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PAPER

Voice Activity Detection Based on High Order Statistics and Online
EM Algorithm

David COURNAPEAU†a), Nonmember and Tatsuya KAWAHARA†, Member

SUMMARY A new online, unsupervised voice activity detection
(VAD) method is proposed. The method is based on a feature derived from
high-order statistics (HOS), enhanced by a second metric based on nor-
malized autocorrelation peaks to improve its robustness to non-Gaussian
noises. This feature is also oriented for discriminating between close-talk
and far-field speech, thus providing a VAD method in the context of human-
to-human interaction independent of the energy level. The classification is
done by an online variation of the Expectation-Maximization (EM) algo-
rithm, to track and adapt to noise variations in the speech signal. Perfor-
mance of the proposed method is evaluated on an in-house data and on
CENSREC-1-C, a publicly available database used for VAD in the context
of automatic speech recognition (ASR). On both test sets, the proposed
method outperforms a simple energy-based algorithm and is shown to be
more robust against the change in speech sparsity, SNR variability and the
noise type.
key words: speech recognition, voice activity detection, high order statis-
tics, online EM

1. Introduction

Voice activity detection (VAD), which automatically detects
speech from audio signals, is a classical problem in speech
processing. For example, it is often used as a front-end
for automatic speech recognition (ASR) [1]. The problem
has recently received attention because the effectiveness of
the VAD front-end is crucial for the performance of the
speech recognizer in noisy environments; when the back-
ground noise is high, the number of insertion errors becomes
large [2], and having a VAD robust against noisy environ-
ments can significantly reduce the word error rate (WER).
Other tasks where VAD is useful include speech coding and
speaker recognition.

The work described in this paper aims at detecting
speech in the context of human-to-human interaction. This
situation poses several challenges, mainly because some of
the assumptions usually made for ASR or speech coding,
such as the signal containing speech most of the time, are
not met in human-to-human interaction. Thus, a VAD algo-
rithm needs to cope with this sparsity. Also, as several peo-
ple are involved, it should be able to discriminate between
the different speakers involved. One solution to this prob-
lem is using an array of microphones [3]. If use of close mi-
crophone recording is allowed, discriminating between the
wearer of the microphone and other persons is possible if
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we can find a feature whose behavior is different in close-
talk and far-field speech. The work presented here follows
this approach. Even when close-talk recording is available,
the simple strategy based on energy gives unsatisfactory re-
sults [4], mainly because of cross-channel talk and varying
noise conditions.

The method we propose in this article aims at solv-
ing those problems. It incorporates a novel feature based
on high-order statistics (HOS) for discriminating between
close-talk speech and far-field speech, and an online, unsu-
pervised classification scheme based on Online Expectation
Maximization (OEM) algorithm to cope with varying noise
condition and change of speech proportion. HOS can be de-
fined from the moments of a random variable, and give in-
formation that is absent from the most commonly used mo-
ments: mean and variance. Using HOS for VAD has been
suggested, for example in [5], whose strategy was refined
in [6]. It was shown in [5] that the HOS of the LPC resid-
ual is an increasing function of the number of harmonics
in the signal, using a sinusoidal model of speech [7]. As
HOS are immune to Gaussian noise, it can be used for VAD
in some noisy, Gaussian-like environments. However, HOS
are sensitive to other kind of noises such as transient noises
(noises which have a high energy and are well localized in
time, which can occur for example when there is a physi-
cal contact with the microphone). In this paper, we com-
bine HOS with another metric, derived from the normalized
autocorrelation, to enhance its robustness to non-Gaussian-
like noises. We investigate the effectiveness of the enhanced
HOS to discriminate far-field speech and close-talk speech.
We also propose a new scheme for online classification,
using online EM. This method has an advantage of esti-
mating online the noise and speech level concurrently with
classification, without relying on a separate SNR estimation
scheme such as the one used in G.729B VAD [8]. Figure 1.
gives an overview of the whole scheme: first, the speech
signal is divided in frames which are pre-processed and go
through LPC analysis, whose residual is used as an input
to the rest of the method. Kurtosis and the normalized au-
tocorrelation, whose main peak is extracted, are computed,
combined with each other, and used as the input of the on-
line EM algorithm, which does the classification and model
updating simultaneously.

The organization of this paper is as follows. Sec-
tion 2 describes the use of high-order statistics for speech
detection, its rationale, limitations and the method to allevi-
ate those limitations. Section 3 describes the classification
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Fig. 1 Overview of proposed method.

scheme based on online EM. Section 4 evaluates the pro-
posed method on both in-house data and a public database
for VAD in the context of ASR in noisy environments, the
CENSREC-1 database [9], and compares its performances
to standard algorithms.

2. High Order Statistics for Speech Detection

2.1 Property of Close-Talk and Far-Field Speech

A variety of features have been proposed for VAD,
such as energy, auto-correlation, cepstrum peaks [10], and
MFCC [11]. The goal is to find a feature whose underly-
ing distribution is different for speech signal and for non-
speech signal. As our goal is to detect close-talk speech
only, the feature also has to be able to discriminate between
close-talk and far-field speech. The most obvious feature to
discriminate between close-talk and far-field speech would
be energy, but this does not work as expected; [4] identi-
fies cross-channel talk and varying noise conditions as the
main causes for degradation of performances in the simple
energy-based algorithms. Also, as noted in [12], normaliza-
tion of the feature with respect to the energy is crucial for
online VAD. For those reasons, we focus on features inde-
pendent of the energy.

We plot in Fig. 2 the LPC residual of close-talk speech
and far-field speech, since it is known to relate with glottal
excitation. The signal was recorded with two microphones,
one close-talk and the other far-field, and we display the
time-synchronized extract from both microphones. In both
cases, the spectral envelope (middle column) is similar, and
the pulses corresponding to the air flow variations as well
as their periodicity are visible on the LPC residual (right
column). But in the close-talk case, the LPC residual is rel-
atively uncorrupted by the noise and the pulses have a much
stronger amplitude on average. Thus, in close-talk speech,
the signal amplitude x(t) is either outside [−σ, σ] range or
approximately 0 (i.e. |x| � σ). On the other hand, for far-
field speech, the amplitude is more likely to be around σ
(i.e. |x| ≈ σ).

There are several explanations for this difference: first,
because the SNR is lower for distant speech and as such
speech is embedded in the noise, and also because of re-
verberation, its LPC residual distribution is more Gaussian-
like. Another possible explanation for this difference could
be the proximity effect of the microphone. Most close-talk
microphones are directional, and because directional micro-
phones use two diaphragms, this results in the proximity ef-
fect of directional microphones. This proximity effect in-

creases the low spectrum of the received signal for close
signals (a few centimeters away from the microphone).

In summary, the distribution of the LPC residual is
more likely to get extreme values (far from the mean, or
close to the mean) in the close-talk case than in the far-
field case. Following this property, discrimination between
close-talk and far-field speech is reduced to discrimination
between fat-tailed, peaky distribution against fat mid-range
distribution. Kurtosis, which is one of HOS, is a standard
statistics used for this purpose.

2.2 Definition of HOS

The HOS, also called cumulants, of random variables X are
defined from the cumulant generating function ψ:

ψ(t) � logΦ(t) = logE[etX] (1)

=

∞∑

n=0

κX
n

tn

n!

that is, the cumulant generating function is defined as the
logarithm of the moment generating function Φ, and the cu-
mulant of order n κn is the nth coefficient of Taylor expan-
sion divided by n!. There is a direct relationship between the
cumulants of a random variable X and its central moments.
For the first four cumulants, those are:

κX
1 = E[X − E[X]] = 0 (2)

κX
2 = E[(X − E[X])2] = σ2 (3)

κX
3 = E[(X − E[X])3] (4)

κX
4 = E[(X − E[X])4] − 3σ22

(5)

The cumulant of order 2 is simply the variance. The most
common high order statistics, skewness sX and kurtosis kX ,
are defined as normalized version of cumulants of order 3
and 4, respectively, with the normalization factor being σn,
where σ is the standard deviation and n the order of the
statistics:

sX � κX
3 /σ

3 = E[(X − μ)3]/σ3 (6)

kX � κX
4 /σ

4 = E[(X − μ)4]/σ4 − 3 (7)

One motivation of this definition is the additivity property
for independent random variables, which is a direct conse-
quence of the property of the moment generating function
for independent random variables. Another direct conse-
quence is that all cumulants of order n ≥ 3 are 0 for Gaus-
sian random variables, since the cumulant generating func-
tion of a Gaussian variable is a polynomial of order 2.

2.3 Kurtosis and Shape of Distribution

Kurtosis has been used for long in the statistics literature as
a measure of non-Gaussianity, peakedness or tailedness of
a random variable [13], [14]. Whereas the first and second
moments of a random variable X may be seen as simply a
translation and scale parameter, respectively, HOS contains
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Fig. 2 Comparison between far-field (top) and close-talk speech (bottom). They correspond to the
same signal. The left column displays the spectrogram of approximately one second of signal, the
middle (spectrum) and right column (LPC residual) for one particular frame from the extract. The
dashed line represents the standard deviation of each signal.

information on the shape of the distribution. Kurtosis mea-
sures both the peakedness and the tailedness of random vari-
ables, and both those characteristics have to be taken into
account when comparing two random variables [13]. More
formally, for two symmetrical random variables X and Y of
equal mean and variance, if there are a and b such that

∀x, |x| ≤ a or |x| ≥ b, fX(x) ≥ fY (x) (8)

while

∀x, a ≤ |x| ≤ b, fX(x) ≤ fY (x) (9)

then the fourth moment of X is higher than that of Y (see [14]
for a proof). Taking a Gaussian random variable as a refer-
ence, an example of distribution having heavier tails and be-
ing more peaky than a Gaussian is the Laplace distribution,
as displayed in Fig. 3. Whereas a Gaussian has a kurtosis of
0, the Laplace distribution has a kurtosis of 3 (both Laplace
and Gaussian have a kurtosis which is independent of their
parameters).

2.4 Enhancing Kurtosis with Autocorrelation

Following the above discussion, kurtosis is expected to be
a candidate to discriminate between far-field and close-talk
speech. For the example of Fig. 2, the kurtosis is 15.4 for
the close-talk speech, and 0.4 for the far-field speech. How-
ever, as already noted in [5], using HOS directly for VAD is
not effective, for several reasons; the standard estimators for
kurtosis, based on a sample estimator of moments, slowly
converge to the true value, and are sensitive to outliers; also,
non-Gaussian noises may not have a low value for kurto-
sis. In fact, typical noises on close-talk conditions such as
contact noises, which are of highly transient nature, have a
large kurtosis. This is observed in Fig. 4. The figure repre-

Fig. 3 Comparison of heavy-tailed and peaky distribution (Laplace)
against Gaussian. Both have same mean (0) and variance (1), are sym-
metric, but Laplace has a kurtosis of 3, compared to 0 for Gaussian. Filled
area emphasizes the ranges where values are more likely for Laplace.

sents one extract of 37 seconds recorded by a close-talk mi-
crophone: the signal contains mostly speech starting around
17 second, but the whole beginning of the signal contains
background speech, whose low frequency spectral lines can
be seen on the spectrogram. It also contains transient noises
around second 9-10, which are visible both on the spectro-
gram and the energy plot. The figure shows that kurtosis be-
haves differently for far and close-talk speech: it is mostly
low value and stable for remote speech, whereas it has high
value for close-talk speech. However, the kurtosis has some
spikes, particularly for the transient noises around 9 second.

To enhance the above property, we propose a method to
improve the kurtosis for transient noises, while keeping its
desired behavior for discriminating far-field speech against
close-talk speech; we combine it with the normalized auto-
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Fig. 4 Sample of in-house speech recording with natural noise. Spec-
trogram (top), energy (2nd), log-kurtosis (3rd) and proposed feature (4th).
Filled areas are speech to be detected.

correlation peak. Auto-correlation is a good cue to indi-
cate pitch, and is fairly robust against transient noises; for
those reasons, it has often been used for VAD (for example
in [15]). To enhance robustness against energy variation of
the signal, we use the normalized auto-correlation a[k] for
a frame X = (xt) = {x0, . . . , xN−1}, given by the following
formula:

a[k] =

∑N−1
n=k x[n] · x[n − k]
∑N−1

n=0 x[n]2
(10)

For periodic signals of T samples, the auto-correlation has
maxima at multiple of T lags. We detect a peak if its value
is strictly bigger than its nearest neighbors on both sides
(discarding the first one at k = 0, which is always equal to
1 by definition of normalized autocorrelation). Because of
the normalization process, peaks can appear for low-energy
noises which have a sharp spectrum (an example of such
noise is motor noise). Also, it cannot be used by itself to
discriminate between the main speaker’s speech and back-
ground voices. However, in this study, the motive to use
the auto-correlation is that its peaks have low amplitude
for transient noises, which are the most problematic noises
when using HOS.

We then combine the auto-correlation peak mX and the
kurtosis of the LPC residual kX to obtain the new feature fX

as follows:

fX � mX · log(1 + kX) (11)

We use the log-kurtosis to give a more Gaussian-like behav-
ior of the feature, which will be useful for the classification,
and also compensate for high values which may occur for
strong voiced, close-talk frames. The enhanced kurtosis is
shown in Fig. 4, where the improvement over the original
kurtosis is apparent. The enhanced kurtosis still has low val-
ues for far-field speech, and is more stable in noisy frames.
Another example, taken from the CENSREC-1 dataset, is

Fig. 5 Sample of speech from CENSREC-1 (high SNR). Spectrogram
(top), energy (2nd), log-kurtosis (3rd) and proposed feature (4th).

shown on Fig. 5, where we can observe the same characteris-
tics. In particular, we can observe that the enhanced kurtosis
is more robust to ’onset’ noises in the first 5 seconds (they
correspond to step’s noise from someone walking); the en-
hancement compared to simple kurtosis is also apparent on
the 2nd and 5th speech section.

3. Classification with Online EM

3.1 EM and Unsupervised Learning

Some VAD algorithms rely on thresholding the feature, with
a threshold whose value is generally computed from the es-
timated background noise level; the frame-level speech/non-
speech classification is then converted to speech boundaries
through a state-machine (also called hangover); for unsu-
pervised VAD algorithm, it is the most straightforward way
for classification (for example [16]). Here, we propose a
scheme of unsupervised classification, but without relying
directly on a threshold, which would require noise level es-
timation.

If we suppose that each class (speech and non-speech)
has a probabilistic distribution, an optimal decision can be
made by choosing the class which maximizes p(class|X);
this is maximum a posteriori classification (MAP). Here
p(X|class) is modeled as a parametric density p(.; θ), and
we try to estimate the parameter set θ. We use a parametric
clustering method, as represented in Fig. 6. If we choose a
Gaussian distribution for p(.; θ), the model is a simple bi-
nary mixture of Gaussians, where each component of the
mixture represents a class (one for speech, one for non-
speech). Expectation Maximization (EM) algorithm [17] es-
timates parametric models with latent variables based on the
maximum likelihood principle. In this case, the latent vari-
able is the class membership C. The EM algorithm is an
iterative algorithm, and each iteration i requires two steps:
the E step, where the conditional expectation of the log-
likelihood for the complete data (X,C) given the observed
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Fig. 6 Histogram of the enhanced kurtosis for the same extract as Fig. 4,
and a simple 2 component mixture model estimated by standard EM algo-
rithm (the latent variable has two states, either speech or non-speech).

data X is computed:

Jθi−1 (θ) � E[log p(X,C; θ)|X; θi−1] (12)

and the M step, where J is maximized with respect to θ to
give a new estimated parameter set for step i

θi � arg max
θ

Jθi−1 (θ) (13)

The key of EM algorithm is that the above scheme guar-
antees that the log-likelihood for the observed data X at
point θi is higher than at the point θi−1, and that J has
a closed form for a large class of models, including fi-
nite mixtures of exponential models, such as Gaussian mix-
ture models. In the case of finite mixtures, and given T
Independent and Identically Distributed (IID) observations
X = {Xt} = {X1, . . . , XT }, computing Jθi−1 is reduced to com-
puting ζ i

t (c) � P(Ct = c|Xt; θi−1) for all t and c, where Ct is
the latent variable corresponding to Xt and c is a choice of
the membership. The new parameter θi can then be com-
puted from ζ and statistics which depend directly on the
data; in the case of Gaussian mixture models, they are Xt

and X2
t . In other words, (ζ i

t , Xt, X2
t ) are Sufficient Statistics

(SS) for θi−1.
For online classification, this cannot be used directly,

because the E step requires the whole data set X. For exam-
ple, in standard EM, the mean of the component c at step i
μi(c) is given by:

μi(c) =
∑

t

ζ i
t (c) · Xt/

∑

t

ζ i
t (c) (14)

Instead, we have to find a method to update μt (and other
model parameters) at frame t from the observed data Xt

and the previously estimated parameter θt−1. As noted in
[18], there have been several approaches to this problem.
We adopt the same scheme as proposed in [18] and [19];
the quantities of interest for the E step are replaced by a
stochastic approximation, and the M step is kept the same.
In online EM, we replace every statistic averaged by ζ by
its stochastic approximation, which is updated every time a
new frame is fed to the algorithm. For the mean, the statistic∑

t ζt(c) · Xt is replaced by X̂t(c), which is updated at every

Fig. 7 Spectrogram of audio segment (1st), the enhanced kurtosis (2nd),
means (3rd), variances (4th), and weights (5th) of the components as esti-
mated by online EM (dashed red for speech, plain green for noise).

new frame:

X̂t(c) = X̂t−1(c) + γt(ζt(c) · Xt − X̂t−1(c)) (15)

Note that the i suffix for ζ is dropped, as the step and frame
index are the same for online EM; also, the approximated
statistics now depends on c through ζt(c). This approxima-
tion is then plugged into the mean estimator given by stan-
dard EM (equation 14):

μ̂t(c) = X̂t(c)/ζ̂t(c) (16)

So, instead of averaging the statistics ζt · Xt for all t at once,
online EM successively averages between the current frame
and the previous frame and the term ζt(c) ·Xt− X̂t−1(c) can be
seen as the approximation error of the procedure [20]. The
conditions on the sequence γt such that the above procedure
converges are given in ([18], [19]); a more complete review
of the theory behind this kind of procedures is given in [20].

As with the standard EM, we need to initialize the al-
gorithm. Several strategies are possible. The simplest strat-
egy is to initialize using random values; another solution,
which we adopted, is based on a k-mean algorithm to ini-
tialize the means, with the weights for equi-probable cluster
distribution. We then compute the variance for each clus-
ter. The k-mean algorithm is run on a small subset of the
data for each signal: the first second of the signal in our im-
plementation. To give an idea about the online adaption of
the EM, we plot in Fig. 7 the means of the two components.
Although the two means have much the same value in the
initial three seconds, where speech is not present, we can
observe that the model effectively adapts itself to the signal
when some close speech is present in the signal. Speech is
always assumed to be the component with the higher mean.

Concerning the computing cost, standard EM can be
split into three parts (for each iteration i): computing
the responsibilities ζ i

t (c), computing Sufficient Statistics
(ζ i

t , Xt, X2
t ), and updating the mixture model (Eq. (14) and its

equivalent for the weights and covariance matrices). Only
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the computation of SS is different in online EM (Eq. (15)),
but the difference is negligible in terms of computation
amount. The cost of running online EM on a given dataset is
thus roughly the same as one iteration of EM. Since online
EM is a recursive algorithm, and the features are computed
frame by frame, it has a latency of one frame once it is ini-
tialized.

4. Experimental Evaluation

4.1 Evaluation Framework

We evaluate the proposed method, and compared it with
several algorithms. We use two test sets, an in-house data
which consists in close recording done during an open lab.
For comparison purpose, we also use the CENSREC-1-C
database [9]. For both test sets, we use a speech frame of 32
ms with an overlap of 16 ms (e.g. 256 samples at a sampling
rate of 8 kHz, 50% overlap), and exactly the same algorithm
(e.g. no tuning for the hangover system).

As an evaluation measure, we use frame-level classifi-
cation errors, that is:

• False Rejection Rate (FRR), defined as:

number of missed speech frames
number of speech frames

• False Alarm Rate (FAR), defined as

number of incorrectly detected speech frames
number of non-speech frames

• Global Error Rate (GER), defined as

number of missed + incorrectly detected frames
number of frames

4.2 Evaluation on In-House Data

The data during the open lab were recorded in the follow-
ing conditions: people were wearing a head-mounted device
equipped with a head-set microphone. They were talking
with other people in poster presentations. Audio data were
recorded on another PC-like embedded device, carried by
each person (the sound stream is converted to digital and
recorded on the hard-disk of the device). The data contain
several kinds of noises (air conditioning, other people, cars
running on the street, etc.). The test set contains around
45 minutes of audio data, split into around 30 files of the
same length. They are different in speakers, gender, lan-
guage (mainly Japanese, but also English), sparsity and SNR
(between 10 dB and 25 dB). For each file of the test set, the
proposed online EM algorithm was initialized with the first
second data. The goal of this evaluation is to assess whether
the proposed method can adapt to various SNR and sparsity
conditions. The ratio of speech frames in this data ranges
from 10 to 90%, with 33% of speech on average. We com-
pare the proposed method with methods by replacing the

Table 1 Frame error rates for the proposed algorithm (1st row), using
online EM on energy (2nd), and online EM on kurtosis only (3rd).

FAR FRR GER

Proposed method 7.8 % 13.0 % 9.5 %
Using energy 15.8 % 10.6 % 13.3 %

Using kurtosis only 19.0 % 13.8 % 16.3 %

Fig. 8 Results of the proposed VAD algorithm (left) in function of the
speech/non speech ratio, in comparison with energy-based method (right).
The dashed lines show the standard deviation of each criterion, and solid
line the mean along all files from the database.

Table 2 Comparison between online EM and standard EM.

FAR FRR GER

Online EM 7.8 % 13.0 % 9.5 %
(proposed method)

Standard EM 8.0 % 12.0 % 9.5 %

enhanced kurtosis with different features: energy and kurto-
sis. The results are summarized in Table 1. The enhanced
kurtosis achieves a significantly better FAR and GER, while
being slightly worse FRR than energy. It also shows that
kurtosis alone is not effective.

To get a more precise idea of the robustness of the
proposed classification scheme against sparsity, we give in
Fig. 8 the frame error rates with respect to the sparsity (i.e.
the ratio speech/non-speech) for each file. Whereas the pro-
posed method and energy-based method perform similarly
for signals where speech is dominant, the FAR significantly
increases for the energy-based algorithm for sparser signals.
Also, the dashed line, representing the standard deviation of
the error rates on the whole data, shows that the proposed
method is less sensitive to sparsity variation, thus giving
more stable results.

We also compared the effectiveness of the online EM to
the standard EM algorithm. Both used the enhanced kurtosis
as a feature. The results are summarized in Table 2. Online
EM is found to give similar performance to the offline EM.

4.3 Evaluation on CENSREC-1 Database

For comparison purpose, we also tested the proposed
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Table 3 Frame error rates for the proposed method on close recordings
of CENSREC-1-C.

Table 4 Frame error rates for the energy-based method on close record-
ings of CENSREC-1-C.

method on a public database, CENSREC-1 [9]. This
database consists of noisy contiguous digit utterances in
Japanese. The recordings were done in two kinds of noisy
environments (street and restaurant), and high (SNR >
10 dB) and low SNR (−5 ≤ SNR ≤ 10 dB). For each of these
conditions, close and remote recordings were available [9].
The algorithm used is exactly the same as previous section,
and the online EM was initialized with the first second for
every file of the database.

First, the results for close recordings of several noise
conditions are given in Table 3. Each case has a total
length of 30 minutes approximately. From Table 3, it is
observed that the figures are much the same for low and
high SNR, both for restaurant and street environments in
the close recording case. The noise type seems more sig-
nificant than the SNR condition. We also compared the pro-
posed method with a method that uses energy instead of the
enhanced kurtosis as a feature. The results are given in Ta-
ble 4, which confirms that the enhanced kurtosis gives better
performances than energy.

Finally, as suggested by the designers of CENSREC,
we show a comparison with the baseline along with its ROC
for remote recordings, although our method is intended for
the close-talking condition. The ROC is computed for the
average between low and high SNR, and is plotted in Fig. 9.
The baseline uses a simple energy-based algorithm [9]. It
should be noted that this baseline method is an offline al-
gorithm, and the classification is done a posteriori knowing
the whole signal. This gives the baseline an advantage, how-
ever, our algorithm outperforms the baseline.

5. Conclusion

A new online method for VAD has been proposed. The
method uses HOS enhanced by autocorrelation to improve
the robustness against non-Gaussian noises. The use of HOS
for discriminating against far-field speech, which is a signif-
icant problem in human-to-human situations, has also been
investigated. The classification is done online by an online

Fig. 9 ROC of baseline vs. proposed method, in remote recordings con-
dition (low and high SNR averaged).

clustering method based on EM algorithm. The Expectation
step is replaced by a recursive stochastic approximation to
enable the algorithm to change its state for each new frame,
thus providing a noise estimation without requiring a sepa-
rate scheme for SNR estimation.

The method has been evaluated on two test sets, and
compared with an energy-based method and standard HOS.
On the in-house data, the robustness of the algorithm against
sparsity compared to the energy-based algorithm has been
confirmed. On CENSREC-1-C, the method has been con-
firmed to be robust with respect to SNR, while significantly
outperforming the energy-based algorithm for close record-
ings. For remote recordings, the method outperformed the
baseline, too.

This scheme can be further improved. Online EM es-
timation is not so reliable until some speech data are avail-
able. By explicitly considering prior knowledge and com-
paring models, Bayesian treatment of online EM may solve
this problem and provide better accuracy. This issue will be
addressed in the future work.
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