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Histogram Equalization Utilizing Window-Based Smoothed CDF 

Estimation for Feature Compensation

Youngjoo SUHa), Nonmember, Hoirin KIM, Member, and Munchurl KIM, Nonmember

SUMMARY In this letter, we propose a new histogram equalizatio
method to compensate for acoustic mismatches mainly caused by corru
tion of additive noise and channel distortion in speech recognition. The 
proposed method employs an improved test cumulative distribution fun
tion (CDF) by more accurately smoothing the conventional order statistic
based test CDF with the use of window functions for robust feature com
pensation. Experiments on the AURORA 2 framework confirmed that the 
proposed method is effective in compensating speech recognition features 
by reducing the averaged relative error by 13.12% over the order statistics-
based conventional histogram equalization method and by 58.02% over the 
mel-cepstral-based features for the three test sets.
key words: feature compensation, histogram equalization, robust speech 
recognition, window-based CDF estimation

1. Introduction

Speech recognizers trained on clean speech data usually 
show dramatic degradation of recognition accuracy when 
they are operated in real-world noisy environments. The 
main cause of performance degradation is acoustic mis-
matches between clean training and noisy test environ-
ments [1], [2]. The histogram equalization (HEQ) technique 
is known to be one of the most efficient methods with very 
comparable effectiveness in compensating for the acoustic 
mismatch in the feature space of speech recognition [3]-[5]. 
In the histogram equalization approach, reliable and accu-
rate estimation of cumulative distribution functions (CDFs) 
is a critical issue for guaranteeing its effectiveness in the 
feature compensation [5]. We can use a sufficient amount of 
training data in the reference (or training) CDF estimation. 
Therefore, the reference CDF can be obtained highly accu-
rately by using the training data. However, the test CDF 
is apt to be estimated with a limited amount of test data 
because the basic input unit in most of the current speech 
recognizers is usually a short utterance or word. As the 
amount of test data is smaller, the accuracy of the esti-
mated probability distributions tends to be deteriorated fur-
ther. Therefore, the classical histogram method is not suit-
able for the test CDF estimation in short utterance-based 
test environments. As an improved test CDF estimation 
method, the order statistics-based approach is widely em-

ployed in the histogram equalization techniques [3]. How-
ever, from the viewpoint of kernel density estimation [6],

it is regarded that the order statistics-based method uses a 
kernel function with a very small bandwidth which covers 
only a single sample data. As a result, the resulting CDF 
by the order statistics-based method tends to be extremely 
under-smoothed. Therefore, by utilizing a reasonable ker-
nel function with a properly chosen bandwidth, we can ob-
tain a more accurate test CDF. Finally, it is surely expected 
that histogram equalization based on the enhanced test CDF 

provides better effectiveness in the feature compensation.
In this letter, we propose a new histogram equaliza-

tion technique which employs a window-based smoothed 
test CDF estimation method for feature compensation in 
the noise robust speech recognition. Our method utilizes 
a window-type smoothing function as the kernel function 
in the test CDF estimation instead of just using the rank 
information of each sample data in the conventional or-
der statistics-based method and produces a more accurate 
test CDF. The experimental results showed that the pro-

posed approach is more effective than the conventional or-
der statistics-based histogram equalization (OS-HEQ) tech-
nique in compensating the acoustic features in noisy envi-
ronments.

2. Order-Statistics-Based Histogram Equalization

The idea of histogram equalization is to convert the prob-
ability density function (PDF) of the test variable into its 
reference PDF. For a given random test variable y, whose 
PDF is given as PY(y), a basic rule for histogram equaliza-
tion is defined by an inverse transform function x=F(y), 
which maps PY(y) into PX(x) in [4] as

x=F(y)=C-1x(CY(y)), (1)

where C-1X(x) is the inverse of reference CDF CX(x), and 
CY(y) is the test CDF of random variable y.

Equation (1) indicates that histogram equalization uses 
only two CDFs, the reference and test CDFs. Thus, for 
accurate histogram equalization, the two CDFs need to be 
estimated as reliable as possible. Like other statistical es-
timation, reliable CDF estimation is directly related to the 
amount of sample data. In developing speech recognizers, 
training data can be collected large enough that the reference 
CDF estimated by the classical histogram is regarded highly 
reliable. However, a short utterance or word is still the major 
input unit in most current speech recognizers. In this case, 
the length of each utterance or word may be too short for 
a reliable estimation of its CDF. Accordingly, the test CDF
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can be ill-estimated due to the lack of sample data. When 

the amount of sample data is smaller, it is generally known 

that the order statistics-based CDF estimation is more ac-

curate than the classical cumulative histogram approach [3]. 

Therefore, OS-HEQ is a preferred histogram equalization 

technique in feature compensation. A brief description of 

OS-HEQ utilizing the order statistics-based CDF estimation 

is given as follows [3].

Let us define sequence S consisting of N frames of a 

particular test feature component as 

S={y1,y2,•c,yn,•c,yN), (2)

where yn is the test feature component at the n-th frame.

The order statistics of (2) is represented as

y T(1)•…yT(2)•…•c•…yT(r)•…•c•…yT(N), (3)

where T(r) denotes the original frame index of feature com-

ponent yT(r) in which r represents its rank when the elements 

of sequence S are sorted in ascending order.

From (2) and (3), the order statistics-based test CDF 

estimate is given as

(4)

where R(yn) denotes the rank of yn, ranging from 1 to N.
Given yn, an estimate of xn by OS-HEQ is defined as

(5)

3. Histogram Equalization Based on Smoothed CDF 
Estimation

In the classical probabilistic definition, PDF is estimated as 
the number of samples in a given unit bin. Then, CDF is 
obtained as the accumulation of PDF for the range up to 
the bin. When the number of samples is not large enough, 
the estimated PDF is heavily dependent upon the bin width 
as well as bin position. Therefore, it needs an additional 
smoothing process for more accurate estimation.

In the order statistics-based estimation, the bin width is 
infinitesimally small since it contains only a single sample. 
Therefore, the resulting CDF by the order-statistics-based 
estimation defined in (4) is prone to be under-smoothed and 
thus needs to be properly smoothed by introducing a ker-
nel function with an appropriate kernel width according to 
the kernel density estimation theory [6]. In smoothing PDF 
estimated by the order statistics-based method, it is impor-
tant to choose the most appropriate kernel shape as well as 
kernel width for a given number of samples. In this letter, 
we propose the window-type kernel-based test CDF estima-
tion method, where the kernel shape is determined by the 
adopted window functions and kernel width is empirically 
chosen within the given input utterance to produce an opti-
mally smoothed test CDF in the sense of speech recognition

accuracy. It is then utilized in histogram equalization for 
improving the effectiveness of feature compensation for ro-

bust speech recognition. The two approaches for estimating 
the test CDF with different types of window functions are 

explained as follows.

3.1 Rectangular Window-Based Test CDF Estimation

One simple choice of a window function is a rectangular 

window. The test PDF and its CDF estimated by using the 
rectangular window are obtained as follows

(6)

(7)

where relative frequency ƒÕrect(yn) at test feature sample yn 

obtained by the rectangular window is given as

(8)

in which rectangular window function Wrect(ƒÉ) is defined as

(9)

where B is the window kernel width, obtained as

(10)

where ymax and ymin are the maximum and minimum values 
of yn in the sequence, respectively, and D is an empirically 

chosen constant.

3.2 Triangular Window-Based Test CDF Estimation

Another choice of the window function is a triangular win-

dow, which takes into account the decaying contributions 
to the relative frequency in a given bin as the neighboring 

samples are apart from the center of the window. Similar 

to the rectangular window case, the test PDF and resulting 
CDF estimated by using the triangular window are obtained 

as follows

(11)

(12)

where relative frequency ƒÕtri(yn) at test feature sample yn 

obtained by the triangular window is given as
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(13)

in which triangular function Wtri(ƒÉ) is defined as

(14)

4. Experimental Results

In the performance evaluation, we used the AURORA 2 
database, which is based on the TI-DIGITS database. In our 
experiments, we employed only clean training-conditions 
which indicate that the training data for training the speech 
recognizer are composed of clean speech only. We exam-
ined the effectiveness of the proposed approaches on the 
three test sets, test sets A, B, and C, where test sets A and 
B are corrupted by different four kinds of additive noise, re-
spectively, and test set C is contaminated by two kinds of 
additive noise used in test sets A and B, and channel dis-
tortion together. The number of connected digits in each 
utterance of the AURORA 2 test sets ranges from one to 
seven, which makes utterance lengths of the test sets quite 
variable. Figure 1 depicts the utterance length distribution 
of the AURORA 2 test sets. From the figure, we see that the 
test data contains speech utterances of various lengths with 
the higher population at the shorter lengths, which makes it 
especially suitable to evaluate the effectiveness of the pro-

posed test CDF estimation method in small as well as vari-
ous numbers of test samples.

We employed the ETSI AURORA 2 framework in con-
ducting the feature extraction and determining the archi-
tecture of speech recognizers used in the experiments as 
follows [7]. Speech signals are blocked into a sequence 
of frames, each 25ms in length with a 10ms interval. 
Speech frames are pre-emphasized using a factor of 0.97, 
and a Hamming window is then applied. From a set of 23 
mel-scaled filter-bank log energies, a 39-dimensional mel-
frequency cepstral coefficient(MFCC)-based feature vector 
consisting of twelve MFCCs, the log energy, and their first 
and second derivatives is extracted. The baseline speech

Fig. 1 Utterance length distribution of the AURORA 2 test sets.

recognizer employs whole-word models and its dictionary 
consists of 13 words, composed of 11 digits , a silence, 
and a short-pause. Each digit-based hidden Markov model 

(HMM) consists of sixteen states while silence and short-
pause HMMs has three states and one state, respectively. 
Each state in the word models has three mixture components 
and that in the silence and short-pause models has six mix-
ture components. Each mixture component is modeled with 
a diagonal covariance matrix. The number of histogram bins 
in the reference CDFs was chosen as 64 in all of the his-
togram equalization techniques. Due to the use of a linear 
interpolation within each histogram bin in the computation 
of reference CDF estimate, further increasing the number of 
histogram bins did not show any meaningful performance 
improvement. The histogram equalization was conducted 
on all of the 39 components of the MFCC feature vector for 
the training and test data with utterance-by-utterance esti-
mation of the test CDFs. The parameter D is empirically set 
to 340 and 210 for the rectangular and triangular windows, 
respectively.

Figure 2 shows the recognition results at various signal-
to-noise ratio (SNR) conditions when OS-HEQ, rectangu-
lar window-based HEQ (RW HEQ), and triangular window-
based HEQ (TW HEQ) techniques as well as the MFCC fea-
tures are used. The results are represented in terms of the 
overall averaged word accuracy for the three test sets. In this 
figure, we observe that the proposed techniques meaning-
fully outperform OS-HEQ. Of the two proposed techniques, 
TW-HEQ provides slightly better performance. As the SNR 
level is lowered, the corresponding absolute error reduction 
is proportionally increasing, which indicates that the consis-
tency of relative error reduction is well kept across various 
SNR levels. From these recognition results and the utterance 
length distribution in Fig. 1, we also note that the proposed 
histogram equalization techniques are substantially effective 
in test utterances with short as well as various lengths.

Table 1 shows the recognition results for test sets A, B, 
and C obtained by MFCC, OS-HEQ, RW-HEQ, and TW-
HEQ, respectively. Each result is obtained as the aver-
aged value between 0 and 20dB SNRs. For sets A and 
B, the proposed RW-HEQ technique shows outstanding im-

Fig. 2 Recognition results of MFCC, OS-HEQ, RW-HEQ, and TW-HEQ 
at various SNR conditions.
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Table 1 Word accuracy of the baseline MFCC, OS-HEQ, RW-HEQ, and 
TW-HEQ at the AURORA 2 task (Averaged between 0 and 20dB SNRs).

provements over MFCC by producing error reductions of 
54.83% and 62.99% over MFCC and substantial improve-
ments over OS-HEQ with error reductions of 9.20% and 

9.87%, respectively. For the same test sets, TW-HEQ pro-
vides better improvements with error reductions of 55.66% 
and 63.99% over MFCC and 10.86% and 12.28% over OS-
HEQ. The results for set C also confirm the superiority 
of the two proposed techniques to the conventional OS-
HEQ by yielding error reductions of 45.62% and 47.60% 
over MFCC and 15.56% and 18.64% over OS-HEQ, re-
spectively. From the results for test sets A, B, and C, 
we notice that the proposed window-based approaches are 
more effective in compensating for the acoustic mismatch 
caused by both additive noise and channel distortion to-

gether than additive noise only. When clean speech is cor-
rupted by both additive noise and channel distortion, the 
resulting acoustic mismatch behaves as a more complex 
nonlinear function, because additive noise, channel distor-
tion, and clean speech affect on the function independently 
each other. We also note from the results that the pro-

posed histogram equalization techniques are more effective 
in the noise types of Car and Airport than those of Babble 
and Restaurant. The former noise types are known to be 
more stationary. In the stationary noise environments, the

acoustic mismatch leads more closely to the monotonic 
transformation, a transformation that does not cause any 
change of rank information in (3). When this major re-

quirement is satisfied, the histogram equalization technique 
can work more effectively on the feature compensation by 
more faithfully meeting other requirements for its full per-
formance such as the accurate test CDF estimation.

5. Conclusion

For more effective feature compensation in noisy speech 
recognition environments, the histogram equalization tech-
nique requires more accurate test CDF estimation. The or-
der statistics-based CDF estimation is the most frequently 
employed approach in the conventional histogram equaliza-
tion techniques, but it still has some room for further im-

provement in its accuracy. The window-based smoothed 
CDF estimation method can obtain more accurate test CDF 
by smoothing the order statistics-based CDF with the use 
of window functions. The proposed histogram equaliza-
tion technique then utilizes the improved test CDF estimated 
by the window-based smoothed estimation method. Experi-
mental results showed the effectiveness of the proposed his-
togram equalization technique for feature compensation in 
robust speech recognition.
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