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Abstract. The Riesz basis property of the generalized eigenvector
system of a Timoshenko beam with boundary feedback controls ap-
plied to two ends is studied in the present paper. The spectral prop-
erty of the operator A determined by the closed loop system is in-
vestigated. It is shown that operator A has compact resolvent and
generates a Cy semigroup, and its spectrum consists of two branches
and has two asymptotes under some conditions. Furthermore it is
proved that the sequence of all generalized eigenvectors of the system

principal operator forms a Riesz basis for the state Hilbert space.
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1 Introduction

It is well known that many flexible structure systems, such as robotic system,
can be described by Timoshenko beam equation with appropriate boundary con-
ditions (see Timoshenko,1954; Morgiil, 1991). In the past decades, there exists
an extensive mathematical and engineering literature on the Timoshenko beam
model, and varied controllers for the system have been designed to realize the
stabilization of the system. Among them, the so-called boundary controller is

more easy to realize. Therefore the boundary control problem of Timoshenko
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beam system attracts much more attentions, and obtained a lot of important
results, e.g., see Kim & Renardy, 1987; Morgiil,1991,1992; Feng et al.,1995, 1998;
Shi et al, 1998; Geist & McLaughlin, 2001; Pazoto& Menzala, 2000. It is proved
that if only one control force or moment is applied to one end, then the system
can be asymptotically but not uniformly stabilized. If both control force and mo-
ment are applied to the one end or two ends of the system respectively, then the
controlled system can be uniformly stabilized. However, these results do not give
any information about the decay rate and expression of solution of the controlled
system. In practice, we often need to make some quantitative analysis for the
controlled system. If a system has the Riesz basis property, i.e., the sequence of
all generalized eigenvectors of the principal operator for the system forms a Riesz
basis of the state Hilbert space, then any solution of the system can be expressed
in terms of the Riesz basis, and the system satisfies the spectrum determined
growth assumption, and hence the stability is determined by the spectrum of the
system principal operator.

In the past several years, on the generation problem of Riesz basis of the
generalized eigenvector system of flexible structure with boundary control, many
authors have made a great effort, e.g. see Balakrishnan, 1998; Shubov, 1999,
2002; Xu & Feng, 2002; and the references therein. In Shubov 1999, the author
proved the completeness of the generalized eigenvector sequence of the Timo-
shenko beam with some boundary feedback control. In the present paper, we
give a counterexample to show that when the feedback gain is equal to the wave
speed in this case, the sequence of the corresponding generalized eigenvectors is
not complete.

In this paper we will consider the following homogeneous Timoshenko beam

with boundary control:
pii(x,t) — K(w"(z,t) — ¢'(2,1)) =0, 0 <z <L,
Lyp(x,t) — EIQ"(2,t) — K(w'(z,t) — o(2,1)) =0, 0 <z <,

w(O,t):O, ( ) ):0( )v
w,(&t) - So(gvt) = u(t)v @/(E’t) =0,

(1.1)

where 6(t) and u(t) are control functions. The aim is to design feedback con-
trollers such that the energy of the closed loop system is asymptotically stable.

Here we adopt the following feedback control law:
0(t) = r((0,t) —0(t)) and w(t) = —Bw(l,t), r>0 >0  (1.2)

To prove the stability of the closed loop system, the idea is to show that
the sequence of the generalized eigenvectors of the closed loop system forms a
Riesz basis in the energy space. For this purpose, we use Bari’s Theorem (see,

Young,1980). Here the key step in the use of Bari’ Theorem is to find a reference



basis of the state Hilbert space. We first introduce an auxiliary operator and prove
that the sequence of the generalized eigenvectors of this auxiliary operator forms
a Riesz basis. Then in terms of Bari’s Theorem, we prove that the sequence of
the generalized eigenvectors of the closed loop Timoshenko system forms a Riesz
basis in Hilbert state space. Although the system we consider is with constant
coefficients, but it is not difficult to extend to variable coefficient Timoshenko
case.

The remaining part of the paper is arranged as follows. In the next section,
we give a basic spectral analysis of A determined by the closed loop system (1.1)
and (1.2), and describe the distribution of eigenvalues of A. In section 3, we
introduce an auxiliary operator Ay which, in fact, is the principal part of A,
and prove that Ao has the Riesz basis property. Finally, in section 4, by the
asymptotic analysis of the operator A, using Bari’s Theorem, we prove 4 has the
Riesz basis property, i.e., the generalized eigenvectors of the operator A forms a

Riesz basis for the state Hilbert space.

2 Spectral analysis of system operator

In this section we set up the Hilbert state space, and write the closed loop system
(1.1) and (1.2) into an evolutionary equation in the state Hilbert space. Further,
we discuss the spectral property of the operator determined by the closed loop
system.
Let us consider the following Timoshenko beam with boundary feedback con-
trol:
pi(x,t) — K(w"(z,t) — ¢'(x,t)) =0,0 < z < L,
I,¢(x,t) — EIY"(x,t) — K(w'(z,t) — ¢(x,t)) =0, 0 <z </,
w(0,) =0, (0,6)=0(t), ¢(L,t)=0, (2.1)
w'(4,t) — (L) = =pw(l,t), B>0,
9(15) =r(p'(0,t) —0(t)), >0
Define the state space

H=Vy x L2(0,€) x H'(0,£) x L7 (0,4),

where V¥ = {p € H*(0,0) | ¢(0) = 0}, k = 1,2, and H¥(0,¢) is the usual
Sobolev space of order k. For Y1 = [w1, 21, ¢1,¥1]7, Yo = [wa, 22, 02, 10]" € H,
where and after the superscript T' denotes the transpose of matrix or vector, the

inner product in H is defined by
0 L ¢ ) o
(1, ¥3) = / Kuw\wyde +/ pa1Zadz +/ Bl ghdx
0 0 0

Z J—
+/0 Iyp1iada + EIp1(0)¢2(0).



Define operator A in H:

w z
K " /
K (' —
A ; - ol . ) : (2.2)
b e+ LW )

D(A) = {[w,2,0,0]" € H |we VP, 2 €V, € HX0,0), ¥ € H'(0,0)
$(0) = 7 (0) = p(0), w'(€) = p(t) = —B2(0), ¥'(¢) = 0}.

Then the closed loop system (2.1) can be written as an evolutionary equation

in H:
d

dt
where Y (£) = [w(-, 1), i (-, 1), o (-, £), (-, 1))

Y(t) = AY (t), Vt >0, (2.3)

Theorem 2.1 Let A be defined as above. Then A has compact resolvent and

generates a Cy semigroup.

Proof The proof is dierct and is omitted.
Now we are in a position to investigate the eigenvalue problem of A. For

A € C, we solve eigenvalue-equation
M - AY =0, Y =[w,ze0].

This implies that z(z) = Aw(x), ¥ (z) = Ap(x) and the function pair (w(x), ¢(x))

satisfies the equations

{p)\Qw(:L‘) — K" (x) —¢(2)=0,0< x < ¥, (2.4)
I p(x) — El¢" (z) — K(w'(z) — p(z)) =0, 0 < z <, '
with the boundary conditions
{ w(0) =0, Ap(0) = r(¢'(0) = #(0)), (2.5)
w'(0) — o(0) = =Brp(l), ¢'(¢) =0.
For the sake of simplicity, for a fixed A € C, set
2_ P 2_& _ 242 _225 __E
P1= K’ P2 = EI’ a_plA ’ b_p2>‘ +EI’ c= EI (26)
Denote by p1 and po the two roots of the quadratic equation
p? —(a+b+c)u+ab=0, (2.7)

ie.,

(a+b+c)++/(a+b+c)?—4ab
2 )

pr = pi(A) =



(a+b+c)—\/(a—|—b—|—c)2—4ab.

p2 = pa(A) = 5
Assume that p1 # po, and define functions w;(A, x), pj(A, ) for j = 2,3,4 as
follows:
wa(,7) = b (sinh./ulx B sinh,/uyv)v
H1 — p2 Vv H1 V2
sinh T sinh T
wnha) = (=) T T
H1 — K2 v/ K1 vV H2
wa(A, ) = cosh \/u1x — cosh /o),

TR ) (28)
P2(0,) = (= (s D) cosh Vi + (1 =) cosh ize).
p3(A,z) = (cosh \/p1z — cosh \/pax),

H1 — M2
1 sinh \/u1x sinh \/p2x
patha) = (= ) Ty TV,
H1 — M2 v H1 v 2
Then the general solution of (2.4) can be written as
w(z) = Cowa (A, z) + Cyws (A, x) + Cqwg (N, x), (2.9)
o(z) = Copa (N, x) + Csps(\, x) + Cyps(\, ), (2.10)

where Cy, C3, Cy are any constants to be determined. In order for (w(x), ¢(x))

meet the boundary conditions (2.5), the constants Cq, C3, Cy must satisfy

A
Cy = —:TCQ,

Cra11(A) + Csai2(N) =0,
Caa1(A) + Csaga(N) =0,

where

a11(A) = wh (X, €) — p2(A, £) + ABwa(A, €)
AT 000 — a0 0) + ABua (A, ),

a12() = wh(\,€) — ps(A 0) + Mg (A, 0),

an () = (00 + 2S00,

az(A) = p3(\,0)

Set, \ \

I'(\) = det (;EA; aZEAD , (2.11)

Theorem 2.2. Let w;(\ z),¢;(A z) for j = 2,3,4 and I'(\) be defined as
before. Then



1) the spectrum o(.A) of A consists of all eigenvalues of A, and \ € o(A) if
and only if I'(A\) = 0;

2) let A € 0(A), then the corresponding eigenvector can be chosen as

s @) + 22w, )| Lug(\, )
A x) + 2wy (A, A,
Oy = Cy 7”1”2( ™) T;ﬁ( =) Loy | e (2.12)
§|eaha) + 2 a(x o) x¢s(A )
(M) + X pa(A, ) ea(h )
where (C2, C3) is some nonzero solution of following linear equations
C A)+C A) =0,
{ 2a11(A) + C3a12(A) (2.13)
Cgagl()\) + Cgagz()\) =0.

Furthermore, for each A € o(A), the eigen-subspace of A associated with A is of
dimension one.

3) If B # p1 and rpy # 1, then the spectrum o(A) of A has two asymptotes.
More precisely, there is a positive integer N such that for each n with |n| > N, two

eigenvalues )\%1) and )\7(12) of A are both simple and has the following asymptotic

expression:
|58+ 2 4 0(3) if G- pi>0
A(l) _ 2014 B+p1 01l n’’ P1 9 (2 14)
" gy 4 Bt oLy i 5y <0 ‘
2p1¢ B+p1 2p10 n/’ P1 )
and
1 —1 T 1 .
\@ _ ) 22t In |22+ 507 + O, if rpp—1>0, o1
n.o 1 rpo—1 (2n+1)mi O(1 if 1<0 ( . )
2pal n‘Tp2+1| + 2p2l + (ﬁ)? 1 rp2 — 1 <0.

Proof The assertions 1) and 2) are immediate. Here we only prove the assertion
3).
Obviously, I'()A) is an entire function in A € C. By using (2.7) and (2.8), a

lengthy calculation shows that

e, 50— e Y 1]

Re A—o0 P1
and
. 40(N) 1 I} )
A [ T
lim 4T'(\) =-1, if p1 =08, rp2=1, (2.17)

ReA——o0
Then there is a M > 0 large enough such that all zeros of T'()\) lie in the
strip Py = {A € C | —M < ReA < 0}. Note that the functions sinh ,/fi;¢ and
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cosh ,/fi;¢ are bounded in A € Pys. Hence for A € Py with |A| large enough, we

have

r'(a 1
) = {coshpl)\f + s sinh pl)\ﬂ} [pg sinh po Al 4 — COShpg)\E} +0(\1) (2.18)
r

A P1
Set
GO\ = [cosh PN+ ;i sinh le} [pz sinh poAd + % cosh pQM} . (2.19)
The zeros of G(\) are
€n={2’iﬂln‘§tgﬂ+§7’l o Al (2.20)
2p10 1n|ﬂ+/€i |+ gzle)m’ it B—p1 <0,
and 1y |re2=l| 4 nmi : B
o { 5ol n|rp2+1| + 0l if rpa—1>0, (2.21).
iy In 22| + B ey —1 <0,

Applying Rouche Theorem to (2.18), we can arrive that there is an integer
N such that for each n with |n| > N, there exists only one zero A of I'(A) in
a small neighborhood of &,, and similarly, there exists only one zero A of T (\)

in a small neighborhood of 7,. Furthermore we have estimates
M =& +0(6") and AP =+ O ).

By the first assertion we know that N , AP e o(A). Note that all the zeros of

G(\) are simple. So for n large enough, )\511), )\%2) € o(A) are simple eigenvalues

of A. The proof is then complete. O

Remark 2.3 If 1 # rps and G # p1, then the spectrum of A distributes in a

strip parallel to the imaginary axis, and has two asymptotes in general. But if

rpa—=l| _ |p1—=B
rp2+1 p1+0

case we cannot say that each eigenvalue of A with large modulus is simple or not.

, then these two asymptotes degenerate the same one. In this

When 1 = rpy and § = pi, the function G(\) has no zero. It follows from
(2.17) that I'(\) has only finitely many zeros. Therefore in this case the system
of the generalized eigenfunctions of A is not complete in the state space H. This

gives a counterexample of completeness result in Shubov (Shubov, 1999, 2002).
Theorem 2.4 There is no eigenvalue of A on the imaginary axis.

Proof Firstly a direct computation shows that 0 € p(A).
We now suppose that the assertion is not true Then there is at least one
A =it # 0 with 7 € R such that A € o(A). Let Y = (w, \w,p,\p) is a

corresponding eigenvector of A. We have

Re (AY,Y) = 0 = —Kf|Mw(0)]” — EIT]¢'(0) — (0)?,



which implies that w(¢) = 0 and ¢(0) = ¢’(0). Since that A is an eigenvalue of
A, we have ¢'(0) = 2(0), which holds only if ¢'(0) = ¢(0) = 0 because of
A # 0. So we have

w(z) = Cws(\, z), ¢(x)=Cps(\z),

where C' is a constant. It is easily seen that wz(\,¢) # 0 as ¢h(A\,£) = 0. So

we obtain C' = 0, and hence w = ¢ = 0, i.e., Y = 0. This is a contradiction.

Therefore the proof is complete.

3

|

Auxiliary operator and its spectral property

In order to investigate the Riesz basis property of the generalized eigenvector

system of A, we define an auxiliary operator Ag in H by

w V4
K,
Al Z =17 : (3.1)
® (0
Y 2o

D(Ao) = {[w,z,0.9]" € H |we Vi z € Vi, € HA(0,0),

(NS H1<07€)7 w(o) - T(p/(()), 90/(6) =0, w,(ﬁ)

—B2(0), } (3.2)

In the rest of this section, we study the property of Ag. In the sequel, we

denote by Z the set of all integers, and always assume that p; # pa.

Theorem 3.1. Let A4j be defined by (3.1) and (3.2). Assume that 1 # rpa, 3 #

p1, and set
L 2?111 a2l | if B—p1 >0, 3.3
57 1n ﬁhg—&-%, if B—p1 <0,
L 2?111 e, | if rpy—1>0, 3.4)
pn[Za+ g it e -1<0.
Then

1) the spectrum o(Ap) of Ag consists of all eigenvalues of Ay, and is decom-

posed into two branches:

o(Ao) = {& | n € Z} | J{ma | n € 23 {0},

where
nmw

:01571 =T1 + 177

P2Nn = To +iﬂ, Vn € Z;

4



2) an eigenvector of Ay associated with &, is
) T
U, = (&, sinh(p1&,x), sinh(p1€,2),0,0| , n€ Z, (3.5)
and similarly, an eigenvector of Ay corresponding to 7, is

-
®,, = |0,0,7, [sinh(pen,z) + rp2 cosh(pan,z)], sinh(pan,z) +7pe cosh(pgnna:)}

(3.6)
An eigenvector of Ay corresponding to 0 is
Fy=10,0,1,0]"; (3.7)
3) the adjoint operator A§ of Ay is given by
w(z) —z(x)
_K
A z(x) _ oW () (3.8)
p(x) —((z) — ¥(0))
e ~Ho(a)

D) = {lw 200" €H|we VR, ze VY, pe B2 e H'

w!(€) = B2(0), ¥(0) = —rg(0), () =0} (39)

4) the spectrum o(Af) of Af is o(Af) = o(Ao) = o(Ap). Moreover, if we set

U = [€ " sinh(pi&,x), —sinh(pi€,2),0,0]T, ne Z,

n

.
®;,=|0,0,7, [sinh(pa7,, 2 }+rp2(cosh(pam, )-1)],~{sinh (o7, 2 -7 pa Cosh(mﬁnx)ﬂ ,

Fy =1[0,0,1,7]",
then {Uy, &* Fi |n € Z} is the eigenvector system of Aj.
Proof We consider the eigenvalue problem of Ag. Let A € C be an eigenvalue of

Ao, and Y = [w, z,¢,9]" € H be an eigenvector of Ag corresponding to A. Then
w(z) and p(x)) satisfy
pN2w(z) — Kw"(z) =0, 0 <z < ¢,
I 2p(x) — El¢"(z) =0, 0 <z < {,
w(0) =0, Ap(0) =r¢'(0),
w'(l) = —Brw(l), () =0.

Solving above equations, we obtain that

(3.10)

w(x) = Bsinh(p1Az), ¢(z) = C[sinh(peAz) + rp2 cosh(p2Az)],



where B and C are constants. From the boundary condition of (3.10) it follows
that
BlpiAcosh(pi Al) + BAsinh(pi M) = 0, (3.11)

and
C[A cosh(paAl) + rpaAsinh(paAl)] = 0. (3.12)

If C =0 and (8 # p1, then when A = 0, the equation (3.10) has a unique zero
solution. As A # 0, by solving equation (3.11) we get

1 B=p1 - nmw . _
A=¢& = 2it 5501 | Vi gl VneZ o (3.13)
oo 1 B— . (2n+1)7 . . .
3pr 1 5+Zi aalC vyt if B—p1 <0,

If B =0 and rpy # 1, then for A = 0, the equation (3.10) has a nonzero solution
() = 1. For A # 0, from (3.12) we obtain

1 rp2—1 s i _
N 2p2£1n rpz—&-l‘—i_zpzé’ if rpo—1>0, ez (3.14)
== I rpa—1 .(2n+1)7 i 1<0 : :
2p20 n rpa+1 + 2p20 1 rp2 —1 <V,

So the point spectrum o,(Ag) of Ay is

op(Ao) = {& | n € 2} J{m | n € 2} J{0}.

It is easily to check that if A & 0,(Ag), then A € p(Ap), and so o(Ag) = op(Ao)-
Moreover, A = 0 is a simple eigenvalue of Ay, and a corresponding eigenvector
is Fy = 10,0,1,0].
For &, € 0(Ap), a corresponding eigenvector is

.
U, = |&  sinh(p1&,2), sinh(p1&,1),0,0|

and for n, € Ay, a corresponding eigenvector is
-
®,=|0,0,n, [sinh(pan,z)+ rp2 cosh(pan,z)], (sinh(pon,z)+7po cosh(pgnnm))} .

The assertions 3) and 4) are direct. The proof is then complete. a

Theorem 3.2. Let H; and Hy be two subspaces of H defined by
Hy = {F = [w,2,0,0]" | F e H},

Ho = {F: [0707¢)¢]T | FGH}

Assume that 71, 79,§, and n, are defined as in Theorem 3.1. Then {¥,, | n € Z}
forms a Riesz basis of Hy, and {®,, | n € Z}|J{Fp} forms a Riesz basis of Ha.
Hence {¥,, |n € Z} | H{Pn | n € Z} U{Fb} forms a Riesz basis of H.
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Proof By virtue of Theorem 3.1, it is easily seen that for any n,m € Z,
(Fo, Un) = (Fg, Pn) = (®y,, Fo) = (¥3,, Fo) = 0,
= (05, ) = (V5. @) =0, Vn#m,
(®n, @) = L(L+72p3)0, (U, U7) = pl, (Fg, Fo) = EL

Now we prove that {®,, | n € Z}|J{Fo} forms a Riesz basis of Hs. To this
end, for any Y € Hs, we define a,(Y) by

I(1+ rps)lan(Y) = (Y, o)

4
_ / p2¢ () [cosh(pail,@) + rpz sinh(pa7, @) do
0

4
1, | (@) Binh{pa,e) + rprcosh{parya)lda

= gEIPQ [fc,n(go/[cosh(m') + 7pg sinh(72+)]) + iFs 0 (¢ [sinh(2)+ 7p2 cosh(r)])}

—gf,, [ Fen(0lsinh(rar) + 7o sinh(72:)]) + iy (lcosh(73:)) + rpa sinh(ry-)]) |,

where F.,(g) and Fs p(g) represent the Fourier coefficients of g:

2 [t nmT
Feals) = 7 [ @) cos( ).
2 L

fs,n(g) = E/o g(m) Sin(?)dm,

Noticing that {cos("7*) | n > 0} and {sin("7*) | n > 1} are two normalized

bases in L?[0, /], then we have

D NFenl9)? <00, D |Fanlg) < oo.
n=0 n=1

Therefore -
> lan(Y)? < oo.

We define the subspace Hy of Hy by

e}

Y =3 an(¥)@u(a) + (v, F5>Fo}.

—00

H():{YGHQ

Obviously, Hg is closed. If Hy # Ho, then there exists a Yy € Hs, Yy =
[0,0, (), ¢(z)]T # 0, such that YoLHo. So YylFy, Yol®,,Vn € Z. The
equality (Yp, Fp) = 0 implies that ¢(0) = 0. Then we define

- o(z), if x € [0,4],
A

11



and
{w<x>, if z €[0,4],
—p(—z), ifxe[-40].

We have

¢
(Yo, @) = EI/ ¢ pa[cosh(panyz) + rpo sinh(pan,z)|dz
0

+1, / W (x)sinh(pan,x)rp2 cosh(pan,x)dx
EI ET -
P2/ Gily 6p277"md95+ 7”02/ Go( ()epwnmdaz

[ _
/ Go () () el?n® TpQ/ G1(¢Y)(z)eP?m*dx = 0.

This implies that

EI Elrp? I 1
P25 (@) + =282 (2) + L) + L P20(2) = 0, aee., x € [0,4],
9 9 2 2

EI Elrp2 I I
2'02 o' (z) — %@’(z) — 5/) (z) + %1&(@') =0, ae., z€]0,4.

Solving the above algebraic equations, we obtain that ¢'(z) = 0 and ¢ (z) =
Therefore p(z) = 1(x) = 0, which contradicts to the hypothesis Yy # 0. So we
have Ho = Hos.

A similar argument can be used to prove that {¥,, | n € Z} forms a Riesz
basis of H;. Noting that H = H; + Ha, we conclude that {U,, | n € Z} | J{ Py, |
n € Z} | J{Fo} forms a Riesz basis of H. The proof is then finished. O

Corollary 3.3. 1If p; = 3,rpa = 1, then the spectrum o(Ag) of Ay has only one

element \ = 0.

Proof Obviously, A = 0 is always an eigenvalue of Ay if 3 = p1,7p2 = 1. On
the other hand, for any A € C, X\ # 0, (3.11) and (3.12) with B # 0 or C # 0 can
not hold. So o(Ap) has a unique element A = 0. O

4 Riesz basis property of generalized eigenvector sys-
tem of operator A

In this section we prove that the generalized eigenvector system of A forms a

Riesz basis in ‘H. To begin with, we recall some notions and Bari’s theorem.

Let H be a separable Hilbert space, and {e, | n > 1} be a normalized basis of
H. A sequence of vectors, {f; | j > 1} in H, is said to be a Riesz basis of H

12



if there exists a bounded invertible linear operator 1" in H such that f, = Te,
for all n > 1. Bari’s theorem (e.g, see, Yuong, 1980) says that if an w-linear
independent sequence {f, | n > 1} in H is quadratically near to a Riesz basis
{gn |n>1}in H, ie,

o)
Z Hgn - fn”2 < 00,
n=0

then {f, | » > 1} is a Riesz basis of H. The following result can be found in
Guo, 2001.

Proposition 4.1. Let A be a closed dense defined linear operator in H. Assume
that A is discrete, i.e., A has compact resolvent. Let {f,, | n > 1} be a Riesz basis
of H. If there exists a sequence of generalized eigenvectors of A, {g, | n > 1}

and a positive integer N such that

o0
> = gnll? < 00, (4.1)
n=N
then the system of all generalized eigenvectors of A forms a Riesz basis of H.

Now we are in position to prove the following main result of this paper.

Theorem 4.2. Let H and A be defined as before, then the generalized eigen-

vector system forms a Riesz basis for H.

Before going to the detail of the proof of theorem, we give the outline of the
proof. Let w;(X, x), pj(A, x),j = 2,3,4 be defined by (2.8). Then for fixed A € C,

set

}/3()‘) = P‘_le()‘? x)a wj(>‘7 33), )‘_IQPj ()‘7 x)a 90()‘7 x)]—r?j =2,3,4. (42)

Let A% and A?) be the eigenvalues of A given by (2.14) and (2.15) respec-

tively. According to (2.12) in theorem 2.2, the eigenvector associated with AY)
is

A+

200 = & D) () +

n

VO + P 0 s0), =12,
(4.3)
where C§, CY) satisfy (2.13) for A = Y.
Let @, = ®¢,, V¥, =V, and Fj be defined by (3.5), (3.6) and (3.7), respec-
tively. We now choose {B.®,,, Bg)\lln, Fy,| n € Z} as a reference Riesz basis of
‘H, where BT(LI) and BT(?) are some constants. We want to prove that with sutiable

choice of B7(L1) and Bg), there exist a positive integer N such that

> 11eWO) = B, |? < oo
[n|>N

13



Y 1P - BP @y, |I? < cc.
[n|>N

Proof of Theorem 4.2 Assume without loss of generality that p; > p2. Then
for A € C with || large enough, we have

11(A) = ptA+ 0\,
ta(N) = pad + O(Ah).

Particularly, for A = /\%1)7 we have

=
(=
>
S0
N

=p AP +O0(1/n) = p1&, + O(1/n),

V) = AW+ O(1/n) = paty + O(1/n),

—

pr2(A

3

Similarly, for A\ = )\%2), we have

=
=
—~~
>
8

N = piA® +0(1/n) = pyn + O(1/n),
) = p2A) + O(1/n) = pan, + O(1/n).

Firstly, we choose the coefficient C’éj )()\) and C'?Ej )()\) in the expression of

=
no
—
>~
S

eigenvector (4.3) as follows:

AN =0, A0 =-[ano+ 2 Tg0] @
C (V) = wh(A, £) — @3(A, 0) + BAws (A, 0), (4.5)
and
CPN) = —|wh(M €) — @a(A, ) + BAws(A, 0)
A7 (4.6)
+ 2T [ (0 0) = a(M €) + Brws(A, 0)]].

Now for A € C with large modulus, we have the following estimates

lwy(A, 2)[ = O(1),  [wj(A2)[ =O(1/X),  |wz(A,2)] = O(),
Awa (A, 2)| = O(1),  wa(X,2)| = O(1/A), (X, z)| = O(1),
[P\ 2)[ =O0R),  leh(Az)[ = 0(1), 5\ 2)| = O(1/X),
App(X, )l = O(N),  ey(A )| = O1), [Agz (A, )| = O(1/X).

This leads to that
V(NI =0(1), VsV =0(1/A),  [Ya(\)] = O(1/A).
Since \/u1 (M) = p1&, + O(1/n), we have
W) =0a/AD), o) = ond)

14



Similarly, we have ,uQ()\q(f)) = pann + O(1/n), and

cP@) =0@1), cPO@)=0().

Therefore, <I>(1)()\$11)) is expressed as

(1)
2OD) = D) MOD) + 0] + ) OO0

(A5 —b(A) 1 ) o
11 (A =2 (AG) \/M()\g)) Slnh( (A )x>

OOy [ moad-eod) 2w 0
O o o) Ty S (Y ORD2) | 6y,
' 0
0

where C’él)()\) and C?EI)()\) are given by (4.4), and Gl()\g)) is given by

MN=b(N) 1 :
_ul?()\)fuz(k) \/m(/\) sinh(v/p2(A)z)

1) _m2(A ) b()\) h by
Gi(A) = S5 | T 3 a0 S (Vi (V)7)
903()‘7x)
A3 (A, x)

() <Y2<A> n Ai’“nw) ,

with the estimate [|[G1(AY)[| = O(1/AM).

Similarly, the eigenvector <I>(2)()\7(12)) is expressed as

(2)
3D(\D) = PN MBOD) + 2y, 0@)] + P2 (0P)
0
0
>\(.U~l 52 y €08 VH2T w1 b;m r\ﬁ sinh(y/upx A=An
e cosh(y/mex) + L0 T\)‘ﬁ sinh(y/f2)
+Ga(AP).

where 6’52)()\) and C§2)()\) are given by (4.5) and (4.6) respectively, and Ga(\) is
given by

%[wg()\, x)+%w4()\, x)]
wa(x) + %w4()\, x)
p3(A)
pa(N),

G2(\) = G NV + P YN + O ()

15



_ ,UQ()‘) — b()‘) CcoS T 'ul()\) — a(/\) ! sin
PN = =30 = ) VI S
c 1

sinh(v/p1 (M),

(N = p2(N) r/pn ()
ey Lm0 A
PaY) = = 00— () VD o e Y oy
c A :
Tl O Y
Moreover, we have the estimate ||G2(/\7(12))H = O(l/)\g)).
Set

m-bN) 1
0200 /) SRV (A)2)

1 A)—=b(\ .
a0 | SR g sinh(Vm (Va)

T(N) =

oz

o

and

~ 0
(N = P (A _
(A) 2 () )\(ﬁi 22 cosh(y/m2z) + ;ﬁl s T\ﬁ sinh(/p2x)

—b —b /\
/ﬁl - cosh(y/p2z) + /ﬁl s T\ﬁ sinh(,/2x)

Bi=p5(A)

Then we have
eMOM) =T(AD) +G1(AD), 2P D) = 2(A?) + G2 (D).

In order to esitmate the vectors U(A()) and (5(/\%2)), we denote

p1(A) —b(A)
AN = ——LF— 2,
A p1(A) — p2(A)
Thus
1 1)
R C(l)(/\(l)) NG /
1)y _ 1)y Y3 n n inh
‘I[(An )_A()\n ) )\7(11) \/#1()\ng) ( Ml >
0
0
and
0
~ 0
B(A\?) = AND)CP (\?) ,
2 Q3(>\§LQ))
2
(A
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where

1
q3(A) = — cosh(y/p2(A)x) + ——===sinh(y/p2(\)x),
v/ 12(A)
A
qa(A) = cosh(y/p2(N)x) + ———= sinh(y/ p2(\)z).
T/ pi2(A)
et (1),
B = A B B a0@)cP00),
An
oD =/ (\D) = pi&a, o =1/ u2(A®) — pon.

Obviously, ag) =0(1/n) for j =1,2.
Now let ¥,, and ®,, be defined as in Theorem 3.1. Then, when |n| > N, we

have

¢ 2
= |BW)? / K’cosh(\/m:x) —cosh(plgnw)‘ dz
0

Vi
L

= B2 / K’[cosh(ag)x) — 1] cosh(p1&,2)
0

0 -Ag) 1 2
+/ P sinh(y/p1x) — o sinh(plﬁnx)) dz
0 1

AW
"_ sinh(alVz) cosh(p1 &)
M1

2
dm]

4
K/ [[ cosh(aVz) — 1% + ]sinh(ag)m)lz} X
0

),

) 0
+sinh(a{M2) sinh(plfn:v)) dx—i—/ p
0

AW 1) 1
— | 22— cosh — — | sinh n
( - cosh(ay,’x) p1> sinh(p1&,x)

< BV

X [| cosh(p1&,)|? + |Sinh(p1§n:17)|2} dz

4 )\(1) 9
+ / <‘ncosh &nx)|” + |sinh(p1 &z
P )\ (p1&n)|” + | sinh(p1&n2)

< 12 4 | 20 - L[
x (| sinh(ay, ’2)|* + ’n cosh(ay, ') — —| |dz
v K1 P1

(1)
< Myjafpeell

where we have used the fact that \B£1)|2 is uniformly bounded, and

_ @
oo -
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= 1B

/0 ‘\( sinh(/fizz) + fcosh(\/,tTgx)

1 2
- [cosh(pannx) + 7p2 sinh(pannz)]| dz
¢ A
+ [ I,|cosh T)+ sinh T
| 1] costye) + - st

1 2 1 1 2
——[sinh(panpx) + rp2 cosh(pQUnx)]‘ dx + EI‘W - 7rp2‘ ]
P2 An

Tp27n
2
|B2)? ( / “\/»cosh )—pg‘

2
sinh(af)x)‘ +’cosh(a£3)x)—1) +

IN

2
+ sinh(a,(f)x)’ } X

2 ey 2 1 2
X “ sinh(pgnn:c)‘ + ‘)\(15)2 COSh(pgnnﬂﬁ)‘ + ); COSh(pQ’I’]nl‘)‘

+‘isinh(p2nnaz)‘2] dx + 1, /é U cosh(a?z) — 1‘2 + ) sinh(ozg):n)‘2
0

\@ 2 )
+|22— cosh(aPz)——| + sinh(ag)x)’ } X
TV K2 P2

’ 2

2
sinh(pgnnaj)‘ + | sinh(pannx)

2 1 1 2
dx + EI‘— — 77‘p2’
A2 rpamn

2
X “ cosh(,ognnx)‘ +

@)
+

cosh(pan,)

TV K2
< MajafP eI,
Note that

(M) = B, = [BOD) - BIVW,] + GO,
O(AD) = BE [(rpa)®, = [B(AT)) = B /(rp2)®n] + G2 (AD).

Hence there exists a positive integer N such that when |n| > N, we have

2 —
1) M
st)) - Bé”\lan < 2[Mfal P+ G D)) < =5,
(2) 2 —
By 0@ M.
Hq;@g» -, <2[Mifa@P R+ G PP < 2,
P2 n

where ]\/4\1 and ]/\4\2 are independent on n. Therefore, we obtain

(2)
T(A2) _ B o,
rp2

2
< Q.

2
- By

X Jrom s 5%

Since it holds that

AQYDY 20, and AWY)) -1, (asn — o0), Vj=1,2,

18



0< inf |BYI< sup |[BY|<o0, j=1,2,
|n|>N,neZ [n|>N,nez

we can assume without loss of generality that, for |n| < N,

BWM =1, B@/(rpy) =1, |n| <N,

(2)
then {Bg)\pn n € Z} U {]f;‘z ®, | ne Z} U{Fo} is also a Riesz basis for H.

By virtue of Proposition 4.1, the generalized eigenvector system of A forms a

Riesz basis for H. The proof is then complete. O

Remark 4.3. We know from Theorem 2.3 and 4.2 that there is a positive
integer N such that )\%1),)\,(12) for |n| > N are simple eigenvalues of A, \P(A,gl))
and <1>()\§L2)) are eigenvectors of 4 associated with )\Sll) and )\SLQ), respectively, and

the sequence
{(OD) [ ne Zn| = N} J{@AD) | n € Z,|n| = N}
is a basis sequence. So the number of the elements in set
o1(A) = o(ANAD A | n € Z,In| = N}

is less than number 4N — 1. Although we do not know exact number of the
non-simple eigenvalues of A in the set 0;(.A), we know that the exact dimension

of subspace corresponding to o1(A) is 4N — 1.

Corollary 4.4 Let H and A be defined as before, and T'(¢) be the Cj semigroup
generated by A. Assume that o1(A) = {1, p2, -+, pr}. Then when 8 — py # 0,
rpa — 1 # 0, the solution of the system determined by (2.1) with initial data

F € 'H can be expressed as

kS5
THF =33 et P, (F )0+ Y M HE T D) w(a))

j=1i=1 In|>N
+ Y NUE B (@) e(\D).
[n|>N

O
From Theorem 2.3 we know that the lines Re A = Re % and Re A = Re ;—2 are

two asymptotes of the spectrum of A. Denote

wg = max {Reﬁ,ReTQ},
Pl P2

obviously, wg < 0. Since A is dissipative operator and o(A) NiR = ), we can

obtain the following corollary.
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Corollary 4.5. Let H and A be defined as before. If 3 # p; and rpy # 1,
then the system determined by (2.1) satisfies the spectrum determined growth

assumption in the state space H, i.e.,

w(T) =s(A) = ma)j){wo,Re A} <0,

Aeo(
and hence the closed loop system is exponentially stable. O
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