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Approximating the Best Linear Unbiased Estimator of 

Non-Gaussian Signals with Gaussian Noise
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and Klaus-Robert MULLER† †,†††d), Nonmembers

SUMMARY Obtaining the best linear unbiased estimator (BLUE) of 
noisy signals is a traditional but powerful approach to noise reduction. Ex-
plicitly computing the BLUE usually requires the prior knowledge of the 
noise covariance matrix and the subspace to which the true signal belongs. 
However, such prior knowledge is often unavailable in reality, which pre-
vents us from applying the BLUE to real-world problems. To cope with 
this problem, we give a practical procedure for approximating the BLUE 
without such prior knowledge. Our additional assumption is that the true 
signal follows a non-Gaussian distribution while the noise is Gaussian.
key words: signal denoising, best linear unbiased estimator (BLUE), non-
Gaussian component analysis (NGCA), Gaussian noise

1. Introduction and Formulation

Let x •¸ Rd be the observed noisy signal, which is composed 

of an unknown true signal s and unknown noise n.

x=s+n. (1)

We treat s and n as random variables (thus x also), and as-

sume s and n are statistically independent. We further sup-

pose that the true signal s lies within a subspace S •¼ Rd of 

known dimension m=dim(S), where 1•…m•…d. On the 

other hand, the noise n spreads out over the entire space Rd 

and is assumed to be of mean zero. Following this genera-

tive model, we are given i.i.d. observations {xi}ni=1. Our goal 

is to obtain denoised signals that are close to the true signals 

{Si}ni=1.
A standard approach to noise reduction in this setting 

is to project the noisy signal x onto the true signal subspace 
S, by which the noise is reduced while the signal compo-

nent s is still preserved. Here the projection does not have 
to be orthogonal, thus we may want to optimize the projec-
tion direction so that the maximum amount of noise can be 
removed.

In statistics, the linear estimator which fulfills the

above requirement is called the best linear unbiased esti-
mator (BLUE) [1]. The BLUE has the minimum variance 
among all linear unbiased estimators. More precisely, the 
BLUE of s denoted by s is defined by

s=Hx, (2)

where

H≡argmin En‖Hx-EnHx‖2

H∈Rd×d

subject to En[Hx]=s. (3)

In the above equation, En denotes the expectation over the 
noise n. Let Q be the noise covariance matrix:

Q≡En[nnT], (4)

which we assume to be non-degenerated. Let P be the or-
thogonal projection matrix onto the subspace S. Then, the 
estimation matrix H defined by Eq. (3) is given as (see e.g., 
[1], [4])

H=(PQ-1P)†PQ-1, (5)

where•õ denotes the Moore-Penrose generalized inverse. Let 

N•ßQS•Û, where S' is the orthogonal complement of S. 

Then it is possible to show that H is an oblique projection 

onto S along N (see e.g., [4]):

Hx={xifx∈S,

0ifx∈N 
(6)

This is illustrated in Fig. 1.
When computing the BLUE by Eqs. (2) and (5), the 

noise covariance matrix Q and the signal subspace S should 
be known. However, Q and S are often unknown in practice, 

Fig. 1 Illustration of the BLUE.
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and estimating them from data samples {xi}ni=1 is not gener-
ally a straightforward task. For this reason, the applicability 
of the BLUE to real-world problems has been rather limited 
so far.

In this paper, we therefore propose a new method 
which enables us to obtain an approximation of the BLUE 
even in the absence of the prior knowledge of Q and S. Our 

procedure is essentially based on two facts: the noise co-
varince matrix Q is actually not required for computing the 
BLUE (see Sect. 2) and the signal subspace S can be es-
timated by a recently proposed method of dimensionality 
reduction called non-Gaussian component analysis [2], [3] 
(see Sect. 3). We effectively combine these two ideas and 
propose a practical procedure for approximating the BLUE. 
Our additional assumption is that the true signal follows a 
non-Gaussian distribution while the noise is Gaussian.

2. Computing the BLUE without Knowledge of the 

Noise Covariance Matrix Q

In this section, we show that the noise covariance matrix Q 

is not needed in computing the BLUE. Let ƒ°•ßEx[XXT]. 

Then the following lemma holds.

Lemma 1: The subspace N is expressed as N=ƒ°S•Û.

Since s and n are independent and En[n]=0, the above 

lemma can be immediately confirmed as

ΣS⊥=Es[ssTS⊥]+Ex[snT+nsT]S⊥+En[nnT]S⊥

=QS⊥. (7)

Lemma 1 implies that the noise reduction subspace N 

can be characterized by ƒ°, without using the noise covari-

ance matrix Q. Then the following lemma holds.

Lemma 2: The estimation matrix H is expressed as H=

(PΣ-1P)†PΣ-1.

Letting P•Û be the orthogonal projection matrix onto 

S•Û, we have, for any x •¸ Rd,

(PΣ-1P)†PΣ-1(Px)=(PΣ-1P)†(PΣ-1P)x

=Px, (8)

(PΣ-1P)†PΣ-1(ΣP⊥x)=(PΣ-1P)†(PP⊥)x

=0, (9)

from which the above lemma can be confirmed.

Lemma 2 implies that we can obtain the BLUE using
Σ,without using Q. Roughly speaking, the “N-part” of Q 

should agree with that of ƒ° because the signal s lies only 

in S. Therefore, it intuitively seems that we can replace Q 

in Eq. (5) by ƒ° because H only affects the component in N 

(see Eq. (6)). The above lemma theoretically supports this 

intuitive claim.

A practical advantage of the above lemma is that, while 

estimating the noise covariance matrix Q from the data sam-

ples {xi}ni=1 is not a straightforward task in general, ƒ° can be 

directly estimated in a consistent way as 

(10)

3. Estimating the Signal Subspace S by Non-Gaussian 

Component Analysis

The remaining issue to be discussed is how to estimate the 
true signal subspace S (or the orthogonal projection matrix 
P). Here we additionally assume that the signal s follows 
a non-Gaussian distribution, while the noise n follows a 
Gaussian distribution.

The papers [2], [3] proposed a framework called non-
Gaussian component analysis (NGCA). First we briefly re-
view the key idea of NGCA and then show how we employ 
NGCA for finding the signal subspace S.

3.1 Non-Gaussian Component Analysis

Suppose we have i.i.d. observations {x'i}ni=1, which follow a 
d-dimensional distribution with the following semiparamet-
ric probability density function:

p(x')=f(Tx')φQ'(x'), (11)

where f is a function from Rm to R, T is an m•~d matrix, and 

φQ'is the centered Gaussian density with covariance matrix 

Q'.Note that we know neither p, f, T, nor Q', but we only 

know that the density p (x') is of the form of Eq. (11). Let 

s'=R(TT), where R(・)is the range of a matrix. Then the 

following proposition holds.

Proposition 1: [2], [3] Suppose Ex'[x'x'T]=Id, where 

Id is the d-dimensional identity matrix. For an arbitrary 
smooth function h(x')from Rd to R,

β ≡Ex'[g(x')]∈S', (12)

where g (x') is a function from Rd to Rd defined by 

g(x')≡x'h(x')-Δh(x'). (13)

∇is the differentialоperator.

The above proposition shows that we can construct 

vectors which belong to S'. Generally, different functions 

h(x') produce different vectors ƒÀ. Therefore, we may con-

struct a set of vectors which spans the entire subspace S'. 

However, ƒÀ can not be computed in practice since the un-

known p(x') is included through Ex' in Eq. (12); we employ 

its consistent estimator given by

(14)

By applying principal component analysis (PCA) to the set 

of ƒÀ obtained from a set of different h(x'), we can estimate 

the subspace S'.

Eqs. (14) and (13) imply that the mapping from h to ƒÀ 

is linear. This means that we can arbitrarily change the norm
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of ƒÀ just by multiplying h by an arbitrary scalar. This can to-

tally change the PCA results since vectors with larger norm 

have stronger impacts on the PCA solutions. Therefore, we 

need to normalize ƒÀ (or h) in a reasonable way. A desirable 

normalization scheme would possess a property that result-

ing ƒÀ has a larger norm if it is close to S' (i.e., the angle 

between ƒÀ and S' is small). This desirable property can be 

approximately achieved by normalizing ƒÀ by its standard 

deviation [2]. A consistent estimator of the variance of ƒÀ is 

given by

(15)

Further discussions of NGCA including sophisticated 
implementation, rigorous theoretical error analysis, and ex-
tensive experimental studies are given in [2], [3].

3.2 Applying NGCA for Estimating Signal Subspace S

Here we show how NGCA is employed for approximating 

the BLUE.

Let us apply the whitening transformation to the data 

samples, i.e.,

(16)

Then the following lemma holds:

Lemma 3: The probability density function of x' is ex-

pressed in the form of Eq. (11) with R(TT)=ƒ°-1/2S. 

(Proof) Let us denote S'•ßE-1/2S and N'•ßS'•Û=ƒ°1/2S•Û=

Σ-1/2N (via Lemma 1). Decompose the whitened sample as 
follows:

x'=s'+n'S'+n'N', (17)

with s'=E-1/2S, and nS', n'N' the orthogonal projections of 

Σ-1/2n on S', N'. By characterization of the whitening trans-

form, we have Ex' [x'x'T]=Id. Since n'N' and (s'+n'S') are 
the orthogonal projections of x' onto two orthogonal sub-
spaces, this entails

O=En[n'N'(s'+n'S')T]=En[n'N'n'TS'], (18)

where O is the null matrix, and the second equality holds 

because s and n are independent. This shows that ns, and 
n'N' are independent. Let us consider an orthonormal basis

[TTS', TTN'] such that R(TTS')=S' and R(TTN')=N'. Let 

ZS'≡TS'x'=TS'S'+TS'n's, (19)

ZN'≡TN'x'=TN'n'N. (20)

Since s follows a non-Gaussian distribution, ZS' is also non-
Gaussian. Let us denote the probability density function of 

zS' by q(zS'). On the other hand, ZN' follows a centered 
Gaussian distribution with identity covariance matrix Id-m. 
Since zS' and zN' are independent, the probability density 

Fig. 2 Algorithm for approximating the BLUE.

function of x' is given by

p(x')=q(zS')ƒÓId-m(zN')

(21)

Putting f(Z)=q(z)/ƒÓId-m(
Z), T=Ts', and Q'=Id concludes the 

proof.
Lemma 3 shows that, by NGCA, we can estimate S' 

from the whitened samples x'. Let P' be the orthogonal 

projection matrix onto the subspace S'. We claim that H=
Σ1/2P'Σ-1/2, which is readily checked by the characterization 

(6), using the fact that N=ƒ°1/2S'•Û. Therefore, the BLUE s 

can be expressed in terms of P' and x' as

(22)

Finally, replacing all the unknown quantities by their con-
sistent estimators, we have an algorithm for approximating 
the BLUE (see Fig. 2).

4. Numerical Example

We created two-dimensional samples, where S=(1,0)T, 
the first element of s follows the uniform distribution on 

(0,10), the second element of s is zero, and Q=(11 12). 

We used hi(x)=sin(wTix) (i=1,2,•c,1000) in NGCA, 

where wi is taken from the centered normal distribution with 

identity covariance matrix.

The samples in the original space, the transformed 

samples in the whitened space, and the ƒÀ functions are plot-

ted in Fig, 3. The mean squared errors of {si}ni=1 obtained by 

the true BLUE (using the knowledge of Q and S) and the 

proposed NGCA-based method as a function of the number 

of samples are depicted in Fig. 4. This illustrates the useful-

ness of our NGCA-based approach.

5. Conclusions

For computing the BLUE, prior knowledge of the noise co-
variance matrix Q and the signal subspace S is needed. In 
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(a) Samples in the original space (b) Samples in the whitened space (c) ƒÀ used in NGCA

Fig. 3 Illustration of simulation when n=100. We used 1000 ƒÀ functions, but plotted only 100 points 

for clear visibility.

Fig. 4 Mean squared error ƒ°ni=1(Si-Si)2/n averaged over 100 runs.

this paper, we proposed an algorithm for approximating the 

BLUE without such prior knowledge. Our assumption is 

that the signal is non-Gaussian and the noise is Gaussian. 

We described a naive implementation of NGCA for simplic-

ity. We may employ a more sophisticated implementation 

of NGCA such as multi-index projection pursuit (MIPP) al-

gorithm [2] and iterative metric adaptation for radial kernel 
functions (IMAK) [3], which would further improve the ac-
curacy.
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