture model to another mix-
ture. We elucidate that it is difficult to perform the iterative
procedure provided by the formulation because it requires
the evaluation of integrals which cannot be solved analyti-
cally.

The task is described as fitting the U-component mix-
ture model fΘU (x) to the given L-component mixture model
fΘL (x), where L > U,

fΘU (x) =
U∑
j=1

πU
j p(x|θUj ), (4)

fΘL (x) =
L∑

i=1

πL
i p(x|θLi ). (5)

We now introduce a random vector y = (y1, . . . , yU)
corresponding to the unobservable vectors yi in Section 3,
where y j are binary variables drawn according to the condi-
tional probability distributions,

Pr(y j = 1|x,ΘU) =
πU

j p(x|θUj )∑U
j′=1 π

U
j′ p(x|θUj′ )

. (6)

Then, the log-likelihood of ΘU for (x, y) is

L(ΘU |x, y) =
U∑
j=1

y j log{πU
j p(x|θUj )}, (7)

and the counterpart of Q(Θ|Θ(t)) in (3) is defined by taking
the expectation of the log-likelihood with respect to x with
distribution fΘL (x) as

Qhier(ΘU |Θ(t)
U )

= Ex{Ey{L(ΘU |x, y) | x,Θ(t)
U } | ΘL},

=

U∑
j=1

L∑
i=1

πL
i

∫
p(x|θLi )h j(x) log{π j p(x|θUj )}dx, (8)
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where h j(x) = Pr(y j = 1|x,Θ(t)
U ).

To derive the E- and M-steps, we introduce another ran-
dom vector z = (z1, . . . , zL) which indicates the component
of the original mixture model from which x is drawn, where
zi are binary variables whose (marginal) probability distri-
butions are given by Pr(zi = 1) = πL

i . Then, using Bayes’
rule, we obtain the following relation:

Pr(x|zi=1, y j=1)=
Pr(y j=1|x, zi=1) Pr(x|zi=1)

Pr(y j = 1|zi = 1)
. (9)

From Pr(y j = 1|x, zi = 1) = Pr(y j = 1|x) = h j(x) and
Pr(x|zi = 1) = p(x|θLi ), by denoting Pr(x|zi = 1, y j = 1) as
p(x|i, j), (9) can be rewritten as

p(x|i, j) =
h j(x)p(x|θLi )

hi j
, (10)

where hi j = Pr(y j = 1|zi = 1). By substituting (10) into (8),
we obtain

Qhier(ΘU |Θ(t)
U )

=

U∑
j=1

L∑
i=1

πL
i hi j

∫
p(x|i, j) log{π j p(x|θUj )}dx. (11)

Although we cannot perform them in practice, we can define
the E- and M-steps based simply on (11) as follows:

E-step: Compute {p(t)(x|i, j)} and {h(t)
i j } with the current

estimate Θ(t)
U .

M-step: Set Θ(t+1)
U = arg maxΘU Qhier(ΘU |Θ(t)

U ) given
p(t)(x|i, j) and h(t)

i j .

Since both of these steps involve integrals which cannot be
evaluated analytically, we cannot carry them out (without
numerical integrations).

5. Component Reduction Algorithm

From now on, we focus our discussion on Gaussian mix-
ture models. Let, p(x|θLi ) and p(x|θUj ) be Gaussians where

θLi = (μL
i ,Σ

L
i ) and θUj = (μU

j ,Σ
U
j ). Then, we introduce an ap-

proximation which enables us to perform the EM-procedure
derived in Sect. 4.

5.1 Update Equations in the M-Step

Without any approximation, the parameter set ΘU which
maximizes Qhier(ΘU |Θ(t)

U ) given p(t)(x|i, j) and h(t)
i j is ob-

tained from

πU
j =

L∑
i=1

πL
i h(t)

i j , (12)

μU
j =

∑L
i=1 π

L
i h(t)

i j μ
(t)
i j∑L

i=1 π
L
i h(t)

i j

, (13)

ΣU
j =

∑L
i=1 π

L
i h(t)

i j {Σ(t)
i j + (μ(t)

i j − μU
j )(μ(t)

i j − μU
j )T}∑L

i=1 π
L
i h(t)

i j

, (14)

where for every i, j, μ(t)
i j and Σ(t)

i j are the mean vector and

covariance matrix, respectively, of p(t)(x|i, j).
From (10), p(x|i, j) ∝ h j(x)p(x|θLi ) holds and we have

the analytical forms of h j(x) and p(x|θLi ). Let qi j(x) =
h j(x)p(x|θLi ) for convenience. The difficulty stems from
the fact that the integrals,

∫
qi j(x)dx,

∫
xqi j(x)dx, and∫

xxTqi j(x)dx, cannot be solved analytically. Therefore, we
cannot calculate the means and covariances of p(x|i, j). So,
we introduce an approximation of p(t)(x|i, j) using a Gaus-
sian distribution.

5.2 Approximation

We are now in a position to construct the Gaussian approx-
imation of p(x|i, j), that is, to obtain μ̂i j and Σ̂i j such that
p(x|i, j) � N(x|μ̂i j, Σ̂i j), where N(x|μ̂i j, Σ̂i j) is the Gaussian
pdf. The mean and covariance are approximated as follows.

We set μ̂i j = arg maxx qi j(x). While arg maxx qi j(x)
cannot be represented in analytical form, it can effectively
be obtained from the solution of

∂qi j(x)

∂x
= 0, (15)

using the Newton-Raphson method starting from a carefully
chosen point.

On the other hand, each Σ̂i j is estimated using the rela-
tion

− 1
N(μ|μ,Σ)

∂2N(x|μ,Σ)
∂x2

∣∣∣∣∣∣
x=μ

= Σ−1. (16)

We are constructing an approximation of p(x|i, j) using
the Gaussian distribution N(x|μ̂i j, Σ̂i j), and hence a natural
choice is

Σ̂−1
i j = −

1
p(μ̂i j|i, j)

∂2 p(x|i, j)
∂x2

∣∣∣∣∣∣
x=μ̂i j

= − 1
qi j(μ̂i j)

∂2qi j(x)

∂x2

∣∣∣∣∣∣
x=μ̂i j

= (ΣL
i )−1 + (ΣU

j )−1 −
U∑

j′=1

h j′(μ̂i j)(Σ
U
j′ )
−1

+

U∑
k=1

hk(μ̂i j)(Σ
U
k )−1(μ̂i j − μU

k )(μ̂i j − μU
k )T(ΣU

k )−1

−
U∑

k=1

U∑
l=1

hk(μ̂i j)hl(μ̂i j)

· (ΣU
k )−1(μ̂i j−μU

k )(μ̂i j−μU
l )T(ΣU

l )−1. (17)

To complete the E-step, we also need to evaluate hi j.
From (10), we have

hi j =
h j(x)p(x|θLi )

p(x|i, j)
, (18)

for any x. With the approximation, p(x|i, j) � N(x|μ̂i j, Σ̂i j),
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substituting x = μ̂i j yields the approximation of hi j,

ĥi j ∝
h j(μ̂i j)p(μ̂i j|θLi )

N(μ̂i j|μ̂i j, Σ̂i j)
. (19)

5.3 Approximated EM-Procedure

Here we summarize the EM-procedure including the ap-
proximation described in the previous subsection. Setting
the number of components U, and starting from some initial
estimate Θ(0)

U , the procedure repeatedly alternates the fol-
lowing E- and M-steps:

E-step: With the current estimate Θ(t)
U ,

1. Set {μ̂(t)
i j } by solving (15) using the Newton-

Raphson method.
2. Calculate {Σ̂(t)

i j } using (17).

3. Calculate {ĥ(t)
i j } using (19) and normalize the

values such that
∑U

j=1 ĥ(t)
i j = 1.

M-step: Set Θ(t+1)
U = ΘU where ΘU is calculated by (12)

with {μ̂(t)
i j }, {Σ̂(t)

i j }, and {ĥ(t)
i j }.

After a number of iterations, some mixing rates of the com-
ponents may converge to very small values. When this hap-
pens, the components with these small mixing rates are re-
moved from the mixture model. As a result, the number of
components can sometimes be less than U.

6. Related Work

6.1 Vasconcelos and Lippman (1999)

A component reduction algorithm has been developed using
the notion of virtual samples [1]. The following are the E-
and M-steps derived for Gaussian mixture models:

E-step: With the current estimate Θ(t)
U , compute {h(t)

i j } by

h(t)
i j =

πU
j [p(μL

i |θUj )e−
1
2 trace{(ΣU

j )−1ΣL
i }]πL

i N

∑
k π

U
k [p(μL

i |θUj )e−
1
2 trace{(ΣU

k )−1ΣL
i }]πL

i N
, (20)

where N denotes the virtual sample size drawn from the
given mixture model.
M-step: Set the next estimate Θ(t+1)

U = ΘU where ele-
ments in ΘU are given by

πU
j =

∑L
i=1 h(t)

i j

L
, (21)

μU
j =

∑L
i=1 π

L
i h(t)

i j μ
L
i∑L

i=1 π
L
i h(t)

i j

, (22)

ΣU
j =

∑L
i=1 π

L
i h(t)

i j {ΣL
i + (μL

i − μU
j )(μL

i − μU
j )T}∑L

i=1 π
L
i h(t)

i j

. (23)

We can consider hi j to represents the rate of contribution
from the i-th component in the given mixture to the j-th
component in the fitted mixture. Then, since

∑
j hi j = 1, the

update rule (21) means that the contribution of each compo-
nent in the given mixture is the same, despite the expectation
that the contributions are proportional to the mixing rates of
the components in the given mixture. Thus, it is natural to
conclude that the algorithm has an important defect when it
is used as a general component reduction technique.

6.2 Goldberger and Roweis (2005)

The algorithm proposed in [5] assigns each component in
the given mixture to one of U components in the fitted mix-
ture, such that the KL-divergence between them is mini-
mized. In other words, the algorithm involves hard clus-
tering of the L components into U groups corresponding to
components in the fitted mixture. On the contrary, the al-
gorithm proposed in [1] and [6] use soft clustering of the
components in the given mixture.

This algorithm introduces a new measure of the differ-
ences between two mixture models, defined as

d(ΘL,ΘU , λ) =
L∑

i=1

πL
i KL[p(x|θLi )‖p(x|θUλi

)], (24)

where λ = (λ1, . . . , λL) and λi denotes the index of the as-
signed component in the fitted mixture from the i-th com-
ponent in the given mixture. Then, ΘU is fitted by mini-
mizing d(ΘL,ΘU , λ) over all possible (ΘU , λ). In addition, a
procedure has been defined to find the local minima, which
involves repeating the following two steps:

REGROUP: λ(t) = arg min
λ

d(ΘL,Θ
(t)
U , λ)

REFIT: Θ
(t+1)
U = arg min

ΘU

d(ΘL,ΘU , λ
(t))

As has been mentioned in [5], this algorithm can be regarded
as a generalization of the k-means algorithm, and uses hard
assignment in the same way. Therefore, the flexibility of the
resulting models is rather restricted, although the algorithm
is efficient in terms of computational cost. In addition, the
algorithm might be heavily dependent on initial guesses as
is the k-means algorithm.

6.3 Maebashi, Suematsu and Hayashi (2008)

Another component reduction algorithm has previously
been proposed by the authors [6]. The algorithm is de-
rived by extending mixture model learning using the EM-
algorithm, as in the algorithm proposed in Sect. 5. As
mentioned in Sect. 4, we cannot perform the extended EM-
algorithm without some approximation. The approximation
used in this algorithm is

p(x|i, j) � p(x|θLi ). (25)

This approximation means that the information concerning
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x carried by j is ignored when x generated from the i-th
component in the given mixture is assigned to the j-th com-
ponent in the fitted mixture.

Under this approximation, it is still not possible to cal-
culate the assignment probabilities hi j. To obtain hi j we
apply the interpretation of the EM-algorithm proposed by
Neal [7], in which the E-step is also a maximization proce-
dure. Thus, hi j are parameters to be determined by solving
the maximization problem in the E-step. This interpretation
uses an analogy in physics and a temperature parameter is
introduced based on this analogy [6]. The following are the
E- and M-steps derived for Gaussian mixture models:

E-step: With the current estimate Θ(t)
U , compute {h(t)

i j } by

h(t)
i j =

[πU
j p(μL

i |θUj )e−
1
2 trace{(ΣU

j )−1ΣL
i }]β

∑
k[πU

k p(μL
i |θUj )e− 1

2 trace{(ΣU
k )−1ΣL

i }]β
, (26)

where β denotes the inverse of the temperature parameter.
M-step: Set the next estimate Θ(t+1)

U = ΘU where ele-
ments in ΘU are given by

πU
j =

L∑
i=1

πL
i h(t)

i j , (27)

μU
j =

∑L
i=1 π

L
i h(t)

i j μ
L
i∑L

i=1 π
L
i h(t)

i j

, (28)

ΣU
j =

∑L
i=1 π

L
i h(t)

i j {ΣL
i + (μL

i − μU
j )(μL

i − μU
j )T}∑L

i=1 π
L
i h(t)

i j

. (29)

Since hi j ∈ (0, 1), the algorithm achieves a soft clus-
tering of components in the given mixture model. However,
when the temperature parameter is small, the algorithm be-
haves almost like a hard clustering algorithm.

6.4 Difference Between the Proposed Algorithm and the
Existing Ones

As we have explained in Sect. 2, all of the three algo-
rithms described in Sects. 6.1-6.3 update the j-th compo-
nent of the fitted mixture so that it optimally represents the
weighted components of the original mixture model where
the weights of the original components are calculated for the
j-th component based on the current estimate. The differ-
ences among them lie in the way of calculating the weights.

This common framework shared by the three algo-
rithms restricts what they can achieve. We can rewrite (11)
as

Qhier(ΘU |Θ(t)
U )

=

U∑
j=1

π j
·

∫ ⎡⎢⎢⎢⎢⎢⎣
L∑

i=1

π
j
i p(x|i, j)

⎤⎥⎥⎥⎥⎥⎦ log p(x|θUj )dx

+

U∑
j=1

π j
· log πU

j (30)

where π j· =
∑

i π
L
i hi j and π j

i = π
L
i hi j/π

j· . From the above
equation, we can see that when we apply the EM algorithm
to the component reduction problem, the j-th component of
the fitted mixture has to be chosen so that the KL-divergence
of p(x|θUj ) from the mixture model

∑
i π

j
i p(x|i, j) is mini-

mized. This fact means that the existing three algorithms,
in a sense, approximate p(x|i, j) by p(x|θLi ) for all j, which
would result in a very poor approximation as we can see in
Fig. 1, in which the dashed lines are plots of the functions
proportional to p(x|i = 2, j = 1) and p(x|i = 2, j = 2).

On the other hand, our algorithm approximates each
p(x|i, j), respectively, and hence we can expect that it can
achieve higher accuracy than the existing three algorithms.

7. Experimental Results

To demonstrate the effectiveness of our algorithm, we con-
ducted two experiments. For convenience, we refer to the
proposed algorithm as the CREM (Component Reduction
based on EM-algorithm) and to our previously-proposed
algorithm [6], and the algorithms proposed by Vasconce-
los and Lippman [1] and Goldberger and Roweis [5] as
CREM0, VL and GR, respectively.

7.1 Synthetic Data

This experiment is intended to verify the effectiveness of our
algorithm in component reduction problems similar to the
example described in Sect. 2. The experimental procedure
is as follows.

1. Draw 500 data points from the 1-dimensional 2-
component Gaussian mixture model

fΘtrue(x) =
1
2
· N(x| − 2, 1) +

1
2
· N(x|2, 1). (31)

2. Learn a three component model using the standard EM-
algorithm, starting from f (x) = 1/3 ·N(x| −2, 1)+1/3 ·
N(x|0, 1) + 1/3 · N(x|2, 1).

3. Reduce the three-component model obtained in the
previous step to a two component mixture using
CREM, CREM0, VL, GR and the standard EM, where
the initial estimate is determined as

fΘU (x)

= πU
1 · col

⎡⎢⎢⎢⎢⎣ 1

πU
1

⎧⎪⎨⎪⎩πL
1 N(x|μ1, σ

2
1) +
πL

2

2
N(x|μ2, σ

2
2)

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎥⎦

+πU
2 · col

⎡⎢⎢⎢⎢⎣ 1

πU
2

⎧⎪⎨⎪⎩π
L
2

2
N(x|μ2, σ

2
2) + πL

3 N(x|μ3, σ
2
3)

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎥⎦ ,

(32)

where πU
1 = πL

1 + π
L
2/2, πU

2 = πL
2/2 + π

L
3 and

col[g] denotes the Gaussian that has the minimum KL-
divergence from g.

The experiment was repeated 100 times. The parameters,
β in CREM0 and N in VL, were empirically tuned to opti-
mize their performances, with actual values of β = 105 and
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Table 1 Average KL-divergence and standard deviation.

KL( fΘL || fΘU ) KL( fEM || fΘU ) KL( ftrue || fΘU )

CREM 1.048 × 10−2(±1.06 × 10−5) 1.057 × 10−2(±1.05 × 10−5) 1.057 × 10−2(±1.05 × 10−5)
CREM0 3.585 × 10−2(±1.27 × 10−4) 3.931 × 10−2(±1.63 × 10−4) 4.367 × 10−2(±8.13 × 10−5)

GR 3.587 × 10−2(±1.29 × 10−4) 3.900 × 10−2(±1.54 × 10−4) 4.413 × 10−2(±1.00 × 10−4)
VL 8.052 × 10−2(±4.15 × 10−4) 8.330 × 10−2(±4.74 × 10−4) 8.091 × 10−2(±5.32 × 10−4)

Fig. 2 Three and two component mixture model.

N = 3. Also, in this experiment, the EM-procedure was ter-
minated when maxi, j(h

(t)
i j − h(t−1)

i j ) < 10−5. We evaluated the
results using the KL-divergence, calculated using numerical
integration. Table 1 shows the averages taken over the 100
trials. The results for CREM are the best of all the results.
One of the trials is shown in Fig. 2. Figure 2 (a) is a plot
of the pdfs obtained from CREM, GR, VL, and CREM0 for
the original 3-component mixture shown in Fig. 2 (b). Note
that the pdfs obtained from CREM0 and GR are represented
by a curve since they are very close to each other and are in-
distinguishable in the plot. We can see that the pdf obtained
from CREM is closest to the original pdf.

7.2 TIMIT Phoneme Recognition

We also applied the four algorithms to clustering the
phoneme dataset described in [8]. The dataset contains
5 phoneme classes of 4, 509 instances described by log-
periodograms of length 256. The dimension of the instance
is reduced to 10 dimensions using PCA and 5-layered hi-
erarchical mixture models are constructed according to the
structure shown in Fig. 3. The bottom (zero’th) level corre-
sponds to 4, 509 data points.

We construct hierarchical mixture models and measure
the quality of the mixture model in each layer in terms of

Fig. 3 Structure of constructed hierarchical mixture models in the exper-
iment.

clustering quality. If a component reduction is performed
properly, the dominant cluster structure that a lower layer
has will be inherited by the upper layer, which must have
high clustering quality. In each trial of the four algorithms,
a 50-component mixture model in the first level is learned
using the standard EM-algorithm. The second and higher
levels are obtained by applying each component reduction
algorithm to the lower levels. To compare these algorithms
with the standard EM-algorithm, 20, 10, and 5-component
mixtures are learned from the data points using the standard
EM-algorithm. Since all four algorithms depend on initial
guesses Θ(0)

U , we repeated the experiment 10 times. In this
experiment, initial guesses Θ(0)

U are obtained by picking up
the components of the U largest mixing rates from the L
components of the lower mixture. The terminal conditions
for the four algorithms were empirically tuned to ensure
convergence. Consequently, in this experiment, the EM-
procedure was terminated when maxi, j(h

(t)
i j − h(t−1)

i j ) < 10−5.
Also, in CREM0 the inverse of the temperature parameter
is β = {1, 105} and in VL the number of virtual samples is
N = 4509, which is the number of instances.

We evaluated the clustering results in terms of error
rate and NMI(normalized mutual information) [9]. Let λ(c)

be the correct class labeling with 5 labels provided in the
dataset and λ(e) be the cluster labeling with U labels repre-
senting a clustering result. For every n = 1, . . . , 4059, the
estimated cluster label is defined by

λ(e)
n = argmax

j
({π j p(xn|θ j)| j = 1, . . . ,U}). (33)

The error rate is defined by

φER
(
λλλ(c), λλλ(e)

)
= 1 − 1

N

U∑
j=1

max
i

nc,e(i, j), (34)

where nc,e(i, j) denotes the number of samples that have a
class label i according to λ(c) as well as a cluster label j
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Fig. 4 Boxplot of the error rate for 10 trials.

Fig. 5 Boxplot of the NMI for 10 trials.

according to λ(e).
Figure 4 shows a boxplot of the error rate. Each box

has horizontal lines at the lower quartile, median, and upper
quartile. Whiskers extend to the adjacent values within 1.5
times the interquartile range from the ends of the box and +
signs indicate outliers.

From Fig. 4, at all the levels, we can confirm that
CREM has an advantage at all levels over the other three
algorithms in terms of error rate.

The NMI is based on the mutual information and
ranges from 0 to 1. A higher NMI indicates that the clus-
tering is more informative. For λ(c) and λ(e), the NMI is
estimated from

φNMI (λ(e), λ(c))

=

∑5
i=1
∑U

j=1 nc,e(i, j) log nc,e(i, j)·N
nc(i)·ne( j)√(∑5

i=1 nc(i) log nc(i)
N

) (∑U
j=1 ne( j) log ne( j)

N

) , (35)

where nc(i) denotes the number of samples that have a class
label i according to λ(c) and ne( j) denotes the number of
samples that have a class label j according to λ(e).

Figure 5 shows a boxplot of the NMI. From Fig. 5,
CREM has an advantage over CREM0, GR and VL in terms
of NMI at all levels. Moreover, at the fourth level(U = 5),
where mixture models have as many components as the
classes of the phoneme data, CREM is comparable to the
standard EM applied directly to the data.

Interestingly, we can see that CREM outperforms the
standard EM at the second and the third levels, while the
standard EM is superior in terms of error rate when U = 10
as shown in Fig. 4. This phenomenon may be explained by
the fact that in most clustering results obtained from the
standard EM when U = 20 or 10, some clusters involve
far fewer data points than the others. We conjecture that the
standard EM is more prone to overfitting when the specified
number of components is larger than that of the underlying
clusters, which is an unfavorable characteristic for hierar-
chical cluster analysis.

8. Conclusion

We have proposed a component reduction algorithm for
Gaussian mixture models that does not suffer from the lim-
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itations of the existing algorithms such as those proposed
in [1], [5], [6]. Our algorithm has been derived by apply-
ing the EM-algorithm to the component reduction problem
and introducing an effective approximation to overcome the
difficulty faced in implementing the EM-algorithm.

Our algorithm and the three existing algorithms have
been applied to a simple synthetic component reduction task
and a phoneme clustering problem. The experimental re-
sults strongly support the effectiveness of our algorithm.
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