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LETTER

New Inter-Cluster Proximity Index for Fuzzy c-Means Clustering*

Fan LI•õa), Nonmember, Shijin DA•õ•õ, Student Member, Qihe LIU•õ, and Guowei YANG•õ, Nonmembers

SUMMARY This letter presents a new inter-cluster proximity index for 

fuzzy partitions obtained from the fuzzy c-means algorithm. It is defined 

as the average proximity of all possible pairs of clusters. The proximity of 

each pair of clusters is determined by the overlap and the separation of the 

two clusters. The former is quantified by using concepts of Fuzzy Rough 

sets theory and the latter by computing the distance between cluster cen-

troids. Experimental results indicate the efficiency of the proposed index.
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1. Introduction

The fuzzy c-means (FCM) algorithm [1] is the dominant 

method for fuzzy clustering. The aim of FCM is to partition 

a given set of data points (patterns) X={x1, x2,•c, xn} •¼ 

Rp into c clusters represented as fuzzy sets F1, F2,•c, Fc. 

In FCM, a fuzzy partition is denoted as (U,V). U=[uij] 

is called the partition matrix, where uij is the member-

ship value of xj belonging to Fi satisfying 

(j=1,2,•c,n) and (i=1,2,•c,c).

V={V1, V2,•c,Vc} is the set of centroids of the c clusters. 

Obviously, Fi(xj)=uij. The FCM objective function has 

the form of

where •a•E•a is a certain distance function and the exponent 

m>1 is called a fuzzifier. FCM iteratively updates U and 

V to minimize Jm (U,V) until a certain termination criterion 

has been satisfied.

In FCM, if c is not known a priori, a cluster validity 

index must be used to evaluate qualities of fuzzy partitions 

for different values of c to find out the optimal cluster num-

ber. In general, a validity index is a composition of an intra-

cluster similarity index and an inter-cluster proximity index. 

In most cited validity indices, e.g. the Xie-Beni index [2]

and the Fukuyama-Sugeno index [3], the inter-cluster prox-

imity of a fuzzy partition is considered as the cluster sepa-

ration strength and estimated by using the distance between 

cluster centroids (or its variations). But this kind of indices 

is not effective for measuring the proximity caused by the 

overlap between clusters (see [4], [5]). To overcome this 

shortcoming, another kind of index has been proposed in 

recent years [4], [5], in which the proximity of two clusters 

involves only membership values of each data point belong-

ing to the two clusters whereas the distance between cluster 

centroids is not taken into account.

Combining basic ideas of the above two kinds of in-

dices, in this letter we propose a new index to evaluate the 

inter-cluster proximity of a fuzzy partition. The proximity of 

two clusters consists of the overlap and separation measures, 

which are quantified by using concepts of Fuzzy Rough sets 

theory and the cluster centroids distance, respectively. The 

inter-cluster proximity of a fuzzy partition is the average 

proximity of all possible pairs of clusters. Experimental re-

sults indicate the efficiency of the proposed index.

2. Basic Notions

Let U be a nonempty finite set of objects and R an equiva-

lence relation on U. Let [x]R denote the equivalence class of 

x. The R-lower and R-upper approximations of a set X•ºU 

are defined as follows [6]: 

R(X)={x•ºU: [x]R•ºX}, (2)

R(X)={x•ºU: [x]R•¿X•‚0}. (3)

The approximation accuracy of the set X can be character-

ized numerically by the following coefficient [6]:

In [7], Dubois and Prade proposed Fuzzy Rough sets theory, 

which extends concepts of the classical Rough sets theory 

[6] to fuzzy information systems. Then, their definitions 

were generalized in [8].

Let U be a nonempty set of objects. A fuzzy binary 

relation R on U is called a T-similarity relation if R satisfies: 

(1) Reflexivity: R(x,x)=1,•Íx•¸U.

(2) Symmetry: R(x,y)=R(y,x),•Íx,y•¸U.

(3) T-Transitivity: R(x,z)•†T(R(x,y), R(y,z)), •Íx, y, z•¸U, 

where T is a triangular norm.
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Let F be a fuzzy subset of U and R a T-similarity re-

lation, where T is a lower semi-continuous triangular norm. 

The R-lower and R-upper approximations of F, denoted by 

two fuzzy sets R(F) and R(F) respectively, are defined as 

[8]:

R(F)(x)=infy•¸U IT{R(x,y), F(y)}, (5)

R(F)(x)=supy•¸U T {R(x,y), F(y)}, (6)

where IT is the residuation implication of T, i.e. IT(a,b)=

sup{c•¸[0,1]: T(a,c)•…b} for every a, b•¸[0,1].

3. Proposed Inter-Cluster Proximity Index

3.1 Motivations

An inter-cluster proximity index should indicate two kinds 

of information: the overlap and the separation between clus-

ters. The cluster centroids distance can measure them to 

some extent, but is not sufficient. Let's consider two fuzzy 

partitions (U(a), V(a)) and (U(b), V(b)), each of which con-

tains only two clusters, and cluster centroids distances are 

equal, i.e. •aV(a)1)-V(a)2)•a=•aV(b)1-V(b)2)•a. Obviously, by 

using the cluster centroids distance, the inter-cluster prox-

imity of (U(a), V(a)) equals to that of (U(b), V(b)), regardless 

of the possible difference in cluster overlap of the two par-

titions. In our opinion, since the cluster centroids distance 

provides useful but insufficient information about the inter-

cluster proximity, combining it with the overlap measure 

may provide preferable results.

3.2 Detailed Descriptions

In general, the distance between two data points can qualify 

their similarity, i.e. the longer distance between them, the 

less degree they being •gsimilar•h, and vice versa. Thus, we 

have the following definition.

Definition 1: Let X={x1, x2,•c, xn}•¼Rp be a given set 

of data points. A fuzzy binary relation S on X is defined as: 

•ÍXi, Xj•¸X,

where dmax=maxi,j{•aXi-Xj•a).

Proposition 1: Sis a TL-similarity relation, where TL is the 

Lukasiewiczt-norm: TL(a,b)=max{0, a+b-1} for every 

a, b•¸[0,1].

Proof. Reflexivity and Symmetry are obvious. We 

prove TL-transitivity as follows. •ÍXi, Xj;,Xk•¸X, we have: 

TL(S (Xi,Xj), S (Xj,Xk))=max{0,1-/dmax}.

 By the triangle inequality, •a

 SO TL(S(Xi,Xj), S(Xj,Xk))•…

max{0,1-•aXi-Xk•a/dmax}=S(Xi,Xk). Thus, S is a TL-similarity re-

lation. • 

Let F be a fuzzy subset of X. The S-lower and S-upper 
approximations of F are denoted as: 

S(F)(Xi)=inf ITL{S(Xi,Xj), F(Xj)}, (8)

S(F)(Xi)=sup TL{S(Xi,Xj), F(Xj)}, (9)

where ITL(a,b)=min{1,1-a+b} for every a, b•¸[0, 1].

Like the approximation accuracy defined by Eq. (4), we 

have the following definition.

Definition 2: Let X={x1, x2,•c, xn}•¼Rp be a given set 

of data points and F a fuzzy subset of X. The approximation 

accuracy of F is defined as: 

Here, •bA•b=ExA(x) is the cardinality of a fuzzy set A.

It is easy to prove that •ÍXi•¸X, S(F)(Xi) •…S(F)(Xi). So 

ƒ¿s (F) •…1.

In general, S reflects the geometric structure of all data 

points in X. Intuitively, we can use the above concepts to 

estimate the proximity of two clusters.

Definition 3: Let X={x1, x2,•c, xn}•¼Rp be a given set 

of data points and (U,V) a fuzzy partition. For two clusters 

Fi and Fj, the proximity of them is defined as: 

where Fi•¿Fj is defined as: (Fi•¿Fj)(Xi)=Fi(Xi)•ÈFj(Xi).

In Eq. (11), the denominator indicates the separation 

strength of Fi and Fj. The numerator indicates the overlap 

strength of Fi and Fj, in which 1/ƒ¿
s(Fi•¿Fj) acts as a punish-

ing factor. In general, a low value of ƒ¿s (Fi•¿Fj) suggests 

that there exists X'•ºX, •Íx•¸X', there exists at least one 

data point close to x but its membership value belonging to 

Fi•¿Fj is far different to that of x. This means a low level 

of consistency of the overlapping part. So1/ƒ¿
s(Fi•¿Fj) is intro-

duced to assign more weight to less consistent overlapping 

part. A low value of P(Fi,Fj) indicates low proximity of Fi 

and Fj.

Based on the above definition, we define the inter-

cluster proximity of a fuzzy partition (U,V) as follows: 

Definition 4: Let X={X1, X2,•c, Xn)•¼Rp be a given set 

of data points, (U,V) a fuzzy partition of X, and c the num-

ber of clusters. The proposed inter-cluster proximity index 

of (U,V) is defined as: 
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Vproposed is the average inter-cluster proximity of all possi-

ble pairs of clusters. A low value of Vproposed indicates low 

inter-cluster proximity of the corresponding fuzzy partition 

of X.

4. Experimental Results

In order to evaluate the performance of the proposed index, 

we applied Vproposed and several well-known cluster validity 

indices, including the extended Xie-Beni index (VXB ,m) [2], 

[9], the Fukuyama-Sugeno index (VFS,m) [3], the extended 

Kown index (VKwon ,m) [10] and the Kim index (VKim) [5], 

to fuzzy partitions obtained from FCM for three data sets. 

Functional descriptions of the above indices are listed in Ta-

ble 1.

The first two data sets are synthetic data sets, which are 

shown in Figs. 1 and 2 respectively. The syntheticc data set 1 

consists of 50 data points, with five well separated clusters. 

The synthetic data set 2 consists of 160 data points, with 

eight overlapping clusters.

The third one is a real data set: the IRIS data set [11].

It represents three categories of irises, with 50 samples per 

category. But it is known that two of the categories have 

substantial overlap while the third is well separated from 

the other two [9]. Thus, the most suitable cluster number is 

three or two.

For the mentioned data sets, we made several runs of 

FCM for different values of c. For a particular c and data 

set, FCM started from the same initial partition and ran for 

different values of m. We adopted Pal and Bezdek's sugges-

tion [9]: m•¸[1.5, 2.5], Cmin=2 and Cmax•…•ãn. Thus, 

Cmax was set to 7,12 for the two synthetic data sets respec-

tively and 12 for the IRIS data set. In all experiments, the 

distance function•a•E•a was defined as Euclidean distance, 

and if an improvement in Jm(U,V) less than 10-5 was found, 

FCM stopped.

The experimental results are shown in Tables 2-4. One 

can see that: 

(1) VXB,m, VKim and Vproposed correctly identify the optimal 

cluster number (denoted as c* in the rest of this letter) of the 

synthetic data set 1 for all values of m, whereas VFS,m and 

VKwon,m fail to do so.

(2) None of the five indices correctly identify c* of the syn-

thetic data set 2 for all values of m. VKim fails to find c* for 

all values of m. In the other four indices, Vproposed finds c* 

on seven values of m, which shows the best performance. 

Although to some extent c=8 with m=1.5 can be viewed as 

an outlier under the assumption that the proposed index has 

monotonically decreasing feature, Vproposed still finds c* for 

the cases of m•†2. This result equals to the sub-optimal 

cluster number estimation obtained by the extended Kown 

index.

(3) All indices except VFS,m correctly identify c* of the IRIS 

data sets for all values of m.

Overall, the proposed index can yield more desirable 

cluster number estimation in comparison to the other four 

indices.

Table 1 Four tested validity indices.

Fig. 1 Synthetic data set 1 (optimal cluster number is 5).

Fig. 2 Synthetic data set 2 (optimal cluster number is 8).

Table 2 Preferable values of c chosen by each index for Synthetic data 

set 1:c=2-7.

5. Conclusions

In this letter we propose a new index to evaluate the inter-

cluster proximity of a fuzzy partition obtained from FCM. 
The proposed index is defined as the average proximity of all
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Table 3 Preferable values of c chosen by each index for Synthetic data 

set 2:c=2-12.

Table 4 Preferable values of c chosen by each index for IRIS data set: c
=2-12 .

possible pairs of clusters. When quantifying the proximity 
of each pair of clusters, two kinds of information, the over-

lap and the separation of the two clusters, are considered. 
The former is quantified by using concepts of Fuzzy Rough 

sets theory and the latter by computing the distance between 

cluster centroids. Experimental results show that contrasted 

with some existing cluster validity indices involving only

the membership value or the cluster centroids distance (in-

cluding its variations) to measure the inter-cluster proximity, 

the proposed index provides a superior cluster number esti-

mation. In future works, we plan to apply the basic ideas de-

scribed in this letter to the cluster validity analysis for crisp 

clustering algorithms.
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