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A Randomness Based Analysis on the Data Size Needed for 

Removing Deceptive Patterns

Kazuya HARAGUCHI•õa), Mutsunori YAGIURA•õ•õb), Members, Endre BOROS•õ•õ•õc), Nonmember, 

and Toshihide IBARAKI•õ•õ•õ•õd), Fellow

SUMMARY We consider a data set in which each example is an n-

dimensional Boolean vector labeled as true or false. A pattern is a co-

occurrence of a particular value combination of a given subset of the vari-

ables. If a pattern appears frequently in the true examples and infrequently 

in the false examples, we consider it a good pattern. In this paper, we 

discuss the problem of determining the data size needed for removing •gde-

ceptive•h good patterns; in a data set of a small size, many good patterns 

may appear superficially, simply by chance, independently of the under-

lying structure. Our hypothesis is that, in order to remove such deceptive 

good patterns, the data set should contain a greater number of examples 

than that at which a random data set contains few good patterns. We jus-

tify this hypothesis by computational studies. We also derive a theoretical 

upper bound on the needed data size in view of our hypothesis.

key words: frequent/infrequent item sets, association rules, knowledge dis-

covery, probabilistic analysis

1. Introduction

1.1 Background

Development of computer hardware technology enables us 

to save massive data at a low cost. In order to discover hid-

den meaningful knowledge from such data, various method-

ologies have been studied so far under the name of knowl-

edge discovery, data mining, and so on.

A data set consists of examples drawn from the pop-

ulation of the considered phenomenon. One of the most 

challenging problems in the literature is to generate (or to 

enumerate) all patterns, substructures of examples, appear-

ing frequently/infrequently in a given data set. This problem 

is often formulated as frequent/infrequent pattern mining, 

an important issue in data mining and bioinformatics (e.g.,

knowledge discovery from genome databases) [1], [6], [14]. 

(The term •gfrequent/infrequent set•h is widely used in the lit-

erature, but in order to avoid the confusion with a simple set 

of elements, we use the term •gpattern•h in this paper.)

A •ggood•h pattern in some sense may carry us useful 

information on decision making. However, its reliability as 

knowledge must heavily depend on the size of the data set; 

if the data set is too small, a pattern may be deceptive and 

thus may not serve as meaningful knowledge. While we can 

store a massive data set cheaply these days, data collection 

is still expensive in many application areas (e.g., weather 

data) [10]. In such areas, it is difficult to collect enough ex-

amples, and in this paper, we analyze the size of a data set 

needed for removing deceptive patterns, as an attempt to es-

tablish a criterion on the amount of , examples needed for 

efficient knowledge discovery.

1.2 Preliminaries

Let us introduce the notations and terminologies used 

throughout this paper. Let B={0,1}. We denote a data 

set by X. Each element in X, an example, is represented 

by a vector in Bn, and is labeled either by 1 (true) or by 0 

(false). We denote by X1 (resp., X0) the set of true (resp., 

false) examples in X, i.e., X=X1•¾X0 with disjoint X1 and 

X0. We call the cardinality •bX•b the size of a data set X. If 

m1=•bX1•b and m0=•bX0•b, then we call X an (m1, m0)-data set.

For a vector x•¸Bn and a subset J•º{1,...,n}, we 

denote by x•bJ=(xj•bj•¸J) the sub-vector of x corre-

sponding to the index set J. A pattern r=(J,b) is defined 

by a subset J•º{1,...,n} and a Boolean vector b•¸B•bJ•b. 

Given a pattern r=(J,b) and a Boolean vector x•¸Bn, 

we say that r appears in x if x•bJ=b holds. Let us de-

note by X(r) the set of examples in X in which r appears; 

i.e., X(r)={x•¸X•bx•bJ=b}. In particular, Bn(r) de-

notes the set of all binary vectors in which r appears. We 

define the frequency of r by f(r,X)=•bX(r)•b/•bX•b, i.e., by the 

proportion of examples of X in which r appears. Given a 

constant a(0•…a•…1), we call a pattern r a-frequent (resp., 

a-infrequent) in X, if f(r,X)•†a(resp.,f(r,X)•…a).

For given constants a1, a0(0•…a1,a0•…1), we call 

a pattern r an (a1, a0)-pattern in X, if f(r,X1)•†a1 and 

f(r,X0)•…a0. If a1 is •glarge enough•h and a0 is •gsmall 

enough•h such a pattern describes a feature of the true ex-

amples in X. One could also consider (a1, a0)-patterns cap-

turing the features of false examples (i.e., patterns r that
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satisfy f(r,X1)≦a1 and f(r,X0)≧a0 for “small” a1 and 

“large” a
0). Since those could be obtained by interchang-

ing the roles of true and false examples, we focus on “good” 

patterns for true examples in this paper.

It is well-known that one can find frequent/infrequent 

patterns in incrementally polynomial time [1], and many fast 
algorithms for this task have been proposed so far (e.g., 

[12]). By applying the previous algorithms to generate 
frequent/infrequent patterns, we can generate all (a1, a0)-
patterns from the data set X in incrementally polynomial 
time; e.g., by taking the intersection of the set of a1-frequent 

patterns in X1 and that of a0-infrequent patterns in X0.

1.3 Description of Problems

We consider the problem of determining the data size 

needed to remove deceptive (a1, a0)-patterns. Let us define 

a domain by D=(n,p,P1,P0), where n denotes the number 

of Boolean variables, p∈[0,1] denotes a probability, and 

P1,P0:Bn→[0,1] denote probability distributions. Since 

P1 and P0 are probability distributions, it holds that

(1)

and P1(x), P0(x)≧0 for any x∈Bn. We make an assump-

tion on the distribution of examples as follows;

Assumption 1: Given a domain D=(n,p,P1,P0), an ex-

ample (x, ω) is independently generated by the following 

steps:

Step 1: The label ω is set to 1 with probability p, and to 0 

otherwise (i.e., with probability 1-p).

Step 2: A vector x with label ω is drawn according to the 

distribution P ω.

Now, given a data set X generated from a domain 

D, we expect that (a1, a0)-patterns in X carry important 

information about D. It is possible, however, that some 

of them are deceptive; they might be present as (a1, a0)-

patterns in X only by chance, independently of the under-

lying structure of D. Obviously, such deceptive (a1, a0)-

patterns would exist with high probability if m1 and m0 of an

(m1, m0)-data set X are small, but the probability will dimin-

ish if m1 and m0 are sufficiently large. More precisely, let 

ED(m1,m0; a1,a0) denote the expected number of (a1,a0)-

patterns found in an (m1, m0)-data set X generated from D. 

If ED(m1,m0; a1,a0)≫ED(m'1,m'0; a1,a0) holds for suffi-

ciently large m'1 and m'0 with m1/m0=m'1/m'0, then we con-

clude that X is not large enough and that it contains a lot 

of deceptive (a1,a0)-patterns. This will be experimentally 

studied in Sect.3.

We then would like to estimate the sizes of m1 and m0, 

which guarantee that most of the (a1, a0)-patterns found in 

an (m1, m0)-data set are not deceptive. For this purpose, we 

introduce the random domain R=(n,1/2,U,U), where U 

denotes the uniform distribution with U(x)=1/2n for all 

x∈Bn. A data set generated from R is called a random

data set. We consider that R has no particular structure , and 
any (a1, a0)-pattern found in a random data set is deceptive . 
By using the random domain, our hypothesis for the needed 
data size is summarized as follows.

Hypothesis 1: Let X be an (m1, m0)-data set generated 
from a given domain D. Then the probability of deceptive 

(a1, a0)-patterns found in X is (approximately) the same as 
the probability that an (m1, m0)-random data set Y contains 

(a1, a0)-patterns.

Therefore, we estimate experimentally and theoretically the 
sizes of m1 and m0, at which an (m1, m0)-random data set 
Y contains approximately no (a1, a0)-patterns; they will be 
used as the sizes of an (m1, m0)-data set X which contains 
no deceptive (a1, a0)-patterns.

The composition of this paper is as follows. After de-
scribing the related works in Sect. 2, we study such data 
sizes experimentally in Sect. 3, and derive their theoretical 
upper bounds by some probabilistic analysis in Sect. 4. Then 
in Sect. 5, we give the concluding remarks.

2. Related Works

If a pattern r=(J,b) is a frequent pattern in X and there is no 

frequent pattern r'=(J',b') with J'⊃J and b'|J=b, then 

we call r a maximal frequent pattern. If r is an infrequent 

pattern in X and there is no infrequent pattern r'=(J',b') 

with J'⊂J and b|J'=b', then we call r a minimal infre-

quent pattern. Boros et al. [4] showed that, given a fam-

ily of O(nε) maximal frequent patterns, it is NP-complete 

to decide whether X has any further maximal frequent pat-

terns (for arbitrarily small fixed ε>0), and that all minimal 

infrequent patterns can be enumerated in incremental quasi-

polynomial time.

The problem of finding frequent patterns is closely re-

lated to that of association rules. An association rule is gen-

erally defined by two patterns (r,r')=((J,b), (J',b')) with 

J∩J'=0; it represents that an example x with x|J=b is 

likely to attain x|J'=b'.

An association rule (r, r') is usually evaluated by its 
support (which is the proportion of examples in X where 
both r and r' appear) and confidence (which is the frequency 
of r' in X(r)), while we evaluate a pattern r by its frequency 
in X1 and infrequency in X0. Thus, the generation of fre-

quent patterns is a basic operation in finding association 
rules.

As the task of finding association rules from a huge 
data set is very time-consuming, Li et al. [9] and Toivo-
nen [11] discussed the proper size of a randomly drawn sub-
set X' of the original data set X such that f (r, X') is close 
enough to f(r,X) with a high probability, for all patterns r. 
While they consider the random sampling of a manageable 
size from the given huge data set, we consider the situation 
in which the size of the given data set is small, and discuss 
whether the extracted (a1, a0)-patterns are deceptive or not. 
This is the main difference between our approach and the 
existing ones.
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3. Experimental Studies

3.1 Expected Number of (a1, a0)-Patterns

we derive the expected number of (a1, a0)-patterns in 
an (m1, m0)-data set generated from a domain D=

(n,p,P1,P0).
Consider a pattern r. Under the condition that a gen-

erated example is labeled 1 (resp., 0) in Step 1 of Assump-
tion 1, the probability c1(r;D) (resp,,c0(r;D)) that r appears 
in this new example is:

(2)

More generally, under the condition that m1 true examples 
and m0 false examples are generated, the probability that a 

pattern r is a1-frequent in the m1 true examples is:

(3)

and the probability that r is a0-infrequent in the m0 false 

examples is:

(4)

Note that the product b+b_gives the expectation that r is an 

(a1, a0)-pattern in an (m1, m0)-date. set generated from the 

domain D.

For a pattern r=(J,b), let us call the cardinality |J| the 

level of r. We denote by Rk the set of all possible patterns 

of level k(1≦k≦n). Note that |Rk|=2k(nk) holds and that 

|Bn(r)|=2n-k holds for any r∈Rk. Let ED(m1,m0; a1,a0) 

be the expected number of (a1, a0)-patterns in an (m1, m0)-

data set from the domain D, and ED,k(m1,m0; a1,a0) be the 

same number when their levels are restricted to k. From the 

linearity of expectations, they are formulated as follows:

(5)

3.2 Real Data Sets

We take ten real data sets from UCI Repository [3]; i.e.,

Table 1 Summary of ten data sets from UCI repository.

Fig. 1 ER(m1,m0; a1,a0) with n=13 and m1/m0=239/444 cor-

responding to data set BCW. (Lines with points ×, □, ■ represent a0=

0.00, 0.01, 0.02, respectively.)

AUS, BCW, BUPA, CAR, CRX, HABER, HEART, IONO, 

PIMA, TTT. In order to handle these data sets in our scheme, 

we modify them as follows;

•E CAR is a four-labeled data set, and we modify it to a 

two-labeled data set; an example in CAR is labeled one 

of the four labels (i.e., unacc, acc, good, v-good). 

We treat those labeled unacc as false examples, and 

the rest as true examples.

•E Some data sets contain examples with missing values 

or contradiction, and we exclude such examples.

• Finally, since the examples in some data sets are nu-

merical and/or categorical vectors, we transform them 

into binary examples by the method used in [7].

For each real data set, let us denote by X*1 and X*0 the 

sets of true and false examples, respectively. We denote 

X*=X*1∪X*0, m*1=|X*1| and m*0=|X*0|. Table 1 shows 

a summary of the binary data sets transformed from the ten 

real data sets.

3.3 ER on Random Data Sets

We first compute the expected number of (a1, a0)-patterns in 

an (m1, m0)-random data set ER(m1,m0; a1,a0) by (2) to (5) 

with D=R. In order to compare this ER with the expected 

number ED on a real data set (where we write its domain 

by D) later, we adopt the number n of Boolean variables 

and the ratio m1/m0=m*1/m*0 corresponding to the real data 

set, and test various m1 and m0 for all combinations of a1•¸

{0.10, 0.20} and a0•¸{0.00, 0.01, 0.02}.

Figures 1 and 2 show the computed ER(m1,m0; a1,a0) 

with the parameters corresponding to BCW and BUPA, re-

spectively; i.e., n=13 and m1+m0 is changed with keeping 

m1/m0=239/444 for BCW, and n=21 and m1/m0=
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Fig. 2 ER(m1,m0; a1,a0) with n=21 and m1/m0=200/145 corre-

sponding to data set BUPA. (Lines with points ×, □, ■ represent a0=

0.00, 0.01, 0.02, respectively.)

Table 2 The (M*1, M*0) for real data sets with a1=0.10. (A figure with 

an underline indicates that M*1+M*0≦m*1+m*0 holds.)

200/145 for BUPA. Each figure contains two cases corre-

sponding to a1=0.10 and 0.20, where the horizontal (resp., 

vertical) axis represents m1+m0 (resp., ER) and three curves 

correspond to different values of a0. Note that the verti-

cal axis is in the logarithmic scale. The ER appears to be 

monotonically decreasing with m1+m0 if we neglect small 

irregularities, and becomes less than 1 as m1+m0 becomes 

larger than a certain point.

Among the examined values of m1 (resp., m0), let us 

denote by M*0 (resp., M*0) the smallest value that attains ER•…

1. Table 2 shows the observed (M*1, M*0) for the parameter 

values m1 and m0, which correspond to the ten real data sets, 

where we always use a1=0.10. In this table, a real data set 

whose M*1+M*0 is underlined indicates that M*1+M*0•…

m*1+m*0 holds; i.e., the data set contains a sufficient number 

of examples in view of our hypothesis.

AUS BCW

BUPA CAR

CRX HABER

HEART IONO

PIMA TTT

Fig.3 Expected number ED of (a1, a0)-patterns on real data sets with 

a1=0.10. (Lines with points ×, □, ■ represent a0=0.00, 0.01,0.02, re-

spectively. A broken line parallel to the vertical axis represents M*1+M*0.)

3.4 ED on Real Data Sets

Now, for the ten real data sets, we would like to know how 

the expected number of (a1, a0)-patterns ED(m1,m0; a1,a0) 

changes as m1 and m0 increase relative to the M*1 and M*0. 

However, we cannot compute ED exactly by (5) since we 

do not know the domain D of a real data set. (Further-

more, we do not know even whether the examples are gen-

erated according to Assumption 1 or not. In this experi-

ment, however, we regard that they are.) In order to es-

timate ED(m1,m0; a1,a0) experimentally for m1≦m*1 and 

m0≦m*0, we randomly sample subsets X1⊆X*1 and X0⊆X*0 

with |X1|=m1 and|X0|=m0, satisfying m1/m0=m*1/m*0, 

and enumerate all (a1, a0)-patterns in X=X1∪X0. For each
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tested values of m1 and m0, we repeat this process ƒÑ times 

and estimate ED(m1,m0; a1,a0) by the average of the num-

bers of (a1, a0)-patterns. In this experiment, we use ƒÑ=100.

The results are shown in Fig. 3, where the vertical 

axis indicates ED and the horizontal axis indicates the size 

m1+m0. Note that the vertical axes in these figures are not 

in the logarithmic scale in contrast to Figs. 1 and 2. In this 

experiment, we always use a1=0.10, and a0 is set to 0.00, 

0.01 and 0.02, respectively. Three curves correspond to dif-

ferent values of a0, and a broken line parallel to the vertical 

axis represents the value that corresponds to M*1+M*0.

As shown in these figures, when the size of m1+m0 is 

small, the (m1, m0)-data set contains (a1, a0)-patterns much small, the (m1, m0)-data set contains (a1, a0)-patterns much 

more than the (m*1, m*0)-data set. In such cases, we con-

clude that the expected number ED contains many deceptive 

(a1,a0)-patterns. Hypothesis 1 states that we need to satisfy 

m1≧M*1 and m0≧M*0 in order to remove deceptive (a1, a0)-

patterns, and it surely holds in the results;all the curves are 

stabilized after passing the point of m1+m0=M*1+M*0. 

For AUS, for example, if m1+m0 is small (e.g., less than 

100), then more than 5.0×103 (a1, a0)-patterns exist, while 

there are substantially smaller number of (a1, a0)-patterns 

if m1+m0≧M*1+M*0 holds, for all three cases of a0=

0.00, 0.01, 0.02. Furthermore, the expected numbers ED do 

not change to a great extent in the range m1+m0≧M*1+M*0.

For BUPA and HABER, |X*|=m*1+m*0<M*1+M*0 

holds for almost all tested parameter combinations. Accord-

ing to our hypothesis, the size of X* is not large enough. In 

fact, ED is still making a rapid change even if m1+m0 is 

increased to the limit of m*1+m*0, and thus the given data set 

X* appears to contain many deceptive (a1, a0)-patterns.

4. Upper Bounds on the Needed Data Size

4.1 Preliminaries

The determination of M*1 and M*0 by using (5) requires a 

nontrivial computational cost. To alleviate this, we derive an 

upper bound on M*1+M*0 in this section. For the derivation, 

we assume that any domain D=(n,p,P1,P0) satisfies the 

following assumption.

Assumption 2: For any x∈Bn, P1(x)≦p and P0(x)≧q 

hold for some constants p and q.

From (1), it is implied that, p≧1/2n and q≦1/2n. Note that 

the random domain R is realized by setting p=q=1/2n.

For a domain D satisfying Assumption 2, we show 

that an upper bound on ED,k(m1,m0; a1,a0) becomes suf-

ficiently small (i.e., not more than ε, a small positive 

value) if k is in some range, either m1 or m0 is larger 

than some threshold, and a few other conditions hold. 

If an upper bound on ED,k(m1,m0; a1,a0) becomes suf-

ficiently small for all k=1,...,n, then their sum 

ED(m1,m0; a1,a0)=ΣkED,k(m1,m0; a1,a0) also becomes 

small; thus such thresholds on m1 and m0 can respectively 

be used as upper bounds on the needed numbers of true and 

false examples, M*1 and M*0.

Note that ED ,k with •glarge•h k or •gsmall•h k cannot be 

large for the following reason. Consider a pattern r with 

level k in an (m1, m0)-data set X. If k is large (resp., small), 

then •bBn(r)•b=2n-k tells that the r appears in a small (resp., 

large) portion of vectors in Bn. Thus the r is unlikely to be 

a1-frequent in the m1 true examples (resp., a0-infrequent in 

the m0 false examples), and thus unlikely to be an (a1, a0)-

pattern in X. Our analysis in the following is to refine this 

observation.

4.2 Probabilistic Analyses on ED ,k and Bounds on M*1 and 

M*0

We first introduce some well-known bounds in the probabil-

ity theory.

Theorem 1: (Chernoff [5]) Given a positive integer m and 

0•…ƒÊ•…1, let Qi be a random variable taking the value as 

follows:

(6)

and let Q=Σmi=1Qi. Then, for any β>1,

(7)

holds.

Theorem 2: (Hoeffding [8]) For a positive integer m and 

0≦a≦1, if 0≦ μ ≦a, then the b+ in (3) satisfies

(8)

Similarly, if a≦ μ ≦1, then the b_in (4) satisfies

(9)

Variations of Theorem 1 are found in [2], for example.

Now we derive two types of upper bounds on ED,k for 

•g large•h k.

Theorem 3: Suppose that D, m1, m0, a1, a0, k and ƒÃ•¸

(0,1] are given. If k•†K+ and m1•†M1, then 

ED ,k(m1,m0; a1,a0)•…ƒÃ holds, where

(11)

and e denotes the base of the natural logarithm.

Proof:Let r be a pattern of level k≧K+. From Assump-

tion 2 and |Bn(r)|=Zn-k, we have c1(r;D)≦min{1,2n-kp}, 

and since 2n-k≦2n-K+=a1/(e2p), we have c1(r;D)≦

2n-kp≦a1/e2<1. Let Zi be a random variable taking the 

value as follows:

(12)
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and let Z=Σm1i =1Zi. Let Qi=Zi-2n-kp and Q=Σm1i=1Qi=

Z-2n-kpm1. Then, we have

(13)

From k≧K+, it holds a1/(2n-kp)≧e2>1. By applying 

Theorem 1 with m=m1, μ=2n-kp and, β=a1/(2n-kp), we 

have

(14)

The right hand side of (14) is not more than ƒÃ if and only if

(15)

•  Another upper bound on ED ,k for large k is given below. 

It depends on a parameter t and can bound ED ,k for k with 

k>K+-3.

Theorem 4: Suppose that D, m1, m0, a1, a0, k and ƒÃ•¸

(0,1] are given. If k•†K+(t) and m1•†M1(t) for some 

t•¸(0,a1), then ED,k(m1,m0; a1,a0)•…ƒÃ holds, where

(16)(17)

Proof: For an arbitrary t∈(0,a1), let r be a pattern of 

level k≧K+(t). From Assumption 2 and |Bn(r)|=2n-k, we 

have c1(r;D)≦min{1,2n-kp}, and since k≧K+(t), we have 

2n-kp≦a1-t<a1≦1. Thus, c1(r;D)≦2n-kp and

(18)

By applying (8) of Theorem 2 with m=m1, a=a1 and 

μ=2n-kp, we have

(19)

and hence

(20)

The right hand side of (20) is not more than ƒÃ if and only if 

(21)• 

Given D and a1, the K+ in Theorem 3 is a constant while 

K+(t) in Theorem 4 depends on the parameter t. The follow-

ing corollary about the range of t is useful in obtaining an 

upper bound ED ,k≦ ε with K+(t)≦k≦K+ from Theorem 4.

Corollary 1: If we set t=a1(1-t/e2) for a constant 1≦

t <e2, then K+-K+(t)=log2t.

Proof: It directly comes from the definition of K+ and 

K+(t). □

Note that K+-K+(t)<log2e2<3 holds.

Now we turn to an upper bound on ED ,k for“small”k.

Tlleorem 5: Suppose that D, m1, m0,a1, a0, k and ε ∈

(0,1] are given. If k≦K-(s) and m0≧M0(S) hold for some 

s∈(0,1), then ED ,k(m1,m0; a1,a0)≦ ε holds, where

(22)

(23)

Proof: The proof is similar to that of Theorem 4. For an 

arbitrary s∈(0,1), let r be a pattern of level k≦K_(s). 

From Assumption 2, |Bn(r)|=2n-k and k≦K_(s), we have 

c0(r;D)≧2n-kq≧a0+s>a0. By applying (9) of Theo-

rem 2 with m=m0, a=a0 and μ=2n-kq,

(24)

holds and hence we have

(25)

The right hand side of (25) is not more than ε if and only if

(26)

□

Recall that Theorems 3 and 4 hold for large k and The-

orem 5 holds for small k. Then, if one of these theorems 

holds for every k=1,...,n, then we will have ED,k≦ε for 

all k=1,...,n and hence, ED=ΣkED,k≦nε. More pre-

cisely, if we choose, parameters t and s so that K+(t)≦K_(s) 

holds, and we have m1≧max{M1,M1(t)} and m0≧M0(s), 

then one of these theorems holds for every k=1,...,n. A 

sufficient condition for K+(t)≦K_(s) to hold is given in the 

following corollary.



HARAGUCHI et al.: A RANDOMNESS BASED ANALYSIS ON THE DATA SIZE FOR PATTERNS 

787

Corollary 2: If t∈(0,a1(1-1/e2)] and s∈(0,q(a1-t)/p-

a0], then K_(s)≧K+(t) holds.

Proof:It directly comes from the definitions of K+(t) and 

K_(s). □

Finally, ED=ΣkED
,k becomes sufnciently small under 

the conditions given in the following theorem.

Theorem 6: Suppose that D, m1, m0, a1, a0 and ε ∈(0,1] 

are given. If t∈(0,a1(1-1/e2)] and s∈(0,1) satisfy 

s≦q(a1-t)/p-a0, m1≧max{M1,M1(t)} and m0≧M0(s), 

then ED(m1,m0; a1,a0)≦nε holds.

Corollary 3: For appropriate values of p, q, a1 and a0 (e.g., 

p=q and a1≫a0), there exist t and s that satisfy the above 

condition s≦q(a1-t)/p-a0. Then, if we take ε sufficiently 

small (e.g.,ε=2-n), ED(m1,m0; a1,a0) converges to 0.

Corollary 4: The max{M1,M1(t)} and M0(s) in Theorem 6 

are upper bounds on M*1 and M*0 in Sect. 3, respectively.

Let us consider the possibility of using max{M1,M1(t)} 

and M0(s) as estimates on M*1 and M*0 in Sect. 3, respec-

tively. To see how close they are, we computed M1, M1(t) 

and M0(s) on the random domain R for some combinations 

of (n, a1, a0), where we set t and s to the values that min-

imze max{M1,M1(t),M0(S)} among all t=t×10-3∈

(0,a1(1-1/e2)] and s=t'×10-3∈(0,a1-a0-t] with 

natural numbers t and t'. The obtained upper bounds, how-

ever, are not very tight; e.g., for (n, a1, a0)=(13, 0.10, 0.00), 

M1=449.20, M1(t)=6036.04 and M0(s)=6029.60, while 

(M*1, M*0)=(81, 149) and (102, 123) from the results for 

BCW and CRX in Table 2, respectively. It may indicate that 

the bounds max{M1,M1(t)} and M0(s) are not very accurate 

indicators of M*1 and M*0.

It is left as our future work to derive tighter theoretical 

estimates of M*1 and M*0.

5. Conclusion

In this paper, we considered how many examples are needed 
in a given data set in order to remove deceptive (a1, a0)-

patterns. Our hypothesis is that the data set should contain 
a greater number of examples than that at which the prob-
ability of having (a1, a0)-patterns vanishes for the random 
data set. We justified the hypothesis by computational ex-

periments in Sect. 3, and derived estimates of such number 
of examples by probabilistic analysis in Sect. 4.

Our future work includes the theoretical study of the 
hypothesis based on such theories as randomness and VC 
dimension [13] from learning theory, and an application of 
the hypothesis to other enumeration problems (e.g., graph 
mining).
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