
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.3 MARCH 2008

 549

Evaluation of aNoise-Robust Multi-Stream Speaker Verification 

Method Using F0 Information

PAPER Special Section on Robust Speech Processing in Realistic Environments

Taichi ASAMI•õ*a), Nonmember, Koji IWANO•õ, Member, and Sadaoki FURUI•õ, Fellow

SUMMARY We have previously proposed a noise-robust speaker ver-
ification method using fundamental frequency (F0) extracted using the 
Hough transform. The method also incorporates an automatic stream-
weight and decision threshold estimation technique. It has been confirmed 
that the proposed method is effective for white noise at various SNR con-
ditions. This paper evaluates the proposed method in more practical in-
car and elevator-hall noise conditions. The paper first describes the noise-
robust F0 extraction method and details of our robust speaker verification 
method using multi-stream HMMs for integrating the extracted F0 and cep-
stral features. Details of the automatic stream-weight and threshold es-
timation method for multi-stream speaker verification framework are also 
explained. This method simultaneously optimizes stream-weights and a de-
cision threshold by combining the linear discriminant analysis (LDA) and 
the Adaboost technique. Experiments were conducted using Japanese con-
nected digit speech contaminated by white, in-car, or elevator-hall noise 
at various SNRs. Experimental results show that the F0 features im-
prove the verification performance in various noisy environments, and that 
our stream-weight and threshold optimization method effectively estimates 
control parameters so that FARs and FRRs are adjusted to achieve equal 
error rates (EERs) under various noisy conditions.
key words: speaker verification, F0 information, multi-stream HMMs, 
stream-weight and threshold optimization, Adaboost

1. Introduction

Increasing noise-robustness is one of the key issues for con-
structing real-world speaker verification systems. Since F0 
features are less sensitive to channel distortions or addi-
tive noise than spectral features, they are expected to be 
useful for increasing the robustness of speaker recogni-
tion. Various methods using fundamental frequency (F0) 
in combination with spectral features have been proposed to 
achieve high-performance speaker recognition systems [1]-

[9]. Carey et al. proposed a robust speaker recognition 
method using F0 features to cope with the effect of handset 
variation on telephone speech [2]. Kyung and Lee showed 
that F0 features increased robustness of VQ-based speaker 
identification against additive noise [4]. We have proposed a 
noise-robust speaker verification method using multi-stream 
HMMs for integrating F0 and spectral information [10]**. 
The F0 extraction method and multi-stream HMM construc-
tion method used in the verification scheme are based on our 

previous work on noise-robust speech recognition [12], [13]. 

The Hough transform [14], a robust image processing tech-
 nique, was used for reliably extracting F0 values. In [10], 

 we have confirmed that the F0 features yield improvement 
 of speaker verification performance in white noise at various 
 SNR conditions.

In order to construct practical multi-stream speaker 
 verification systems, optimum system parameters, such as 
 stream-weights of multi-stream HMMs and decision thresh-
 olds, need to be estimated before the verification pro-
 cess [15], [16]. We have proposed an automatic stream-

 weights and threshold estimation method for multi-stream 
 speaker verification [17], using the linear discriminant anal-

 ysis (LDA) [18] and the Adaboost technique [19]. In this 
 method, the stream-weights and the threshold are automat-
 ically optimized according to the noise conditions of a de-
 velopment set. Since the optimum threshold of the multi-
 stream speaker verification is variable according to the set-
 ting of stream-weights, the threshold and the stream-weights 
 need to be simultaneously estimated. The threshold is esti-

 mated so that the false acceptance rate (FAR) is equal to the 
 false rejection rate (FRR) in the proposed method. In [17], 

 we have confirmed that this method can accurately optimize 
 the stream-weights and the threshold in white noise at vari-
 ous SNR conditions.

In this paper, additional experiments in more prac-
 tical in-car and elevator-hall noise conditions are con-
 ducted for evaluating performance of our proposed multi-
 stream speaker verification method incorporating an auto-

 matic stream-weights and threshold optimization technique.
This paper is organized as follows. Section 2 explains 

 a speaker verification method using multi-stream HMMs, 
 which integrates spectral and noise-robust F0 features. In 
 Sect. 3, an automatic stream-weight and threshold optimiza-
 tion method based on the LDA and the Adaboost is ex-

 plained. Experimental results are presented in Sect. 4, and 
 Sect. 5 concludes this paper.

2. Speaker Verification Using F0 Information

We have proposed a noise-robust F0 extraction method and 
 an effective method for integrating spectral and F0 informa-
tion, and effectiveness of these methods has been confirmed 

 for speech recognition [11], [ 12]. These methods have also 
 been implemented for speaker verification [10]. Details of
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the methods are described below.

2.1 Noise-Robust F0 Extraction Method Using Hough 

Transform 

Cepstral peaks extracted independently for each short pe-

riod of speech have been widely used to extract F0 values. 

This method often causes errors, including half pitch, dou-

ble pitch and drop outs, for noisy speech . Since F0 con-

tours have temporal continuity in voiced periods, the Hough 

transform [14], taking advantage of its continuity, applied 

to time-cepstrum images is expected to have robustness in 

extracting pitch in the noisy environment. The Hough trans-

form is an image processing technique to robustly extract 

parametric patterns, such as lines, and ellipses, from a noisy 

image [20].

Speech waveforms are sampled at 16 kHz and trans-

formed to a sequence of 256-dimensional cepstral vector. A 

32 ms-long Hamming window is used to extract each frame 

at every 10 ms. A nine-frame moving window is applied at 

every frame interval to extract a time-cepstrum image used 

for line information detection. The time-cepstrum image is 

used as the pixel brightness image for the Hough transform. 

An F0 value is obtained from a cepstrum index at the cen-

ter point of the detected line. Since the moving window has 

nine frames, time continuity over 90 ms is taken into account 

in this method. More details of the F0 extraction method is 

explained in [13].

By using this method, F0 extraction error can be signif-

icantly reduced in comparison with the conventional method 

in which cepstral peaks are chosen at each frame indepen-

dently .[13]. It has also been confirmed that the Hough 

transform-based F0 extraction method yields better perfor-

mance than the ESPS get_f0 function•õ in various noise con-

ditions [21]. Although the Hough transform-based method 

requires 10 times more computational cost than the conven-

tional method, the computational cost can be reduced by ad-

justing the threshold value to control the number of points 

to be used for the transformation.

2.2 Noise-Robust Speaker Verification Using Multi-

Stream HMMs

2.2.1 Japanese Connected Digit Speech

The proposed method is evaluated using four-connected-

digit speech in Japanese. In Japanese connected digit 

speech, two consecutive digits usually make one prosodic 

phrase. Figure 1 shows an example of an F0 contour of 

four-connected-digit speech. The first two digits, •g1•h and 

•g4•h, make the first prosodic phrase, and the latter two digits, 

•g3•h and •g8•h, make the second prosodic phrase. The transi-

tion of F0 is represented by CV syllabic units, and each CV 

syllable can be prosodically labeled as •grising•h or •gfalling•h.

Fig.1 An example of F0 contour of four-connected-digit speech in 

Japanese.

2.2.2 Integration of Segmental and Prosodic Features

Each segmental feature vector has 25 elements consisting 

of 12MFCC (Mel Frequency Cepstral Coefficients), their 

delta and the delta log energy. The window length is 25 ms 

and the frame interval is 10 ms. Cepstral mean subtraction 

(CMS) is applied to each utterance.

Simultaneously, two kinds of prosodic features are ex-

tracted: log F0 and ƒ¢ log F0. It has been confirmed that 

speaker verification performance is improved by using both 

prosodic features in comparison with the method using ei-

ther of the features [10]. A segmental-prosodic feature vec-

tor is built by combining the segmental and prosodic feature 

vectors at each frame.

2.2.3 Integration of Segmental and Prosodic Models

Since F0 transitions are easily represented by using CV syl-

labic units in Japanese connected digit speech, syllabic unit 

HMMs are used for modeling segmental and prosodic fea-

tures in this study. This method can also be applied to other 

languages by changing the modeling units depending on the 

characteristics of the F0 transitions of the target language.

An integrated syllable HMM denoted by •gSP-HMM 

(Segmental-Prosodic HMM)•h is modeled by taking both 

the syllable context and the F0 transitions into account. 

Each Japanese digit uttered continuously with other digits 

can be modeled by a concatenation of two-syllable units 

(morae). Even •g2•h (/ni/) and •g5•h (/go/) can be modeled 

by two syllables, since their final vowel is usually length-

ened as /ni:/and/go:/. The syllable context is considered 

only within each digit in our experiment. Therefore, the 

SP-HMM can be denoted by either a left-context dependent 

syllable •gLC-SYL, PM•h or a right-context dependent syllable 

•g SYL+RC, PM•h, where •gPM•h indicates an F0 transition pattern 

which is either rising (U) or falling (D). For example, the first 

syllable /i/ of •g1•h (/ichi/) which has rising F0 transition is 

denoted as •gi+chi , U•h. Each SP-HMM has a standard left-

to-right topology with n•~3 states, where n is the number of

•õ The ESPS get_f0 function is one of the standard robust F0 ex-

traction methods. It uses the normalized cross-correlation function 

and dynamic programming [22].
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Table 1 The list of integrated models (SP-HMMs).

Fig.2 Building SP-HMMs using a tied-mixture technique. S-HMMs and P-HMMs are trained using 

segmental and prosodic features, respectively.

phonemes in the syllable. Table 1 shows a list of integrated 

models. •gsil•h denotes a long pause that appears at the be-

ginning and end of an utterance, and •gsp•h denotes a short 

pause that appears between digits. The •gsil•h model has 3 

states, and the •gsp•h model has 1 state.

SP-HMMs are modeled as multi-stream HMMs. In 

recognition, the log-probability bj(Otsp) of generating the t-

th frame segmental-prosodic observation Otsp at state j is 

calculated by:

bj(Ot5s)=λsbj(Ots)+λpbj(Otp) (1)

where bj(Ots) is the log-probability of generating a segmen-

tal feature vector Ots, and bj(Otp) is the log-probability of 

generating a prosodic feature vector Otp. ƒÉs and ƒÉp are 

weighting factors for the segmental and prosodic streams 

respectively.

Syllable HMMs for segmental and prosodic feature 

vectors are separately made and combined to build SP-

HMMs using a tied-mixture technique as follows:

i. •gS-HMMs (Segmental HMMs)•h are trained by seg-

mental features only. They can be denoted by either 

•g LC-SYL,*•h or •gSYL+RC,*•h. Here, •gk•h (wild card) 

means that HMMs are built without considering the F0 

transitions, •gU•h and •gD•h. The total number of S-HMM 

states is the same as the number of SP-HMM states.

ii. Training utterances are segmented into syllables by the 

forced-alignment technique using the S-HMMs, and 

one of the F0 transition labels, •gU•h or •gD•h, is given to 

each segment according to the actual F0 pattern.

iii. •gP-HMMs (Prosodic HMMs)•h are trained by prosodic 

feature vectors within these segments, according to the 

F0 transition label. Six separate models, •g*-*, U•h, 

•g *+*
, U•h, •g*-*, D•h,•g*+*,D•h, •gsil, and •gsp•h are 

made. Each P-HMM has a single state.

iv. The S-HMMs and P-HMMs are combined to make SP-

HMMs. Gaussian mixtures in the segmental stream of 

SP-HMMs are tied with corresponding S-HMM mix-

tures, while the mixtures in the prosodic stream are tied 

with corresponding P-HMM mixtures. Figure 2 shows 

the integration process. In this example, the mix-

tures of SP-HMM •gi+chi , U•h are tied with S-HMM 

•g i+chi, *•h and P-HMM •g*+*, U•h.

2.2.4 Verification Score

A verification score after observing a feature set O is de-
noted by q(O), which is calculated as

q(O)=l(O|C)-l(O|G) (2)

where l(O|C) is a frame-averaged log-likelihood value with 
claimed speaker's SP-HMM C and l(O|G) is a frame-
averaged log-likelihood value with general speaker's SP-
HMM G. The likelihood values are calculated under the 
assumption that each speaker can utter arbitrary four con-
nected digits. This method can be extended to a text-

prompted speaker verification system, in which a sequence 
of four digits to be spoken is prompted by the system and 
verification decision is made by combining a recognized
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word sequence and voice similarity to the claimed speaker.

The log-likelihood values for a segmental-prosodic fea-

ture vector Osp are defined using Eq. (1) as follows:

l(Osp|C)=ƒÉsl(Os|C)+ƒÉpl(Op|C), (3)

l(Osp|G)=ƒÉsl(Os|G)+ƒÉpl(Op|G). (4)

Then, the verification score q(Osp) is calculated as 

q(Osp)=ƒÉsq(Os)+ƒÉpq(Op). (5)

If the score is larger than a threshold value ƒÆ, the 

speaker is accepted as the claimed speaker. Therefore, the 

discriminant function is z=q(Osp)-ƒÆ. If z is positive, the 

speaker is accepted, and if it is less than or equal to 0, the 

speaker is rejected as being an imposter. In the experiments 

in this paper, the stream-weights are constrained by

(6)

3. Automatic Stream-Weight and Threshold Optimiza-

tion Methods

In real-world applications, the stream-weights ƒÉs, ƒÉp and 

the decision threshold ƒÆ parameters need to be estimated 

before verification [15], [16]. In this section, our proposed 

method for automatically optimizing these parameters using 

the LDA and the Adaboost techniques [17] is explained.

3.1 Estimation by the LDA

As described in the previous section, speaker verification by 

SP-HMM uses the following discriminant function z:

(7)

(8)

Since z is a linear function, the stream-weights and the 

threshold can be estimated as coefficients of a linear func-

tion obtained by the LDA. The estimation process is as 

follows. First, segmental and prosodic scores, q(Os) and 

q(Op), calculated from both claimed speaker's and im-

poster's data included in the development set are plotted 

in a two-dimensional space composed of q(Os) and q(Op). 

Then, the LDA is applied to the space so as to obtain the dis-

criminant function z which distinguishes score distribution 

of claimed speakers from that of imposters.

Since the obtained function z=asq(Os)+apq(Op)-b 

does not satisfy as+ap=1, it is transformed so that the sum 

of the coefficients becomes 1 according to the constraint 

Eq. (6). The estimated values of the stream-weights and the 

threshold are

(9)

Thus, all the parameters are estimated according to the LDA 

criterion which maximizes discrimination performance be-

tween claimed speakers and imposters.

In the boosting process described in the next subsec-
tion, multiple discriminant functions obtained from boost-
ing iterations are integrated. The normalization by Eq. (9) is 
necessary for correctly weighting these discriminant func-
tions in the integration process.

There is no guarantee that the denominator as+ap does 
not become 0, and if it becomes 0, some special processing 
such as flooring needs to be applied. However, almost all 
the actual as and ap values estimated in Sect. 4.5 and 4.6 
were positive, and only a few negative values were observed 
in several low SNR conditions. Hence, practically as+ap 
never became 0.

3.2 Optimization by the Adaboost

The Adaboost, a class of boosting algorithms, constructs 

a high performance classifier by sequentially combining 

trained simple classifiers [19]. In our optimization method, 

the linear discriminant functions obtained by the LDA are 

used as simple classifiers for the Adaboost. By doing so, 

we can estimate more accurate weights and thresholds than 

those obtained by only using the LDA. In this paper, the 

stream-weights and the threshold are optimized to achieve 

equal error rates (EERs) at which FAR is equal to FRR.

Details of the optimization algorithm are as follows, 

where n represents the number of data in the develop-

ment set and K represents the number of iterations. Let 

{xi}(i=1,•c,n) be the development data plotted into the 

two-dimensional space composed of q(Os) and q(Op), and 

{w(k)i}(i=1,•c,n, and k=1,•c,K) be the weights of each 

data in k-th iteration.

i. Initialize the weights of data w(1)i=1/n.

ii. Iterate the following processes for k=1,•c,K.

a.Choose n samples from {xi} allowing duplications,

using {w(k)i} as a probability distribution to make

the re-sampled data {x'i(k)}.

b.Obtain a linear discriminant function

(10)

by applying the LDA to the re-sampled data {x'(k)i}, 

where ƒÂk-1 is an offset value for adjusting FAR 

and FRR to EER. The offset value is obtained

from the {k-1}-th boosting iteration, where the 

initial value ƒÂ0 is set at 0. 

c. Classify all the data in the development set {xi} us-

ing zk, and calculate FAR, FRR, and the weighted 

discriminant errors •¸k, •¸FA, and •¸FR:

(11)

(12)

(13)
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where ƒ¡iFA and ƒ°i
FR are the summations for all i 

with the results of FA and FR, respectively, and 

ƒ°imiss is the summation for all i with the classi-

fication error, FA or FR, in the classification of 

{xi}. ƒ°iimp and ƒ°ics are the summations for all i 

belonging to imposters and claimed speakers, re-

spectively. The offset value ƒÂk is determined by 

the following equation:

where a is a scaling factor of the offset value.
d. Calculate uk as the weight of zk by the following 

equations:

where the cost function c(x) is defined by the fol-
lowing equation:

e.Update {w(k)i} by the following formula:

w(k+1)i=W(k)ie-c(errk)(i:classify xi accurately)W(k)
iec(errk)(i:misclacsify Xi)

 (20)

where errk is a weighted error rate in k-th iteration 

calculated as follows:

f.Normalize{W(k+1)i}to meetΣni=1W(k+1)i=1.

iii. Let the conclusive classifier z be the weighted majority 
vote of zk:

iv. Normalize the coefficients of z so that the sum of them

becomes 1.

v. Set the normalized coefficients as the estimated stream-

weights and the threshold.

In the original Adaboost algorithm, the conclusive clas-

sifier z is defined by z=Σkk=1{uk×sign(zk)}. However, this

cannot be directly used for stream-weight estimation, since

its form is not a linear discriminant function. Thus, we ap-

proximate z by z=ΣKk=1(ukzk) as shown in Eq. (22).

Fig.3 Training, testing and development sets for the verification experi-
ment when the speaker#01 is used as the claimed speaker.

4. Experiments 

4.1 Experimental Conditions 

Speech data were recorded in 5 sessions separated by inter-

vals of approximately one month. The data were collected 

from 36 male speakers and sampled at 16 kHz with a 16 bit 

resolution. Each speaker uttered 50 four-connected-digit 

strings in Japanese at each session. Each digit appeared the 

same number of times in this set of 50 randomly arranged 

four digit strings.

For each speaker, 150 strings recorded at sessions 1•`3 

were used for training and 100 strings recorded at sessions 

4 and 5 were used for testing.

The database was separated into three groups in terms 

of speakers as shown in Fig.3. The figure shows the case 

where speaker #01 was used as the claimed speaker. The 

general speaker's model was trained using utterances by all 

the speakers in the speaker group 2, which did not include 

the claimed speaker, and the stream-weights and the thresh-

old were optimized using the data of speaker group 3. Each 

speaker model of speaker group 3 was trained using utter-

ances from sessions 1•`3 for the parameter optimization. 

Utterances from sessions 4 and 5 of group 3 were used as 

estimation data for the parameter optimization. Another 

experiment was conducted in which the general speaker's 

model was trained by the data of speaker group 3 and the 

weights and the threshold were optimized by the data of 

speaker group 2. Next, group 1 & 3 are used for training 

and development for testing group 2, and finally group 1 & 

2 are used for training and development for testing group 3. 

There are six combinations of the training set, the develop-

ment set and the testing set. The result averaged over the six 

experiments was used for evaluation.

White noise was added to the training set at a 30 dB 

SNR level to increase robustness against noisy speech, and 

the development and testing sets were contaminated with
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(a) SP-HMM (b) S-HMM & P-HMM

Fig.4 Flow of speaker verification process. (a): The verification score gsp(Osp) is calculated from 

a segmental-prosodic feature vector Osp. (b): The scores qs(O) and g0(Op) are separately calculated 

from segmental and prosodic feature vectors, OS and Op, and integrated afterward.

white, in-car or elevator-hall noise at 5, 10, 15, 20 and 30 dB 

SNR conditions. The latter two noises are included in the 

noise database distributed by the Japan Electronic Industry 

Development Association (JEIDA) [23]. The development 

set contaminated with the same noise at the same SNR as the 

testing set was used for automatically optimizing the stream-

weights and the decision threshold.

In our preliminary experiments using S-HMMs with a 

white noise SNR of 30 dB, the most accurate verification 

performance was achieved using S-HMMs with four mix-

tures. Thus four mixture S-HMMs were also used in the 

following experiments. Each mixture component for all the 

HMMs (S-HMMs, P-HMMs, and SP-HMMs) was modeled 

using a diagonal-covariance Gaussian distribution.

4.2 Effectiveness of Multi-Stream HMMs

We first investigated the effectiveness of using multi-stream 

HMMs to integrate segmental and prosodic information. 

A two-dimensional prosodic feature vector, consisting of 

log F0 and ƒ¢ log F0 extracted by the Hough transform, was 

used for this experiment.

The EERs of the following two cases were compared:

(a) The case where the qsp (Osp) obtained from SP-HMMs 

is used as the verification score.

(b) The case where ƒÖsqs(OS)+ƒÖpqp(Op) which is the 

weighted sum of qs(OS) and qp(O) obtained separately 

from S-HMMs and P-HMMs is used as the verification 

score.

The subscript m of qm represents the model from which the 

score is calculated, S-HMMs, P-HMMs or SP-HMMs. In 

this experiment, m was either s, p or sp. (a) and (b) in Fig.4 

show the flow charts of the speaker verification process in 

each case. The integration weights, ƒÖs and ƒÖp, and the 

stream-weights, ƒÉs and ƒÉp, were manually optimized in the 

0 to 1 range using the testing set ex post facto for each noise

Table 2 Comparison of the EERs (%) of the case where the S-HMMs 
and P-HMMs are separately used with the case where the SP-HMMs are 

used.

condition. The number of mixtures in prosodic models was 

optimized for each case at the white noise 30 dB SNR con-

dition; the best number of mixtures was four in both cases.

The results in the white noise, in-car noise and elevator-

hall noise conditions are shown in Table 2. The symbol 

•g **•h indicates that the EER obtained by the feature level in-

tegration implemented by SP-HMMs is significantly better 

at 1% significance level than that obtained when the scores 

obtained separately from S-HMMs and P-HMMs are inte-

grated afterward.

These results show that the speaker verification method 

using multi-stream HMMs for integrating segmental and 

prosodic information is effective in most of the noise con-

ditions, except for a small number of conditions where 

a minor degradation is observed. Our previous research 

on speech recognition [12] showed that using multi-stream 

HMMs which integrated segmental and prosodic features 

yielded better time alignment of digits in noisy conditions. 

Probably this is also the reason why EERs are decreased by 

using SP-HMMs in speaker verification.
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Table 3 Comparison of the EERs when using the prosodic feature vector 

with/without the Hough transform.

4.3 Effectiveness of the Hough Transform

For examining the effect of the Hough transform on verifica-

tion performance, a two-dimensional prosodic feature vec-

tor was extracted for each frame without using the Hough 

transform; it consisted of log F0, extracted by choosing 

highest cepstral peaks, and ƒ¢ log F0, computed by linear 

smoothing of the log F0 values within a 90 ms window.

The comparisons of the EERs when using the feature 

vector with using 'the Hough transform (H-LD) and without 

using it (NH-LD) are shown in Table 3. SP-HMMs were 

used for this experiment. Stream-weights were manually 

optimized in the 0 to 1 range using the testing set ex post 

facto for each noise condition. In the tables, the EERs with 

•g **•h indicate that results with the Hough transform are sig-

nificantly better than that without the transform at 1% sig-

nificance level.

These results indicate that the Hough transform is ef-

fective in F0 extraction for noise-robust speaker verification.

4.4 Effects of the Prosodic Stream Weight

Figure 5 shows the EERs as a function of the prosodic 

stream weight ƒÉp at each SNR in the white noise environ-

ment. Improvements from baseline (ƒÉp=0) are observed 

over a wide range: 0.0<ƒÉp<0.9 in all SNR conditions. 

Since the performance is not sensitive to the change of the 

stream weight in the range of 0.0<ƒÉp<0.9 in all SNR 

conditions, it is confirmed that the proposed speaker verifi-

cation method is reliable against the change of the stream 

weight.

4.5 Effectiveness of Adaboost-Based Stream-Weights and 

the Threshold Optimization Method

The stream-weight and threshold optimization method was 

evaluated under various noise conditions. In this experi-

ment, the number of iterations and the scaling factor a ƒ¿ to

Fig.5 The EERs as a function of the prosodic stream weight (ƒÉp) at each 

SNR in the white noise environment.

determine the offset value ƒÂk were experimentally set to 200 

and 0.005, respectively.

Table 4 shows decision costs C=0.5•EFAR+0.5•EFRR 

obtained by using the proposed optimization method in each 

noise condition. Since the target of the FAR and the FRR is 

an EER in this experiment, the weights of both the FAR and 

the FRR are 0.5. The results in •gLDA only•h indicate that us-

ing the stream-weights and the threshold estimated by only 

the LDA; and, the results in •gAdaboost•h were obtained by 

the proposed optimization method combining the boosting 

technique. The bottom line shows the target decision costs 

which are obtained when the stream-weights and the thresh-

old were manually optimized for the testing set ex post facto 

so that the EERs were minimized.

The results show that the Adaboost-based optimization 

method outperforms the method using only the LDA in most 

of the SNR conditions with white and elevator-hall noise. In 

an in-car noise environment, since the method using only the 

LDA is effective enough in adjusting the FARs and FRRs to 

the target EERs, the Adaboost-based method does not fur-

ther improve them.

4.6 Effects of the Number of the Adaboost Iterations

Figures 6 (a), (b), and (c) show FARs and FRRs for the de-

velopment set as a function of the number of Adaboost itera-

tions•õ at 15 dB SNR condition in white, in-car, and elevator-

hall noise environment, respectively.

FARs and FRRs smoothly converges to the EERs. 

These results indicate that the proposed method is stable 

over a variable number of Adaboost iterations.

5. Conclusions

This paper has evaluated a speaker verification method 

using multi-stream HMMs which combine segmental and 

prosodic features in various noise conditions. This method 

uses an automatic stream-weight and threshold optimization 

method based on the LDA and the Adaboost approaches.

•õ They have been denoted by •gFARk•h and •gFRRk•h in Eqs. (11) 

and (12).
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Table 4 Comparison of the decision costs with different stream-weights and threshold optimization 

methods in various SNR conditions.

(a) White noise 15 dB. (b) In-car noise 15 dB. (c) Elevator-hall noise.

Fig.6 Transition of FAR and FRR when the number of Adaboost iterations increases at 15 dB SNR 

condition. ((a) white noise, (b) in-car noise, and (c) elevator-hall noise)

The prosodic features are extracted by an F0 feature extrac-
tion technique based on the Hough transform. Experimental 
results using Japanese connected digit utterances show that: 
1) the Hough transform is effective for increasing robustness 
in extracting the F0 features at various noise conditions; 2) 
the multi-stream verification method is robust against the 
change of the stream weight; 3) the Adaboost-based param-
eter optimization method is effective in white and elevator-
hall noise conditions; and 4) the optimization method is sta-
ble over the variation of the number of Adaboost iterations.

Our future work include: 1) investigating prosodic fea-
tures other than F0-based features, such as durations; 2) im-
proving the SP-HMM topology; 3) using voiced/unvoiced 
information; 4) improving the stream-weight and threshold 
optimization algorithm so that FAR-FRR ratio can be freely 
adjusted; 5) evaluating performance when applying the pro-

posed optimization method to multi-stream speaker verifi-
cation systems using a larger number of streams; 6) investi-

gating a parameter optimization method using a testing set 
without having labelled speaker IDs, instead of using a de-
velopment set; 7) generalizing the proposed method so that 
it can be applied to speaker verification tasks using arbitrary 
words or sentences; and 8) evaluating performance of the 

proposed method on real-world data recorded under actual 
noisy environment.
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