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PAPER

Modeling Network Intrusion Detection System Using Feature 

Selection and Parameters Optimization

Dong Seong KIM•õa) and Jong Sou PARK•õb), Members

SUMMARY Previous approaches for modeling Intrusion Detectio
System (IDS) have been on twofold: improving detection model(s) in term
of (i) feature selection of audit data through wrapper and filter methods an
(ii) parameters optimization of detection model design, based on classific
tion, clustering algorithms, etc. In this paper, we present three approac
to model IDS in the context of feature selection and parameters optimiz
tion: First, we present Fusion of Genetic Algorithm (GA) and Support Vec-
tor Machines (SVM) (FuGAS), which employs combinations of GA and 
SVM through genetic operation and it is capable of building an optimal 
detection model with only selected important features and optimal param
ters value. Second, we present Correlation-based Hybrid Feature Selectio
(CoHyFS), which utilizes a filter method in conjunction of GA for featur
selection in order to reduce long training time. Third, we present Simulta
neous Intrinsic Model Identification (SIMI), which adopts Random Forest 
(RF) and shows better intrusion detection rates and feature selection re
sults, along with no additional computational overheads. We show the ex
perimental results and analysis of three approaches on KDD 1999 intrusio
detection datasets.
key words: intrusion detection system, genetic algorithm, support vector 
machines, filter method, random forest, feature selection, parameters opti-
mization, network security

1. Introduction

As the amount of information which is interconnecting 
within networks has been increased tremendously, network 
security is becoming more essential. Among many security 
methods for protecting network systems such as firewalls 
and access control, Intrusion Detection System (IDS) plays 
a vital role in network security field. The main purpose of 
IDS is to inspect all inbound and outbound network activity 
and identify suspicious patterns that may indicate a network 
or system attack from someone attempting to compromise 
a system. IDS should guarantee high detection rates with 
minimum overheads to figure out intrusion detection model 
and process audit data. Previous approaches for modelin
IDS have been on twofold: improving detection model( 
in terms of (i) parameters optimization of detection mode
design, based on classification, clustering algorithms, etc. 
and (ii) feature selection of audit data through wrapper and 
filter methods. First, the former case, many studies have 
been proposed on intrusion detection model based on vari-
ous kinds of classification algorithms, clustering algorithms, 
and soft computing techniques, including Artificial Neural 

Networks (ANN), Hidden Markov Model (HMM) [1], Sup-

port Vector Machines (SVM) [6]-[8], [17], etc. The works 
has focus on optimization of parameters in their approaches. 
For instance, in case of ANN, it is essential to optimize the 
number of hidden layers, threshold functions so as to min-
imize the classification error (i.e. intrusion detection rates). 
Second, the latter case, many studies have tried to figure 
out important features or feature sets in order to not only 
minimize overhead of detection model but also maximize 
detection rates. In terms of feature selection, several re-
searches have proposed identifying important intrusion fea-
tures through wrapper and filter approaches. The wrapper 
method exploits a machine learning algorithm to evaluate 
the goodness of features or feature set. It provides better 

performance of selecting suitable features, since it employs 
performance of learning algorithm as an evaluation crite-
rion. On the other hand, the filter method does not use any 
machine learning algorithm to filter out the irrelevant and 
redundant features rather it utilizes the underlying charac-
teristics of the training data to evaluate the relevance of the 
features or feature set by some independent measures such 
as distance measure, correlation measures, consistency mea-
sures [3], [4]. Even though a number of feature selection 
techniques have been utilized in the fields of data-mining, 
however, there are very few analogous studies on intrusion 
detection paradigm [15], [17], [20], [29].

The above context, in this paper, we present three 
approaches to model IDS: (i) Fusions of GA and SVM 
(FuGAS) (ii) Correlation-based Hybrid Feature Selection 
(CoHyFS) and (iii) Simultaneous Intrinsic Model Identifi-
cation (SIMI). First, FuGAS employs combinations of GA 
and SVM through genetic operation and it is capable of 
building an optimal detection model with only selected im-

portant features and optimal parameters value of intrusion 
detection model. FuGAS has two main problems: long 
training time to build intrusion detection models, and un-
stable feature selection results. Second, CoHyFS utilizes 
a filter method in conjunction of GA for feature selection 
in order to reduce long training time. In addition, CoHyFS 
shows stable feature selection results. However, CoHyFS 
shows a small degradation in detection rates and is com-

plicated to implement. Third, SIMI utilizes Random For-
est (RF), which has been shown similar or better intrusion 
detection rates, comparable to FuGAS and CoHyFS, along 
with no additional computational overheads. The experi-
mental results on KDD 1999 intrusion detection datasets 
show the feasibility and comparisons of three approaches
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in terms of detection rates, feature selection and parameters 

optimization.

2. Proposed Approaches

2.1 Fusion of GA and SVM (FuGAS)

In this section, we illustrate the Fusion of GA [5], [22], [23] 

and SVM, named FuGAS. The previous researches on fea-

ture selection and parameters optimization in IDS have been 

performed in a separated way. In other words, feature selec-

tion and parameters optimization of detection model were 

separately performed. This causes inconsistency to figure 

out best intrusion detection model. FuGAS performs both 

feature selection and parameters optimization through ge-

netic operation. The overall flow of FuGAS is depicted in 

Fig. 1. There are two dataset: training set and testing set. 

The training set is again separated into two set: learning set 

and validation set. The learning set is used to build detection 

models. The validation set is used to test the built detection 

models. And the testing set has additional instances, which 

are not appeared in the training set. The testing set is used 

to evaluate whether built detection models are able to cope 

with novel instances.

The features of audit data and parameters value of 

a kernel function in SVM are encoded as chromosomes, as 

depicted in Fig. 2.

In Fig. 2, a chromosome consists of two parts: The first 

part, expressed as n bits, represents total number of features 

of audit data and expressed a binary gene string. •e1•f repre-

sents that the feature is selected, on the other hands, •e0•f rep-

resents that the feature is not selected. The second part 

represents parameters value of kernel function in SVM, ex-

pressed as multi-valued gene string. •e2•f means RBF kernel 

function, •e0.1•f means a starting value, •e0.2•f means ending 

value. In the example, the granularity is •e0.005•f. It rep-

resents that the value changes 0.005 for each GA iteration. 

These values are changeable according to the experimental 

setting.

Fig. 1 The overall flow of FuGAS.

Fig. 2 Structure of a chromosome used in genetic operation.

The generic operation of GA is as follows: GA builds 
new chromosomes as shown in Fig. 2, and searches the op-
timal detection model based on the fitness function value 

(i.e. detection rates in IDS, mostly common in GA) obtained 
from SVM. The SVM is used to evaluate the performance 
of a detection model represented by a chromosome. In 
SVM, n-way cross-validation is used to prevent over-fitting 

problems [26], and the detection rates from n tests are aver-
aged to obtain a fitness function value (i.e. detection rates). 
This procedure is iterated until it satisfies pre-defined fitness 
function value or it reaches to final iteration (i.e. final gen-
eration in GA). As the result of iteration, in FuGAS, it is 
cable of obtaining the optimal set of features as well as the 
optimal parameters for a kernel function in SVM.

2.2 Correlation Based Hybrid Feature Selection (CoHyFS)

Figure 3 illustrates the overall flow of CoHyFS. There are 
two dataset: Training set and testing set. In CoHyFS, train-
ing dataset is segregated into three sets: feature-selection 
set, model building set, and validation dataset. Feature-
selection dataset is passed through the Correlation-based 
Hybrid Feature Selection process, which results in a set of 
selected features. The model building dataset is then used 
to build the intrusion detection models, using the selected 
features. And the intrusion detection models are evaluated 
by the validation set. The intrusion detection models are 
again evaluated by testing dataset to verify whether the in-
trusion detection models are able to cope with novel attacks 
and normal patterns.

CoHyFS also utilizes GA to generate feature subset and 
to figure out important features. It adopts different strategy 
in order to decrease the training and testing time, compared 
to FuGAS, described in Sect. 2.1. CoHyFS only encodes 
features into a chromosome. The structure of a chromosome 
representing a feature vector is depicted in Fig. 4.

The structure of a chromosome is simple than that 
of it in FuGAS. In FuGAS, both features and parame-
ters' value are encoded as a chromosome. This causes the

Fig. 3 The overall flow of CoHyFS.
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Fig. 4 Structure of a chromosome representing a feature vector .

Fig. 5 A flow chart of correlation-based hybrid feature selection.

computational overheads in GA iteration in terms of training 

and testing time, due to cross validation in FuGAS. CoHyFS 

accordingly only focus on figuring out important features, 

based on correlation based hybrid feature selection, depicted 

in Fig. 5.

CoHyFS is a crafted combination of Correlation based 

Feature Selection (CFS) [18] and SVM. GA is used to gen-

erate subsets of features from given feature set. The algo-

rithm takes full feature set as input and returns the optimal 

subset of feature after being evaluated by CFS and SVM. 

Each chromosome represents a feature vector. The length 

of the chromosome is 41 genes, in the dataset, where each 

gene (bit) may have values 1 or 0 which indicates whether 

corresponding feature is included or not in the feature vec-

tor, respectively. Like every stochastic algorithm, the initial 

population of chromosomes is generated randomly. Merit of 

each chromosome is calculated by CFS. The chromosome 

having highest merit, ƒÁbest represents the best feature subset, 

Sbest in population. This subset is then evaluated by SVM 

classification algorithm, and the value is stored in ƒÆbest which 

represents metric of evaluation. Here we have chosen intru-

sion detection rates as a metric (a fitness function value in 

FuGAS) although a complex criterion such as a combination

Fig. 6 The overall flow of SIMI.

of detection rate and false positive rate or a rule based crite-

rion like [30] could be used. Then, genetic operations, selec-

tion, crossover and mutation, are performed and a new pop-

ulation of chromosomes is generated. In each generation, 

best chromosome or feature subset is compared by previous 

best subset, Sbest. If newer subset is better than previous one, 

it is assigned as the best subset. This subset is then evaluated 

by SVM. If new detection rate is higher than previous one, 

this value is to ƒÆbest and algorithm goes forward. Otherwise, 

the Sbest is returned as the optimal subset of features. The al-

gorithm stops if better subset is not found in next generation 

or when maximum number of generation is reached.

2.3 Simultaneous Intrinsic Model Identification (SIMI)

In this section, we present simultaneous intrinsic model 

identification (SIMI) depicted in Fig. 6. SIMI performs fea-

ture selection and parameter optimization simultaneously 

without any additional overheads, non-likely to FuGAS 

and CoHyFS. SIMI adopts Random Forest (RF) which 

is a stage-of-the-art data mining algorithm comparable to 

SVM [32].

The preprocessed network audit data is divided into 

two datasets; training and testing set. The training set is fur-

ther separated into learning set and validation set. Although 

we do not need to perform cross-validation to get a balanced 

estimate of generalization error since RF is robust against 

over-fitting [32], [33], we adopt n-fold cross validation to 

minimize that. The learning set is used to generate classi-

fiers and aggregate their results based on RF and find out 

variable importance of each feature of network audit data 

and optimal parameters for RF simultaneously. These clas-

sifiers can be considered as detection models in IDS. The 

validation set is used to compute detection rates according to 

estimating error rates which is Out-Of-Bag (OOB) errors in 

RF. Feature selection is performed by eliminating the irrele-

vant features which are low ranked in the ranking of variable 

importance. In other words, we only select top m numbers 

of important feature and optimize both of mtry and ntree. In 

next steps, therefore, only important features that have more 

effect on classification and optimal parameters are used to 

build detection models and evaluate by testing set with re-

spect to detection rates. Our approach enables one to iden-

tify intrinsic model through this procedure.
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3. Experiments and Analysis

3.1 Experimental Dataset

We have used the KDD 1999 intrusion detection dataset. 
The dataset contains a total of 24 attack types that fall into 
four main categories [12]: DoS (Denial of Service), R2L 
(unauthorized access from a remote machine), U2R (unau-
thorized access to root privileges) and probing. The data was 

preprocessed by extracting 41 features from the tcpdump 
data in the 1998 DARPA datasets and we have labeled them 
as f1, f2, f3, f4 and so forth. We have only used DoS type of 
attacks, since in [31] pointed out that it is not suitable to use 
U2R and R2L in KDD 1999 dataset to show the generaliza-
tion of experiments. It doesn't mean that our approach can 
not deal with dataset, which has small number of instances. 
We chose only DoS type of attacks out of 4 types of attacks 
to show the validation of 3 approaches. In machine learning 
field, it's necessary to use enough data instance, for instance, 
at least more than 1000 samples a dataset.

3.2 FuGAS

We performed 10-fold cross validation with 2500 sam-

ples to reduce over-fitting problem [26]. After completing 
cross validation (in other word, learning and validation), we 

perform classification using testing set (corrected.gz) with 
2000 samples to evaluate detection model constructed dur-
ing learning phase. We estimate how well this model copes 
with novel attacks since there are 14 new attacks in test-
ing set which are not included in training set. In the exper-
imental results, the detection rates designate the accuracy 
of classification. For GA, we used tournament method for 
selection process, and set the probability of mutation and 
crossover, Pm=0.015 and Pc=0.8, respectively.

The result of cross validation is depicted in Fig. 7. The 
detection rates monotonously increase when all of three 
kernel functions are used in learning phase. While GA 
was executed for 20 generations, the learning process using 
SVM with neural kernel function [16], [17], [29] achieved 
the highest detection rates among the kernel function com-

pared.
We figured out the number of selected features and 

optimal parameters in SVM, respectively. These features 
can be considered as most important features to detect DoS 
type attacks. The optimal parameters are different accord-
ing to the kernel function in SVM. Most of the classifica-
tion problems using SVM, radial kernel is selected and has 
showed a good performance, however, in our experiments, 
it indicates that neural kernel function for SVM shows bet-
ter results. The reason why is that, according to no free 
lunch theorem [26] on machine learning, there is no superior 
kernel function in general, and the performance of a ker-
nel function rather depends on applications. In addition, 
Fig. 8 shows that FuGAS guarantees the stability for detec-
tion rates. In case of detection model using neural kernel

Fig. 7 The results of cross-validation: detection rates versus generations 

of GA execution.

Fig. 8 Detection rates for each kernel function with feature selection in 
testing phase.

function can provide at least 98% detection rates. And it 
also shows the possibility that can cope with novel attacks 
since it shows detection rates more than 98% during test-
ing phase. Because testing set includes 14 additional at-
tack types which are not included in training set. In other 
words, our method has the potential of detecting previously 
unknown DoS types of attacks. And FuGAS provides higher 
detection rates than the approaches that only adopt SVM for 
IDS [8], [28]-[30].

However, there are two main problems in FuGAS, 
First, it consumes long time to perform training and test-
ing. Refering Figs. 9 and 10, it takes more time to perform 
training and testing with all features. FuGAS uses whole 
features as well as parameter values. Second, the selected 
features are not stable and only feature set are selected. For 
instance, assuming that feature set, {f1, f4, f5} are selected, 
we can not figure out which feature, among three feature, is 
more important than others.

3.3 CoHyFS

For CoHyFS, we have used open source WEKA [13] library 
for SVM and CFS algorithm. For implementing our algo-
rithm, we have modified several classes of WEKA library



1054 
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.4 APRIL 2008

Fig. 9 Model training time vs. dataset index.

Fig. 10 Model testing time vs. dataset index.

such as •gweka.attributeSelection.GeneticSearch•h.

For feature selection in CoHyFS, we have selected 

a data set randomly from 15 datasets and applied our algo-

rithm which was described in previous section. We have ap-

plied 10 fold cross validation to achieve low generalization 

error and to determine the intrusion detection rate. The op-

timal subset selected has shown 99.56% detection rate. The 

indices of feature selected are f1, f6, f12, f14, f23, f24, f25, 

f31, f32, f37, f40 and f41. The dimension of feature vector 

is reduced from 43 to 12 that is a significant gain while the 

detection rate is above 99%.

The Figures from 9 to 12 show the comparisons be-

tween different performance indicators. Figure 9 shows that 

the dramatic reduction of model building time with reduced 

features as expected because the feature selection process 

has cut the 70% of total number of features. Testing time 

depicted in Fig. 10 also accedes with model training time, 

compared to FuGAS.

For selected features, though the detection rate is lower 

than that of having full features the decrement is very small, 

in other words, around 0.83% in average (see Fig. 11). But 

the significant performance enhancement was achieved in 

the reduction of false positive rate (see Fig. 12), which is 

37.5% in average. For all above experiments, we used poly-

nomial kernel of exponent 1 and c=1 that are default value 

for SVM in WEKA. If we optimize SVM in more, the in-

trusion detection rates would be improved. It is notewor-

thy that we have not taken any measure of optimizing the

Fig. 11 Detection rates vs. dataset index.

Fig. 12 False positive rates vs. dataset index.

kernel and SVM parameters as our main goal is to investi-

gate that how hybrid feature selection reduced the compu-
tational resource while maintaining the detection and false 

positive rate within tolerable range.
Enhancement of detection rate and optimization be-

tween false positive and detection rate can be improved fur-
ther by parameter tuning, exploiting better kernel function 
and improving classification algorithm [10], [16].

3.4 SIMI

In order to evaluate SIMI, RF version (R 2.2.0) and MDS 
algorithm in open source R-project [34] is used to perform 
several experiments. There are only two parameters in RF 
to be optimized; the number of variables in the random sub-
set at each node (mtry) and the number of trees in the for-
est (ntree). To get the best classification rates, that is, the 
best detection rates, it is essential to optimize both two pa-
rameters. This is considered as parameters optimization. 
Fortunately, we could get the optimal value of mtry us-
ing tuneRF() function provided in randomForest package of 
R-project and it turned out miry=6. In case of ntree, there 
is no specific function that figures out the optimal value of 
it. Thus, we got the optimal value of ntree by choosing the 
ntree value that has high and stable detection rates. We as-
sume that 350 trees are enough to be the maximum value 
to evaluate our approach and detection rates are determined
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Fig. 13 Average detection rates vs. ntree values.

Table 1 Top 5 important features.

by equation •g1-OOB errors•h. The experimental results for 

determination of the optimal value of ntree are described in 

Fig. 13.

According to Fig. 13, average detection rates of RF 

turned out the highest value when ntree=310. As the re-

sult of experiments, we set two optimized parameter values; 

mtry=6, nhree=310. After optimizing two parameters, 

feature selection of network audit data was carried out em-

ploying the feature selection algorithm supported by RF. We 

ranked features thorough the average variable importance of 

each feature as the results of 10-fold with 2000 samples. As 

the results, feature important of each individual feature were 

decided. The importance value of each feature varies and we 

rank features with respect to their average importance values 

of cross validation experiments.

We partially show the top 5 important features and their 

properties in Table 1. Our approach showed reasonable con-

text information for each important feature. For instance, 

f23 represents •gnumber of connections to the same host as 

the current connection in the past two seconds•h property 

and f6 represents •gnumber of data bytes from destination 

to source•h and so on.

Then, we carried out several times of experiments with

Fig. 14 Detection rates and total number of selected features.

Table 2 The comparison between our approach and previous ap-

proaches.

elimination of irrelevant features and measure detection, 

rates. The experimental results are depicted in Fig. 14.

3.5 Comparison and Discussion

In Table 2, we present comparison results. SIMI showed 

higher detection rates than others. Even though the detection 

rates is slightly high than others, SIMI only used selected 

important features and training and testing time is faster than 

others. Although both FuGAS and CoHyFS have showed 

•g optimal feature set•h, they didn't show the numeric value 

as the variable importance of each feature. SIMI is able to 

get individual feature importance so that only important in-

dividual features can be used. We need to calculate compu-

tational complexity and compare it to other approaches. But 

this is out of scope of this paper because both FuGAS and 

CoHyFS utilize GA [31].

4. Conclusions

In this paper, we have present three approaches to model 

lightweight Intrusion Detection System. FuGAS employed 

a fusion of GA and SVM, which perform both feature selec-

tion and parameters optimization and showed better detec-

tion rates than the approaches, only adopts SVM. FuGAS,
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however, have additional computational overhead due to 

 training and testing time. To cope with this, CoHyFS have 

been proposed, which is based on a filter method in conjunc-

tion with GA. CoHyFS shows a little degradation in detec-

tion rates but the degradation is marginal and showed faster 

training and testing time with stable important feature sets . 

Both FuGAS and CoHyFS showed the implication to IDS, 

it has still room for further enhancement so that SIMI has 

been proposed. SIMI showed that IDS based on RF is eas-

ily built without additional overhead compared to FuGAS 

and CoHyFS. We carried out several experiments on KDD 

1999 dataset and the results showed that feature selection 

and parameters optimization are able to help one to model 

and implement IDS.
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