
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.6 JUNE 2008

 1827

LETTER

Extending LogicWeb via Hereditary Harrop Formulas

Keehang KWON•õa), Nonmember and Dae-Seong KANG•õ•õ, Member

SUMMARY We propose HHWeb, an extension to LogicWeb with

hereditary Harrop formulas. HHWeb extends the LogicWeb of Loke and

Davison by allowing goals of the form (•Îx1...•ÎxnD)•½G (or equivalently

•Íx1...•Íxn(D•½G)) where D is a web page and G is a goal. This goal is

intended to be solved by instantiating x1,..., xn in D by new names and

then solving the resulting goal. The existential quantifications at the head

of web pages are particularly flexible in controlling the visibility of names.

For example, they can provide scope to functions and constants as well as

to predicates. In addition, they have such simple semantics that implemen-

tation becomes more efficient. Finally, they provide a client-side interface

which is useful for customizing web pages.

key words: prolog, semantic Web, interface

1. Introduction

Software engineers have focused too much on the deter-
ministic and functional paradigm (ML, C, Java) to build

programs. Many, programs, even when they are nondeter-
ministic in nature, have been developed in this functional

paradigm. This situation is rather unfortunate, as nondeter-
ministic programs are everywhere from graph algorithms to
AI games including Chess.

It is desirable that programs be written in a bigger

paradigm, i.e., a nondeterministic, relational paradigm. One
successful attempt towards this direction is LogicWeb [1].
LogicWeb is especially attractive as it is a distributed, pub-
lic, relation-based programming paradigm. It is also an in-
tegral part of Semantic Web [2]. Despite much attractive-
ness, LogicWeb have traditionally lacked elegant devices for
structuring the space of names. Lacking such devices as lo-
cal constants and a notion of interface, structuring the space
of name in LogicWeb relies on awkward devices such as re-
sources modules. Those devices use nonlogical constructs
such as visible/1 and export/1 declarations to provide access
control to predicates. One major problem with the nonlog-
ical constructs is that the meaning of the resulting hybrid
language becomes obscure and complicated. For example,
it becomes difficult to define a notion of the equivalence of
two LogicWeb pages.

This paper proposes HHWeb, an extension to Log-
icWeb with hereditary harrop formulas [3], [4]. This logic
extends Horn clause goals by two major constructs: an im-

plication goal of the form D•½G and the expression of the

form •ÍxG where D is a web page and G is a goal. The

former one has the following intended semantics: the rules

in D are intended to be added to the current program in the

course of proving G. This expression thus supports the idea

of modules. The latter expression has the following intended

semantics: the variable x in G is intended to be replaced with

a new name before proving G. This expression thus supports

the idea of local constants.

Combining these two goals leads to a goal of the form

•Í x1...•Íxn(D•½G) (or equivalently (•Îx1...•ÎxnD)•½G,

if x is not free in G) where D is a web page and G is a

goal. This goal is particularly flexible in controlling the vis-

ibility of names. To be precise, they can provide scope to

functions, constants, and predicates via such a simple oper-

ation as •grenaming•h. We focus here on the goals of the form

(•Îx1...•ÎxnD)•½G because only this is cental to the later

discussions of the interface notion.

In this paper we present the syntax and semantics of

this extended language, show some examples of its use and

study the interactions among the newly added constructs. In

our presentation, we focus on first-order logic. We make this

choice so as to simplify the presentation.

The remainder of this paper is structured as follows.

We describe HHWeb based on first-order hereditary Harrop

formulas in the next section. In Sect. 3, we present some

examples of HHWeb. Section 4 concludes the paper.

2. The Language

The language we use is a slightly expanded version of hered-

itary Harrop formulas. It is described by G-, D- and E-

formulas given by the syntax rules below:

G::=A|G∧G|G∨G|E⊃G|∀xG|∃xG

D::=A|G⊃A|∀xD|D∧D

E::=D|∃xE

In the context of HHWeb, terms are augmented with web

page URLs. In the rules above, A represents an atomic for-
mula. A D-formula is called a program clause or a first-

order hereditary Harrop formula. An E-formula is called an

existentially quantified program clause.

In the transition system to be considered, G-formulas
will function as queries and a set of D-formulas will consti-

tute programs. For this reason, we refer to a G-formula as

Manuscript received July 23, 2007.
Manuscript revised February 5, 2008.
The author is with Computer Eng., DongA University, Korea.
The author is with Electronics Eng., DongA University,

Korea.
a) E-mail: khkwon@dau.ac.kr

DOI:10.1093/ietisy/e91-d.6.1827

Copyright (c) 2008 The Institute of Electronics, Information and Communication Engineers

1828
 IEICE TRANS. INF. & SYST ., VOL.E91-D, NO.6 JUNE 2008

a goal, to a set of D-formula as a program . Our language is

an extension to first-order Horn clause with the main differ-

ence that new scoping constructs are added in G-formulas

and D-formulas.

We will present an operational semantics for this lan-

guage. These rules in fact depend on the top-level construc-

tor in the expression and have the effect of producing a new

expression and a new program.

The rules for solving queries in our language are based

on •ggoal-directness•h in the sense that the next rule to be used

depends on the top-level construct of the goal formula.

Definition 2.1. Let G be a query and let P be a finite set

of program clauses. Then the notion of proving <P, G> is

defined as follows:

(1) If G is an atom and is identical to an instance of a pro-

gram clause in P, then <P,G> is proved.

(2) If G is an atom and an instance of a program clause in

P is of the form G1•½G, prove <P,G1>.

(3) If G is G1•ÈG2, then prove <P,G1> and <P,G2>.

(4) If G is G1•ÉG2, then prove either <P,G1> or <P,G2>.

(5) If G is •ÎxG1, then prove <P,[t/x]G1> where t is a term.

(6) If G is •ÍxG1, then prove <P,[a/x]G1> where a is a new

constant.

(7) If G is D•½G1, then prove <{D}•¾P,G1>.

(8) If G is (•ÎxE)•½G1, then prove <P,([a/x]E)•½G1>,

where a is a new constant.

In the above rules, the symbols•½and •Íx provide scoping

mechanisms: they allow, respectively, for the augmentation

of the program and the introduction of new names in the

course of proving a goal. The •Î construct in E-formulas

provides a means for information hiding.

3. HHWeb

In our context, a HHWeb page corresponds simply to a E-

formula with a URL. The module construct mod allows a

URL to be associated to a E-formula. An example of the

use of this construct is provided by the following •ggraph•h

module which contains some basic graph-handling rules.

mod(www.krx.com/graph).

htext(www.krx.com/graphdoc.html). % web page

path(X,Y): - edge. (X,Y).

path(X,Y): - edge(X,Z), path(Z,Y).

spantree(Tree): -

Our language in Sect. 2 permits constant names to be

made local to a D-formula using the •Î construct. This allows

for a server-side interface, which leads to the hiding of a

data structure in a page. The names of the constants listed

then become unavailable outside the module . An example

of the use of this construct is provided by the modified page

which made spantree local:

mod(www.krx.com/graph1).

htext(www.krx.com/graph1doc.html). % web page

•Î spantree www.krx.com/graph.

Now let us consider the fly page which contains the

flight information and the tour page which uses the graph1

and fly pages.

mod(www.kair.com/fly).

htext(www.kair.com/flydoc.html). % web page

% pilot(flight no, name)

% flight(flight no, origin, destination)

pilot(31, tom).

flight(31, paris, nice).

flight(20, nice, tokyo).

flight(21, seoul, rome).

edge(X,Y): - flight(_, X,Y).

mod(www.htour.com/tour).

htext(www.htour.com/tourdoc.html). % web page

% tourguide(age, name)

% tour(origin, destination)

tourguide(31, tom).

tour(X,Y): - www.kair.com/fly•½

www.krx.com/graph1•½

path(X,Y).

These pages can be made available in specific con-

texts by explicitly mentioning the URL via a hyperlink.

For example, consider a goal www.htour.com/tour •½

tour(paris, tokyo). Solving this goal has the effect of adding

the rules in tour, fly and graph1-after replacing spantree

with a new name in graph1-to the program before eval-

uating path(paris, tokyo). Thus, the name spantree is not

visible in the program.

Unfortunately the above program is actually problem-

atic: there is a problem of name clash. For example, tom

appears both in the fly and tour pages. One novel way of

handling name clashes is the client-side interface. For ex-

ample, the client-side interface makes it possible for a client

to customize the server page. The following is an improve-

ment of the tour page based on this idea.

mod(www.htour.com/tourl).

htext(www.htour.com/tourdoc.html). % web page

% tourguide(age, name)

% tour(origin, destination)

tourguide(31, tom).

tour(X,Y): - (•Îtom www.kair.com/fly)•½

www.krx.com/graphl•½

path(X,Y).

In the above, it is interesting to note that the tour1 page lim-

its the scope of tom via an expression •Îtom www.kair.com/fly

so that its scope is local to the fly page.

LETTER

 1829

4. Conclusion

In this paper, we have considered an extension to LogicWeb

with hereditary Harrop formulas. This extension allows

goals of the form (•Îx1...•ÎxnD)•½G where D is a web

page and G is a goal. The existential quantifications at the

head of web pages are particularly flexible in controlling the

visibility of names. For example, they can provide scope to

functions and constants as well as to predicates.

Logic programming paradigm does not support imper-

ative features such as sequential computation, global state

and memory addressing. These features are certainly desir-

able in terms of efficiency. Our ultimate interest is in a lan-

guage which extends hereditary Harrop formulas with im-

perative features.

Acknowledgements

This paper was supported by Dong-A University Research

Fund in 2008.

References

[1] S.W. Lok and A. Davison, •gLogic programming with the WWW,•h

Proc. 7th ACM Conference on Hypertext, ACM Press, 1996.

[2] J. Davies, D. Fensel, and F.V. Harmelen, Towards the Semantic Web,

John Wiley, 2003.

[3] D. Miller, •gA logical analysis of modules in logic programming,•h J.

Log. Program., vol.6, pp. 79-108, 1989.

[4] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov, •gUniform proofs

as a foundation for logic programming,•h Annals of Pure and Applied

Logic, vol.51, pp. 125-157, 1991.

