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SUMMARY The accuracy of automatic speech recognition in a car is 

significantly degraded in a very low SNR (Signal to Noise Ratio) situa-

tion such as •gFan high•h or •gWindow open•h. In such cases, speech signals 

are often buried in broadband noise. Although several existing noise re-

duction algorithms are known to improve the accuracy, other approaches 

that can work with them are still required for further improvement. One of 

the candidates is enhancement of the harmonic structures in human voices. 

However, most conventional approaches are based on comb filtering, and it 

is difficult to use them in practical situations, because their assumptions for 

F0 detection and for voiced/unvoiced detection are not accurate enough in 

realistic noisy environments. In this paper, we propose a new approach that 

does not rely on such detection. An observed power spectrum is directly 

converted into a filter for speech enhancement, by retaining only the local 

peaks considered to be harmonic structures in the human voice. In our ex-

periments, this approach reduced the word error rate by 17% in realistic 

automobile environments. Also, it showed further improvement when used 

with existing noise reduction methods.
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1. Introduction

Automatic speech recognition in a car shows significant 

degradation in the following cases:

1. Simultaneous voices from passengers

2. Sounds coming from a car radio, TV, or CD player

3. Very low SNR situations such as •gFan high•h" or •gWin-

dow open•h

For Cases 1 and 2, beam former [1] and echo canceller [2] 

technologies are expected to solve the problems. However 

in Case 3, the speech signals are often buried in noise, 

and it is difficult to obtain sufficient recovery only with 

existing noise reduction algorithms such as a Wiener Fil-

ter [3] or Spectral Subtraction (SS) [4]. Therefore, for fur-

ther improvement, different approaches beyond reducing 

noise should be combined with existing noise reduction 

algorithms.

One of the candidates is enhancements of the harmonic 

structures in human voices. Comb filtering [5] and its vari-

ants [6] were proposed and showed good performance, espe-

cially in mixed speech cases. However, it is not commonly 

integrated into commercial ASR products, and especially 

not for automobiles. This is because designing the comb fil-

ter relies on the accurate estimation of F0 (the fundamental 

frequency) and the accurate discrimination between voiced 
and unvoiced speech. It was reported that errors at this stage 
have detrimental effects on the performance [7]. Szymanski 
et al. proposed Comb Filter Decomposition [8] that does not 
require F0 estimation, but their experiment was limited to 
white Gaussian noise. Also, they used comb filtering in the 
time domain, which does not allow existing noise reduction 
algorithms to preprocess the input for the comb filter in the 
spectral domain.

Another candidate would be a matching algorithm to 

put larger weights on frequencies having larger spectral 
powers as the decoder calculates likelihoods [9], [10]. This 
is based on the assumption that frequencies having more 
spectral power are noise robust and most likely to be the 
formant frequencies in voiced speech frames. Huang et al. 
enhanced the logic for the MFCC domain [11], but this in-
volved adding autocorrelation into their decoding process.

In this paper, we propose a new approach for the speech 
enhancement. It uses a filter designed to enhance the har-
monic structure which is observed as local peaks at regular 
distances in the spectrum domain. It does not depend on F0 
or voiced/unvoiced detection. Since it works as a front-
end for both training and decoding, it does not require any 
changes in existing decoders. This new method will be re-
ferred to as LPE (Local Peak Enhancement) in the following 
sections.

2. Proposed Method

2.1 LPE

Figure 1 shows the whole process of LPE and sample out-

puts at each step for both a voiced frame and a noise frame. 
The process is the same for entire frames, but the generated 
filter looks very different depending on whether or not the 
frame is voiced speech, as shown in the figure.

In the first step, an observed spectrum yT(j) is con-
verted to a log power spectrum yT(j).

YT(j)=log(yT(j)) (1)

Here, the index T is a frame number and j is the bin number 
of the DFT corresponding to the subband frequency. The 

process described in this section should be performed for 
each T.

Then the log power spectrum is converted to a cepstrum 
CT(i) by using D(i,j), a DCT (Discrete Cosine Transforma-
tion) matrix.
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The cepstra represent the curvatures of the log power spec-

tra. The lower cepstra correspond to long oscillations, and 

the upper cepstra correspond to short oscillations. We need 

only the medium oscillations. The range of the cepstra is 

chosen to cover possible harmonic structures in the human 

voice. Therefore the lower and the upper cepstra should be 

filtered out.

CT(i)=epsilon•ECT(i) if i<lower_cep

or i>upper_cep

CT(i)=CT(i) else (3)

In our experiments, lower_cep=40 and upper_cep=160 

for a 16 KHz sampling frequency with an FFT length of 512 

samples. This corresponds to an F0 range from 100 Hz to 

400 Hz for the human voice, with epsilon being close to 

zero. We set it to 10-3.

The filtered cepstrum CT(i) is converted back to a log 

power spectrum by using an I-DCT.

WT(j)=ƒ°iD-1(j,i)•ECT(i) (4)

Then it is converted back to a linear power spectrum, and it

Fig. 1 Process of LPE.

is normalized so that the average is 1.0.

(5)

(6)

Here, Num_bin is the number of bins used in the FFT. The 

filter is obtained as WT(j). Finally, the enhanced output zT(j) 

is obtained as 

z T(j)=yT(j)•EWT(j) (7)

2.2 Characteristics of an LPE Filter

As shown in Fig. 1, the filter of LPE is made directly from 

the observed spectrum. Therefore, F0 estimation is not re-

quired. For a noise frame or an unvoiced speech frame, it 

will be designed to be almost flat. This means LPE does 

almost nothing to such frames, and therefore, LPE does not 

require voiced/unvoiced detection.

(a) Original sound

(b) Fan noise overlapped at SNR 0 dB

(c) Fan noise overlapped at SNR 0 dB and processed by LPE

Fig. 2 Spectrums of vowel /u/ recorded in a stationary car with and with-

out fan noise overlapped at the specified SNR. The spectrum contour is 

plotted with Mel-Filtering.
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For voiced speech frames, the LPE filter is designed 

to enhance the harmonic structure in the observed spec-

trum. Unlike a comb filter, the LPE filter is not uniform 

over all frequencies. It is more focused on the frequencies 

where harmonic structures are observed in the input spec-

trum. Therefore the acoustic model should be retrained with 

LPE for automatic speech recognition.

Figure 2 shows how a spectrum is degraded by a noise . 

In Fig. 2(a), the original clean spectrum shows three for-

mants around 600 Hz, 1200 Hz, and 3500 Hz. However, in 

Fig. 2 (b), they are less conspicuous, and the spectrum con-

tour is flat. In contrast, LPE retains more of the characteris-

tics of the formants, as shown in Fig. 2 (c).

Harmonic structures are conspicuous around frequen-

cies having larger spectral powers in the voiced speech 

frames, and they are most likely to be formant frequen-

cies. Therefore, this approach inherently involves formant 

enhancement as well as harmonic enhancement, under the 

assumption that the noise has a broad spectrum and the har-

monic structure is not locally destroyed by the noise.

3. Experiments

3.1 Testing Data

We used CENSREC-3, an evaluation framework for isolated 

Japanese word recognition in actual moving-automobile en-

vironments. This data was collected by IPSJ, and is widely 

used to evaluate noise reduction algorithms [12]. It has 

speech data both for training and testing for automatic 

speech recognition using matched acoustic models.

The test data in the database was recorded under 16 en-

vironmental conditions using combinations of three vehicle 

speeds and six kinds of in-car environments as shown in Ta-

ble 1. A total of 14,216 utterances spoken by 18 speakers 

(8 males and 10 females) were recorded at a 16 KHz sam-

pling frequency.

For training, each driver's speech saying phonetically 

balanced sentences was recorded under two conditions: 

while idling and while driving on a city street in a normal 

in-car environment. A total of 14,050 utterances spoken by 

293 drivers (202 males and 91 females) were recorded with 

a close-talking microphone and a hands-free microphone.

In this experiment, we used only hands-free micro-

phone data for both training and testing. The acoustic mod-

els were trained with both idling data and driving data for 

the front-end processing being tested. This corresponds to 

Condition 3 as defined in CENSREC-3. The evaluation cat-

egory is zero, which means no changes at the backend.

3.2 Conventional Methods

Comb-filtering needs F0 estimation and voiced/unvoiced de-

tection. We used the •gPitch command•h in SPTK-3.0 [13] 

to obtain this information. We used a low-end frequency 

of 100 Hz and an upper frequency limit of 400 Hz, so to 

be compatible with LPE experiment. The voiced/unvoiced

Table 1 Word accuracy and estimated SNRs according to the environ-

mental conditions. SNR was calculated for the baseline data after a 250 Hz 

high-pass filtering.

/bun//sho//wa//ne n//ne n//fuete//iku/

Case: voiced/unvoiced threshold=6.0 (SPTK default)

Case: voiced/unvoiced threshold=7.0

Fig. 3 F0 output by Pitch command in SPTK. For unvoiced frames, 
SPTK outputs zero. The test data was prepared by overlapping noise at 
different SNRs. The noise was recorded in a car moving on an expressway 
with a fan at a medium level.

threshold was empirically set to 7.0, because it gave us a bet-
ter result than the SPTK default value. Figure 3 shows an 
example of F0 information by SPTK. We see many out-
Tiers in the low SNR conditions. Also, the vowels in the last 

part of the sentence were not recognized as voiced sounds. 
Based on the F0 and voiced/unvoiced information, the comb
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filter was designed in the spectrum domain for each frame as 

in Eq. (8), and the comb-filtering output was obtained using 

Eq. (9).

WcombT(j)=1.0 if T is unvoiced frame

WcombT(j)=1.0 else if j is harmonic bin 

WcombT(j)=0.01 else (8)

zT(j)=yT(j)•EWcombT(j) (9)

For the combination of LPE and existing noise reduction 

algorithms, SS and ETSI Advanced Front-End (ES202-

050) [3] were introduced in the evaluations. For SS process-

ing, the first 0.1 second of each utterance was assumed to be 

a non-speech segment where the noise spectrum N(j) could 

be estimated. The SS output was obtained as Eq. (10).

z T(j)=yT(3)-a•EN(j) if yT(j)-a•EN(J)>=ƒÀ•EN(j)

zT(j)=ƒÀ•EN(j) else (10)

In this experiment, the subtraction weight ƒ¿ was set to 1.0, 

and the flooring coefficient ƒÀ was set to 0.1.

3.3 Results of Standalone Test

Table 1 shows the resulting word accuracies for various 

environmental conditions. The baseline is the evaluation 

without using any speech enhancement or noise reduction 

algorithms. Table 1 also shows the estimated SNRs of the 

test data using the VAD (Voice Activity Detection) informa-

tion came from the ETSI ES202-050. Note that the accuracy 

of SNR depends on the VAD information. Table 2 shows the 

estimated SNRs of the training data. We see CENSREC-3 

trains an acoustic model at relatively better SNRs than for 

the test data. Therefore, speech enhancement and noise re-

duction are expected to help the test performance.

LPE enhances the local peaks considered to be har-

monic structures. Therefore, a drawback is expected with 

LPE when the background noise contains music or speech 

from audio devices such as a radio, TV, or CD player, be-

cause the filter is designed to enhance that audio, too. This 

is a known restriction of LPE. Comb filtering shares this 

problem, and a multi-pitch tracker was proposed to address 

it [14]. In this paper, we accept this restriction and we focus 

only on the results of the •gAudio off•h cases. The restric-

tion should not matter with current car navigation systems, 

because most of them are designed to disable audio on push-

ing a talk button. Also, we can expect an echo canceller to 

eliminate audio components before processing by LPE.

For the average •gAudio off•h case, LPE outperformed 

the baseline by 17.0% in error reduction. Most of the im-

provement was gained in very noisy conditions of •gFan

Table 2 Estimated SNRs of CENSREC-3 training data. SNR was calcu-

lated for the baseline data after a 250 Hz high-pass filter.

high•h and •gWindow open•h conditions with error reductions 

of 14.8% and 23.7%, respectively. An advantage of LPE is 

that voiced speech immersed in heavy noise should be more 

distinct and distinguishable for decoding . Comb-filtering 

also improved the accuracy in these conditions. However , 

the improvement was smaller than LPE.

In relatively clean conditions such as •gNormal•h or •gFan 

low•h at •gIdling•h or •gLow speed•h, the accuracy of LPE was 

almost the same or slightly degraded from the baseline. 

However, the degree of loss was small enough for practical 

use. In contrast, comb-filtering shows noticeable degrada-

tion in these conditions, possibly caused by inaccurate F0 

estimation and errors in the voiced/unvoiced detection.

3.4 Results of Combination Test

LPE can be used in combination with existing noise re-

duction algorithms. In Table 3, SS and ETSI E5202-050 

were introduced in the evaluations. Figure 4 shows the 

average word accuracies in combined •gAudio off•h cases. 

•g SS+LPE•h means LPE processed the output of SS. Since 

ETSI ES202-050 splits the 16-KHz input into a less-than-

8-KHz part and an upper-8-KHz part, •gETSI+LPE•h ap-

plied LPE only to the less-than-8-KHz part of the ETSI 

ES202-050 output.

The •gSS+LPE•h combination outperformed SS or LPE 

alone, as well as the baseline. It reduced the average er-

ror rate for the •gAudio off•h case by 27.3% from the base-

line. Likewise, the •gETSI+LPE•h combination showed the 

best performance, reducing the error rate by 69.2%.

Table 3 Word accuracy with existing noise reduction methods and the 

combinations of LPE.
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Fig. 4 Averaged word accuracy of •gAudio off•h cases for the combina-

tions of noise reduction method and LPE.

4. Conclusion

We are proposing a new approach to speech enhancement to 

improve automatic speech recognition in very noisy condi-

tions. It generates a filter to enhance the harmonic structure 

observed in the input spectrum, without relying on F0 esti-

mation and voiced/unvoiced detection. Experiments using 

automatic speech recognition showed this method signifi-

cantly improved the accuracy in very noisy conditions such 

as •gFan high•h or •gWindow open•h. However, it showed some 

drawbacks in •gAudio on•h cases. This method can be com-

bined with existing noise reduction algorithms such as SS 

and ETSI ES202-050 for further improvements.
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