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APPROXIMATE CONTROLLABILITY OF FRACTIONAL ORDER
NON-INSTANTANEOUS IMPULSIVE FUNCTIONAL EVOLUTION
EQUATIONS WITH STATE-DEPENDENT DELAY IN BANACH SPACES

S. ARORA', MANIL T. MOHAN? AND J. DABAS*"

ABSTRACT. The present paper deals with the control problems governed by fractional non-
instantaneous impulsive functional evolution equations with state-dependent delay involving
Caputo fractional derivatives in Banach spaces. The main objective of this work is to
formulate sufficient conditions for the approximate controllability of the considered system
in separable reflexive Banach spaces. We have exploited the resolvent operator technique
and Schauder’s fixed point theorem in the proofs to achieve this goal. The approximate
controllability of linear system is discussed in detail, which lacks in the existing literature.
We also provide an example to illustrate the efficiency of the developed results. Moreover,
we point out some shortcomings of the existing works in the context of characterization of
mild solution and phase space, and approximate controllability of fractional order impulsive
systems in Banach spaces.

1. INTRODUCTION

Many physical processes such as harvesting, natural disaster, shocks etc, cause abrupt
changes in their states at certain time instant. These sudden changes occur for negligible
time period and they are estimated in the form of instantaneous impulses. The theory
of instantaneous impulsive systems has remarkable applications in several areas of science
and engineering, for example, population dynamics, ecology, network control system with
scheduling protocol etc., (cf. [35, 47, [60], etc). However, certain dynamics of evolution
processes in pharmacotherapy cannot be modeled by instantaneous impulsive dynamical
systems, for example, in hemodynamical equilibrium of a person, introduction of insulin into
the bloodstream and the consequent absorption of the body are gradual processes and stay
active for a finite time interval. Thus, we cannot describe this situation via instantaneous
impulsive systems. Therefore, Herndndez et. al. [22] introduced a new class of impulses
termed as non-instantaneous impulses, which starts at an arbitrary fixed point and stays
active on a finite time interval and they established the existence of solutions for such a class
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of impulsive differential equations. Later, Wang et. al. [54], [57], extended this model to two
general classes of impulsive differential equations, which are very important in the study of
dynamics of evolutionary processes in pharmacotherapy. For more details on the theory of
non-instantaneous impulsive systems, we refer the interested readers to [51], [55], etc, and the
references therein. In addition to this, there are various real world phenomena, for example,
neural network, inferred grinding models, ecological models, heat conduction in materials
with fading memory etc. In these phenomena, the current state of a system is influenced
by the past states. The dynamics of such processes are characterized by delay differential
equations (finite or infinite), see for example, [I5] 28, B6], etc. In the application point of
view, the functional evolution systems with state-dependent delays are more prevalent and
adequate, see for instance, [1, [§], etc, and the references therein.

The concept of controllability plays a vital role in the study of control systems. Control-
lability (exact or approximate) refers that the solution of a control system can steer from an
arbitrary initial state to a desired final state by using some control function. In the infinite
dimensional setting, in comparison with exactly controllable systems, approximate control-
lable systems are more extensive and have wide range of applications, cf. [29 52, 53] [66],
etc. In the past two decades, the problem of approximate controllability of various kinds of
systems (in Hilbert and Banach spaces) such as impulsive differential equations, functional
differential equations, stochastic systems, Sobolev type evolution systems, etc, is extensively
studied with the help of fixed point approach and produced excellent results, see for instance,
2, 13, (16, (17, 29}, 45], etc.

On the other hand, fractional differential equations (FDEs), which involve fractional
derivatives of the form 5%, where o > 0 is not necessarily an integer, attained great im-
portance due to their ability to model complex phenomena. They naturally appear in dif-
fusion processes, electrical engineering, viscoelasticity, control theory of dynamical systems,
quantum mechanics, biological sciences, electromagnetic theory, signal processing, finance,
economics, and many other fields (cf. [19] 23], 34], B39, 40, 42, 0], etc). A comprehensive
study on fractional calculus and FDEs are available in [23,[39], etc. For the past few decades,
FDEs in infinite dimensions seek incredible attention of many researchers and eminent con-
tributions have been made both in theory as well as in applications. Several authors studied
the existence and approximate controllability results for fractional order systems in Hilbert
spaces, see for instance, |25, [32] 46|, [56], etc, and the references therein.

The study of approximate controllability of the fractional order control systems in Banach
spaces has not got much attention in the literature. In [31], Mahmudov developed sufficient
conditions for the approximate controllability of the Sobolev type fractional evolution equa-
tions with Caputo derivative in separable reflexive Banach spaces using the Schauder fixed
point theorem. Later in [30], he studied the approximate controllability of the fractional
neutral evolution systems by taking infinite delay using Krasnoselkii’s fixed-point theorem.
After that Chalishazar et. al. [7] extended his work by considering instantaneous impulses
and examined the approximate controllability in Banach spaces.

The articles [9, 20, 43, [44], etc claimed the approximate controllability of the factional
order systems in general Banach spaces using resolvent operator condition. But, the resolvent
operator defined in these works is valid only if the state space is a Hilbert space, whose dual
is identified by the space itself (see, the resolvent operator definition in the expression (23))
and Remark [2.9). Moreover, many papers deal with the fractional order impulsive systems
with delays, see for instance, [49,64], [65], etc. In these works, the characterization of norm or
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seminorm defined in the phase space involves uniform norm, but the choice of such a norm
or seminorm is not suitable in the impulsive case, for counter examples and more details, we
refer the interested readers to [I8] (a detailed discussion on this problem is also available in
[4]). Many articles considered the fractional order impulsive systems with non-instantaneous
impulses (cf. [10] [I1], 58, [59] etc.). In theses works, the concept of the mild solution defined
for the considered system is not realistic, a counter example and appropriate definition of
the mild solution discussed in [14, [57] (see Definition 2.6l for the mild solution definition for
system under our consideration). One of the main aims of this work is to resolve these issues.

Recently, a few papers have been reported on the approximate controllability of the non-
instantaneous impulsive systems with and without delays in Hilbert spaces, (cf. [10] 24], 27],
etc). Dhayal et. al. [I0] formulated the approximate controllability results for a class
of fractional order non-instantaneous impulsive stochastic differential equations driven by
fractional Brownian motion. In [24], Kumar and Abdal derived sufficient conditions for
the approximate controllability of non-instantaneous impulsive fractional semilinear measure
driven control systems with infinite delay. Liu and his co-authors, in [27], investigated
the approximate controllability of fractional differential equation with non-instantaneous
impulses via iterative learning control scheme. To best of our knowledge, there is no work has
been reported on the approximate controllability of the fractional order non-instantaneous
impulsive systems with state-dependent delay in Banach spaces.

Motivated from the above facts, in this work, we derive sufficient conditions for the ap-
proximate controllability of fractional order non-instantaneous impulsive functional evolution
equations with state-dependent delay in separable reflexive Banach spaces. Moreover, we
properly define the resolvent operator in Banach spaces, which plays a crucial role in ob-
taining the aforementioned results (see the expression (2.3) below). Proper motivation for
the construction of different forms of feedback controls for the fractional order semilinear
systems available in the literature has been justified in this work (see Remarks and [4.4]
below). Furthermore, our paper modifies the phase space characterization to incorporate
Guedda’s observations in [18], by replacing the uniform norm on the phase space by integral
norm for the impulsive differential equations (see Example 2.§]).

We consider the following fractional order non-instantaneous impulsive functional evolu-
tion equation with state-dependent delay:

“Dgw(t) = Ax(t) + But) + f(t Zpuan), t € [ tir] € J =1[0,T],
+=0 (1.1)
:L’(t) = hk(t,x(tkj)), t e (tkuTk]y k= 1’ cee,my
Lo = ’QD € %7

where

° CD&t denotes a derivative in Caputo sense of order o with % <a<l,

e the operator A : D(A) C X — X is an infinitesimal generator of a Cy-semigroup 7T (t)
on a separable reflexive Banach space X (having a strictly convex dual X*),

e the linear operator B : U — X is bounded with [|B|[,yy = M and the control
function u € L?(J; U), where U is a separable Hilbert space,

e the function f : J x B — X, where ‘B is a phase space, which will be specified in the
subsequent sections,



4 S. ARORA, M. T. MOHAN AND J. DABAS

e for k =1,...,m, the functions hy : [tg, 7] X X — X represent the non-instantaneous
impulses and the fixed points 7, and t; satisfy 0 =tg =79 < t; <74 <ty < ... <
tm < T < 1 = T, the values z(¢) and z(¢; ) stand for the right and left limit of
x(t) at the point ¢t = t;, respectively and satisfy z(¢; ) = z(ty), for k =1,...,m,

e the function x; : (—00,0] — X with x,(6) = x(t + 6) belongs to some abstract space
B, and the function p: J x B — (—o0,T] is continuous.

The rest of the article is organized as follows: Section 2] starts with some basic definitions
of fractional calculus and then presents the phase space axioms. Moreover, we provide as-
sumptions and important results to establish the existence and approximate controllability
results of the system (IL1]). Section [3 deals with the approximate controllability of the frac-
tional order linear control system corresponding to (I.I]). For the approximate controllability
results of the linear system, we first formulate the linear regulator problem to obtain the
existence of an optimal control (Theorem [B.1]), and then derive the explicit expression of
optimal control in Lemma [3.3l With the help of this optimal control, we investigate the
approximate controllability of the linear system (B.2]) in Theorem B4l In section [ we first
show the existence of a mild solution of the system (I.T), by invoking Schauder’s fixed point
theorem. Then, we demonstrate the approximate controllability results of the system (I.Tl) in
Theorem A concrete example is presented in the final section to illustrate the developed
results in previous sections.

2. PRELIMINARIES

Let us first recall some basic definitions and properties from fractional calculus. For a
detailed study, the interested readers are referred to see [23, B9, etc. Let AC([a,b];R)
denote the space of all absolutely continuous functions from [a, b] to R and AC"([a, b]; R), for
n € N, represent the space of all functions f : [a,b] — R, which have continuous derivatives
up to order n — 1 with £~ € AC([a, b]; R).

Definition 2.1. The fractional integral of a function f :[a,b] = R, a,b € R with a < b, of
order q > 0 is defined as

arn . L[ f(s)
I7f(t) .= F(q)/a (t—s)l—qu’ for a.e. t€a,b],

where f € L'([a,b];R) and T'(a) = [ t* e dt is the Buler gamma function.

Definition 2.2. The Riemann-Liouville fractional derivative of a function f : [a,b] — R of
order ¢ > 0 is given as

1 & /t(t —8)""1" f(s)ds, for a.e. t € [a,b]
I'(n—q)dt J, ’ - Y

with n — 1 < ¢ < n, and the function f € AC"([a,b]; R).

DY f(t) =

Definition 2.3. The Caputo fractional derivative of a function f € AC"([a,b];R) of order
q > 0 is defined as

CDg,tf(t) = LDg,t

"1 ) (g
f(t)—zf ()(z—a)p], for a.e. t€[a,b].

p=1 P!
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Remark 2.4 ([39]). If a function f € AC"([a,b];R), then the Caputo fractional derivative
of f can be written as

CDgtf(t) = L ] /t(t — s)”—q—lf(”)(s)ds, fora.e. te€lab], n—1<qg<n.

I'(n—q

In order to define the mild solution of the system (L), first we consider the one-dimensional
stable probability density function (cf. [5] [33])

n!

N~

ou(€) = L3 (Caymrem KOO ED o) € e (0,000 < g < 1,
n=1

and for any x € X, we define
T () — / (T (#E)2de and Ttz — g / £l ()T (19)de,
0 0

where ¢ (&) = %f_l_%gbq(g_%) and 7 (t) is the Cy-semigroup. Note that ¢, is also a proba-
bility density function on (0, c0), so that

o o0 1
/0 al€)dE =1 and /O €0r(€1E = o

where the final expression is the first moment of ¢,.
Let us provide some important properties of the operators 7,(t) and 7,(t), for ¢t > 0.

Lemma 2.5 ([63]). The operators T,(t) and 7A;(t) have the following properties:
(i) For any fized t > 0, the operators T,(t) and 7A;(t) are linear and bounded. Moreover
~ Mq
1Tal gy < M and ([ Ty(8)l 2y < itq)

where M is a constant such that || T ()| zx) < M.

(ii) The operators T,(t) and ’ﬁ(t) are strongly continuous for t > 0.
(iii) If T(t) is compact for t > 0, then the operators T,(t) and T,(t) are also compact for
t>0.

Let us define the set

PC(J;X) := {x 0 J = X xler, € C(I; X), I i= (tg, thga), k=0,1,...,m and x(t))
and x(t;) exist for each k=1,...,m, andsatisfy z(t;) = z(t;)},

endowed with the norm [|z{[pq ;.5 := sup||z|lx.
’ teJ

We now introduce the concept of mild solution for the system (1) (cf. [57]).



6 S. ARORA, M. T. MOHAN AND J. DABAS

Definition 2.6 (Mild solution). A function z(-;1,u) : (—oo0,T] — X is said to be a mild
solution of (L)), if 2o = ¥ € B and z|; € PC(J;X) and satisfies the following:

(

Ta(t)¥(0) +/0 (t = 9)°" ' Talt — 5) [Bu(s) + £(5, Tpe)]ds, t € [0,11],
hk(t,x(t,;)), t e (tk,Tk], k= 1, e, m,

Talt — )P (7, 2(1,)) — /OTk(Tk — )" o — 5) [Bu(s) + f(s, Tps,0.)) ] ds

+ /t(t — 8) T (t— s) [Bu(s) + f(5,Tp(sz,))]ds, t € (Thy o], k=1,...,m.
\ 0
(2.1)

2.1. Phase space. We now provide the definition of phase space 98 introduced in [21], and
suitably modify to incorporate the impulsive systems (cf. [37]). The linear space B equipped
with the seminorm |-||y, consisting of all functions from (—o0,0] into X and satisfying the
following axioms:
(A1) If z : (—o00,T] — X such that o € B and z|; € PC(J;X). Then the following
conditions hold:
(i) 2, €B fort e J.
(i) [lzellg < A(f)sup{[la(s)llx - 0 < s <t} 4+ T(¢)|[xoll, for £ € J, where A, T :
[0,00) — [0, 00) are independent of x, the function A(-) is strictly positive and
continuous, Y(+) is locally bounded.
(A2) The space B is complete.
For any ¢ € B, the function ¢, ¢ < 0, defined as ¥ (0) = (t + ), 6 € (—o0,0]. Then for
any function z(-) satisfying the axiom (A1) with xy = ¢, we can extend the mapping ¢ — z;
by setting x; = 1, t < 0, to the whole interval (—oo, T]. Moreover, let us introduce a set

Q(p™) ={p(s,0) 1 p(s;p) <0, for (s,p) € J x B}.

Assume that the function ¢ + 1, defined from Q(p~) into B is continuous, and there exists
a continuous and bounded function ©¥ : Q(p~) — (0, 00) such that

[elly < O% @)1 ]ls-

Lemma 2.7 ([21]). Let z : (—o0,T| — X be a function such that xo = v and z|; € PC(J;X).
Then

sl < Hullvllg + Hasup {[|2(0)[x : 0 € [0, max{0, s}]}, s € Qp™) U J,

where
H, = sup OY(t)+sup Y(t), Hy=supA(t).
teQ(p) teJ teg
Example 2.8. Let us take B = PC, x LY (X),r > 0,1 < p < oo, which consists of all
functions ¢ : (—00,0] — X such that ¥|_.o € PC([-r,0];X), Lebesque measurable on
(—o0, —r) and h||¢(-)||% is Lebesgue integrable on (—oo, —r]. The seminorm in B is defined
as

Il = | inw(ewxde + ([ nenvega) g (22)

o0
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where the function h : (—oc0,0] — R is locally bounded and Lebesgue integrable. Moreover,
there exists a locally bounded function H : (—oo,0] — RY such that h(t +0) < H(t)h(0), for
allt <0 and 6 € (—o0,0)\O; where O C (—00,0) is a set with Lebesque measure zero.

2.2. Resolvent operator and assumptions. To discuss the approximate controllability
of the system ([LT]), we first define the following operators:

p

T
[Ty = / (T — )°='7(T — 1)Bu(t)dt,
0

T N ~ (2.3)
ol = / (T — t)> VT (T — t)BB*To(T — t)*dt,
0

(RO, @) = (M + 0] 7)), A>0,

where B* and 7, (¢)* denote the adjoint operators of B and 7, (t), respectively. It is immediate
that the operator L{ is linear and bounded for 3 < a < 1. Moreover, the map J : X — 2%
stands for the duality mapping, which is defined as

Jla] = {a" € X" (x,27) = |lally = l|l2"|l3.}, for all v € X,

where (-, ) represents a duality pairing between X and X*. Since the space X is a reflexive
Banach space, then X* becomes strictly convex (see, [6]), which implies that the mapping J
is bijective, strictly monotonic and demicontinuous, that is,

= r in X implies J[z] = Jlo] in X* as k — oo.
Moreover, the inverse mapping J ! : X* — X is also duality mapping.

Remark 2.9. If X is a separable Hilbert space (identified with its own dual), then the resol-
vent operator is defined as R(\, @) := (\[+ &)™, X > 0.

Lemma 2.10 (Lemma 2.2 [29]). For every h € X and A > 0, the equation

A2y + OF T[z\] = Ah, (2.4)

has a unique solution zy(h) = ANAI+ ®F T)~H(h) = AR(\, ®F)(h) and
(W) llx = [T [aa ()]l < [Pl (2.5)
Proof. Since the non-negative operator ®7 is linear and bounded for % < a < 1, then
proceeding similar way as in the proof of Lemma 2.2 [29], one can obtain the results. 0

Definition 2.11 ([16]). The system (LI)) is said to be approximately controllable on J,
for any initial function ¢ € B, if the closure of reachable set is whole space X, that is,
R(T,y) = X, where the reachable set is defined as

R(T, ) = {(T; ¢, u) - u(-) € L2(J; U)}.

We impose the following assumptions to investigate the approximate controllability of the
system (IL):

Assumption 2.12. (H0) For every h € X, 25 = 2\(h) = AR(A\, ®L)(h) = 0 as A L 0 in
strong topology, where zx(h) is a solution of the equation (2.4]).
(H1) The Cy-semigroup of bounded linear operator T (t) is compact for t > 0 with bound
M > 1, such that | T(t)|zx) < M.
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(H2) (i) Let x : (—o0,T] — X be such that xo = ¢ and z|; € PC(J;X). The function
t = f(t, Tpay)) is strongly measurable on J and the function f(t,-) : B — X is
continuous for a.e. t € J. Also, the map t — f(s,x;) is continuous on Q(p~)UJ,
for every s € J.

(ii) For each positive integer r, there exists a constant oy € [0, and a function

Y € L'%l(J; R™), such that
sup [[f(t,¥)llx < (1), fora.e. t € J andy € B,

llllg <r
with o
Tr
lim inf L
r—00
(H3) The impulses hy, : [tg, 7] X X = X, for k=1,...,m, are such that
(i) The impulses hy(-,x) : [tg, 7] — X are continuous for each x € X.
(ii) Fach hg(t,-) : X — X is completely continuous, for all t € [ty, T3]
(iii) ||hk(t, 2)|lx < lg, for eacht € [ty, 7] and x € X, where l,’s are positive con-
stants.

1
aq (];R‘F) _ 5 < 50

The following version of the discrete Gronwall-Bellman lemma (cf. [61]) is used in the
sequel.

Lemma 2.13. If {f,}320,{9n}22, and {w,}>°, are non-negative sequences and

n—1

j% S;gn‘+'j£:?kaka be n/EiOa

k=0
then

n—1 n—1
fnégn+ngwkexP<Z gj>, for n>0.
k=0

j=k+1

3. LINEAR CONTROL PROBLEM

The present section is devoted for discussing the approximate controllability of the frac-
tional order linear control problem corresponding to (ILT]). To establish this result, we first
obtain the existence of an optimal control by minimizing the cost functional given by

G(z, u) = [l=(T) —ITII§+A/OTIIU(t)II%dt, (3.1)
where z(-) is the solution of the linear control system:
“D§x(t) = Az(t) + Bu(t), t € J,
{ 2(0) = ¢,

with the control u € U, 2 € X and A > 0. Since Bu € L'(J;X), the system (B.2) has a
unique mild solution z € C(J;X) given by (see Corollary 2.2, Chapter 4, [38] and Lemma
4.68, Chapter 4, [62])

(3.2)

o(t) = Ta(t)C + /0 (t — $)* Mo (t — s)Bu(s)ds,
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for any u € %,q = L*(J;U) (admissible control class). Next, we define the admissible class
pq for the system ([B2) as

Apq = {(x,u) : x is the unique mild solution of (B.2) with the control u € %uq}.

For any given control u € %,q, the system (B.2)) has a unique mild solution, which ensures
that the set 7,4 is nonempty. By using the definition of the cost functional, we can formulate
the optimal control problem as:

min Gz, u 3.3
o min (z,u). (3.3)

In the next theorem, we show the existence of an optimal pair for the problem (B.3]).

Theorem 3.1 (Existence of an optimal pair). For a given ¢ € X and fized % < a <1, there
exists a unique optimal pair (z°,u°) € g for the problem ([B.3).

Proof. Let us assume

G:= inf G(x,u).

UWEU na
Since 0 < G < 400, there exists a minimizing sequence {u"}°; € %,q such that

lim G(z",u") =G,

where z"(-) is the unique mild solution of the system (B.2]), corresponding to the control
u"(+), for each n € N with 2"(0) = (. Note that z"(-) satisfies

" (t) = Ta(t)¢ + /0 (t — $)* Mo (t — s)Bu™(s)ds, (3.4)

fort € J. Since 0 € %,q, without loss of generality, we may assume that G(z",u") < G(x,0),
where (z,0) € 4. Using the definition of G(-, ), we easily get

T
|l2"(T) — @zl + A/0 " (Olipdt < [lo(T) = wrlz < 2(la(D)x + llor]F) < +oo. (3.5)

From the above estimate, it is clear that, there exists a large L > 0 (independent of n), such
that

T
/0 lun () [2dt < L < +oo. (3.6)

Using the expression (34]), we compute

12" (@)l < 17a(8)Cllx + /Ot(t —5)*7MTa(t - 5)Bu"(s)ds

X

t
< NT7a@l 20 lICTx +/0 (t =) Talt = )l eeo 1Bl pw s lu" (s)lyds

MMa [ a1l m
R [ =9 ) s

MMa T21

< al + e T ([ rmx)
MMa TZO‘ 13
T1+a) 2a—1

< M|¢llx +

< M[¢llx + < +oo,
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for all t € J and % < a < 1. Since we know that L2(J;X) is reflexive, then by applying the

Banach-Alaoglu theorem, we can find a subsequence {x"}%2, of {2"}>2 | such that

g™ 5% in L2(J;X), as k — oo. (3.7)

From the estimate (3.G), we also infer that the sequence {u"}2 ; is uniformly bounded in the

space L?(J;U). Further, by using the Banach-Alaoglu theorem, there exists a subsequence,
say, {u™}72, of {u"}22, such that

u™ S’ in L2(J;U) = %, as k— oo,
Since B is a bounded linear operator from U to X, then we have
Bu™ = Bu’ in L*(J;X), as k — oo. (3.8)

Moreover, by using the above convergences together with the compactness of the operator
QNHE) = [, =9 Mol — s)f(s)ds : L2(J;X) = C(J;X) (see Lemma below), we
obtain

[ - B o) - [ (-9 Futt — o)Buts)as
for ai)l t € J. We now estimate 0

o 6) — 2Ol = | [ €= 9 Tatt — 9Bu s = [ (¢ = 9t - Bs)s

— 0,0 as k — oo, forall t e J, 0 (3.5)

— 0, as k — oo,
X

where
t

¥ (t) = Ta(t)C +/ (t — 5)* MTa(t — s)Bu’(s)ds, t € J.
0

It is clear by the above expression, the function z* € C(J;X) is the unique mild solution
of the equation (3.2) with the control u® € %,q. Since the weak limit is unique, then by
combining the convergences (3.7) and (3.9), we obtain z*(¢) = 2°(t), for all t € J. Hence,
the function z° is the unique mild solution of the system (3.2) with the control u® € %4
and also the whole sequence " — 2° € C(J; X). Consequently, we have (z°,u°) € 4.

It remains to show that the functional G(-,-) attains its minimum at (z° u°), that is,
G = G(2°,u%). Since the cost functional G(-,-) given in (B1]) is continuous and convex (see
Proposition II1.1.6 and I11.1.10, [12]) on L?(J; X) x L2(J;U), it follows that G(,-) is weakly
lower semi-continuous (Proposition I1.4.5, [12]). That is, for a sequence

(", u™) 2 (2% u°) in L*(J;X) x L*(J;U), as n — oo,
we have

G(2°,u°) < liminf G(z™, u™).

n—o0

Hence, we obtain
G < G(2°,u°) < liminf G(2",u") = lim G(2",u") =G,
n—oo n—oo

and thus (z° %) is a minimizer of the problem (3.3]). Note that the cost functional given in
(B3.1) is convex, the constraint (3.2) is linear and the class %4 = L?(J;U) is convex, then
the optimal control obtained above is unique. O
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In the following lemma, we prove the compactness of the operator (Qf)(-) = [,(- —
$)* T (- — 8) f(s)ds : L2(J;X) — C(J;X), for 3 < a < 1, where we assume that X is a
general Banach space. The case of a = 1 is available in Lemma 3.2, [26].

Lemma 3.2. Suppose that Assumptions (H1) holds. Let the operator Q : L*(J;X) — C(J;X)
be defined as

t
(Qu)(t) = / (t— 8 Tt — s)u(s)ds, t € J % ca<l. (3.10)
0
Then the operator Q is compact.

Proof. We prove that Q is a compact operator by using the infinite-dimensional version of
Arzeld-Ascoli theorem (see, Theorem 3.7, Chapter 2, [26]). Let a closed and bounded ball
Bg in L?(J;X) be defined as

B = {0 € LX)« |6l < R}
For s1,89 € J (51 < s2) and ¢ € Bg, we compute the following:

Q) (s2) = (Q)(s1)lx

<[ [t =9 Tatoa = 9= =9 Talor = ot
o[ T = |
<[ 1o = = Tt = s
| [l = [Fatsa =) = Tatss = topas| + | [ o= 9 Fatsa = shistopas |
< i st = o= s
# [ = | Taton = ) = Talon =) It
e [ e s
< s ([ e =t = - s>a—1\2ds)%
o= [tse =) = Falor = ) Il + oo (222 g

If s; = 0, then by the above estimate, we deduce that
li_r)%+||(Q1p)(sg) — (QY)(s1)|lx = 0, unifromly for ¢ € L*(J;X).
52
For 0 < e < sy < T, we have

Q) (s2) = (Q) (1)l
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(5)llxds

Talsa =) = Talsr =) I

Tolss — 8) — Tal(s1 — S)H I (s)|lds +

LX) N1+«

MRa [ (sy— s1)%*7 ! :
) 200 — 1

s1
+/ (81 — 8)0{_1‘
S1—¢€

~ ~ §1—€
+ s [ Talse = 5) = Tals = 9)| / (51— )71 [le(s) | s
s€[0,51—¢] LX) Jo
1
2M« 51 a1 MRa [ (sy—s1)**7 1\ 2
bt [ = s + s (G2
1
MR« o1 9 2
< - _ a—1 _ _ a—1
= F(l +a) </0 }(32 S) (31 S) } dS)
~ R 8%04—1 o 6201—1 %
g o=l (T
" se[%l,t?—e} Talsz = 8) = Tals1 = 5) C(X)( 20— 1 )
1 1
2M 200—1 b M _ 200—1\ 2
n Ra [ € N Ra [ (s2—s1) . (3.11)
T(1+a)\2a—1 Tl+a)\ 2a-1

From Lemma 2.5 we know that the operator 7A;(t) is compact for t > 0, which implies
that the operator 7,(t) is continuous under the uniform operator topology (see Theorem

3.2, Chapter 2, [38]). Hence, using the arbitrariness of e and continuity of 7,(¢) in the
uniform operator topology, the right hand side of the expression (3.I1]) converges to zero as
|sy — s1| = 0. Thus, QBg is equicontinuous on L?(J; X).

Next, we show that V(t) := {(Qu)(t) : ©» € Bg}, for all t € J is relatively compact. For
t =0, it is easy to check that the set V(¢) is relatively compact in X. Let us take 0 <t < T
be fixed and for given n with 0 < 7 < ¢ and any § > 0, we define

0 =« T —s5)*t @ s s
Q) (1) / / £(t — ) ()T (€)1 (s)ded

Sy [t @0~ asyuspaeds.

Since the operator 7 (-) is compact, the set V, 5(t) = {(QMY)(t) : ¢ € Bg} is relatively
compact in X. Hence, there exist a finite x;’s, for ¢ = 1,...,n in X such that

n

Vo(t) € | S(ai,2/2),

i=1
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for some € > 0, where S(x;,¢/2) is an open ball centered at z; and of radius /2. Let us
choose § > 0 and n > 0 such that

1(Qu)(t) — (Q™u)(t)||y < a

/ / E(t — 5)™ on(€)T (176 — 1°6)p(s)déds

X

+ «

/t / §(t = 5)" " pa(§) T(t7€ — n0)(s)deds

MRatzo‘ ! MRa n* £
&)d < -,
=001 /g Jde+ 7 1+a)2a—1 2

V t) C OS(SL’Z,&?)

Thus, for each t € J, the set V(t) is relatively compact in X. Then by invoking the Arzela-
Ascoli theorem, we conclude that the operator Q is compact. O

X

Consequently

Since X* is strictly convex, the norm || - ||x is Gateaux differentiable (cf. Fact 8.12, [13]).
Furthermore, every separable Banach space admits an equivalent Gateaux differentiable
norm (cf. Theorem 8.13, [13]). Since J is single-valued, the Gateaux derivative of ¢(z) =
sllz||% is the duality map, that is,

o Slatey)—dx) 1d 2| _
(0 (), 4 =ty T D S e ey2| = (L)),
for y € X, where 0,¢(x) denotes the Gateaux derivative of ¢ at = € X. In fact, since U is a
separable Hilbert space (identified with its own dual), by Theorem 8.24, [13], we infer that
U admits a Fréchet differentiable norm. The explicit expression of the optimal control u in
the feedback form is obtained in the following lemma:

Lemma 3.3. Let u be the optimal control satisfying B3) and minimizing the cost functional
BI). Then u is given by

u(t) = (T — £)* ' B Ta(T — £)* T [RO\, @ )p((-))], t € [0,T), A >0, % <a<l,

with
p(a() = zr — To(T)C.
Proof. Let us first consider the functional
I(&f) = g(xu+ew7 U+ 5w)7

where (z,u) is the optimal solution of ([B.3) and w € L?(J;U). Also the function ., is
the unique mild solution of ([B.2]) corresponding to the control u + ew. Then, it is immediate
that

t
Tusrew(t) = To(t)C + / (t — 8)* 1T (t — 8)B(u + cw)(s)ds.
0
It is clear £ = 0 is the critical point of Z(¢). We now evaluate the first variation of the cost
functional G (defined in (B.])) as
d d

T
_ . 2 2
T, = gz lowean(T) = arll + 3 [ ) + cutoiar

e=0
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d
= 2(J (Tusyew(T) — 27), d_g(xu-i-ew (T) — 7))

+2>\/0 (u(t) + cw(t ),%(u(t)Jraw(t)))dt}

_ 2<j(a:(T) — ap), /0 Y e T t)Bw(z):dt> +2) /0 ), w(B)dt.

By taking the first variation of the cost functional is zero, we deduce that

0= <j(:c(T) — xr), /OT(T — )T — t)Bw(t)dt> + )\/OT(u(t),w(t))dt
= /OT(T — t)“‘1<j(x(T) — x7), To(T — t)Bw(t)>dt + A /OT(u(t), w(t))dt

= /T<(T — )BT (T — )" T (2(T) — 27) + u(t), w(t))dt, (3.12)

where (-, -) is the inner product in the Hilbert space U. Since w € L?(J;U) is an arbitrary
element (one can choose w to be (T' — t)* 'B*T (T — t)*J (x(T) — z7) + Au(t)), it follows
that the optimal control is given by

u(t) = =A"NT = )BT (T — )" T (2(T) — w7), (3.13)

for a.e. t € [0,T]. Since by the relations (3.12)) and 3I3), it is clear that u € C([0,7); U).
Using the above expression of the control, we find

x(T) T)¢ — / 52O DT (T — s)BB*To(T — )" T (a(T) — wr)ds
Ta(T)¢ = A~ lq)TJ[ (T) — 1] (3.14)
Let us assume
p(x() =21 = Ta(T)C. (3.15)
Combining ([3.14) and (B.15]), we have
o(T) — zp = —p(x()) = AT T[2(T) — 27)]. (3.16)
From (B.16), one can easily deduce that
2(T) — xp = =ML+ @7 T) "'p(z(-) = =AR(A, ®g )p((-))- (3.17)

Finally, from (BI3]), we get the expression for optimal control as
u(t) = (T = )" "B To(T — )" T [RO\, @5 )p(x(-))], for ¢ € [0,T),
which completes the proof. O

Next, we examine the approximate controllability of the linear control system (3.2)) through
the following lemma.

Lemma 3.4. The linear control system ([B.2)) is approximately controllable on J if and only
if Assumption (HO) holds.

A proof of the above lemma can be obtained by proceeding similarly as in the proof of
Theorem 3.2, [2].
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Remark 3.5. If Assumption (HO) holds, then by Theorem 2.3, [29], we know that the oper-
ator ®F is positive and vice versa. The positivity of ®F is equivalent to

(%, ®fr") =0= 2" =0.

/H ) IB T (T — )

By the above fact and Lemmal[3.4), we infer that the approximate controllability of the linear
system ([B.2)) is equivalent to the condition

B*To(T —t)"2* =0, 0<t <T = a* =0.

We know that

2
dt. (3.18)

X*

Remark 3.6. Instead ([B.1]), one can consider the following cost functional also:

G(a,u) = |[o(T) — zrlx + A/0 (T = ) [Ju(t)|par. (3.19)

For % < a < 1, the existence of optimal solution for the problem [B3) follows similarly as
in the proof of Theorem[31. For this, we have to replace (3.5) by

T T
T“‘1A/O HU"(t)H%dtSHSE"(T)—SCT||§+A/O (T =) [lu"(#) [t

< a(T) = 2rlz < 2(|2(D) 1% + lerllE) < +oo,

so that ([B.0) follows easily. Using the cost functional given in (319), calculations similar to
Lemma [3:3 yields the optimal control u(-) as

u(t) = BT (T — t)* T [R(O\, L )p(x(-)], t € [0,T), A >0, < a<1,
with p(z(-)) = xp — To(T)¢, and
ol = /T(T — 1) T (T — t)BB* T, (T — t)*dt. (3.20)

4. APPROXIMATE CONTROLLABILITY OF THE SEMILINEAR IMPULSIVE SYSTEM

The purpose of this section is to investigate the approximate controllability of the frac-
tional order semilinear impulsive system ([LI)). In order to acquire sufficient conditions on
approximate controllability, we first show that for A > 0 and z7 € X, there exists a mild
solution of the system ([LI)) with the control function defined as

m N 1
t) = up \(O)Xirte 0 (1), t €T, 5 <a<l (4.1)

where
W) = (trpn — 07 B ot — ) T[RO\ 5 ) pi(a ()],
for t € [m,tkt1), bk =0,1,...,m, with
po(a()) = Go — Talt2)(0) - / (1 — )7 Tt — $) (5, Eygnn)ds,
P () = G — Tatos — m) b, 2(87))
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k—1

Tk .
+ / (T = ) Ta(h = 8) | (5. Bps,) + B Y u§r(8)X(ra,00)(5) | ds
0

J=0

tei1 ~
- / (ter1 — 8)* Taltrar — 8)f (8, Zp(s,z.))ds
0

T N k—1
= [t = 9 Tt = 9B 3 A5 ()5, = T,
7=0

and T : (—oo,T] — X such that Z(t) = ¢(t), t € (—00,0] Z(t) = z(t), t € J = (0,7, and
(peXfork=0,1,...,m

Remark 4.1. Since the operator <I>T,c for each k = 0,...,m, is non-negative, linear and
bounded for 5 < o < 1, Lemmal2.10 is also valid for each <I> L fork=0,...,m

The following theorem provides the existence of mild solution of the system (I.I]) with the

control (4.1]).

Theorem 4.2. Let Assumptions (H1)-(H3) hold true. Then for every A > 0 and fized
G € X, for k =0,1,...,m, the system (1)) with the control [@I]) has at least one mild
solution on J, provided

MHsaf 2T1°:‘°‘1 L+ (m+1)(m+2)R N m(m + 1)R? mz: (ms)(m—j=1)R
Pl +a) plme

<1, (4.2

2
MMao o201 _ a—w
where R = < (1+a)> Nga—n) @nd b= 9551

Proof. Let us take a set E := {2 € PC(J;X) : 2(0) = ¢(0)} with the norm |-[|pq;x). For
each r > 0, we consider a set E, = {2z € E: ||z[lpq;x) <1}
For A > 0, let us define an operator F) : E — E such that

p

Ta(t)(0) +/0 (t = )" Ta(t — 5) [Bus(s) + f(5, Fps.2,))]ds, t € [0, 1],
hk(t,i’(tlz)), t e (tk,Tk], k = 1, ce,Mmy

Tat — 1) by (7h, 2(t ) — /OTk (75 = 9)° " a7 — ) [Busl(s) + £ (5, Fp(oz,))] ds

\
where u§ is given in (AJ]). From the definition of F\, we infer that the system (LI]) has a
mild solution, if the operator F)\ has a fixed point. We divide the proof of the fact that the
operator F) has a fixed point in the following steps.

Step (1): F\(E,) C E,, for some r. On the contrary, let us suppose that our claim is not
true. Then for any A > 0 and for all » > 0, there exists 2" € E,, such that ||(F\z")(t)|lyx > 7,
for some t € J, where t may depend upon r. First, by using Assumption 2.12], we estimate

Ipo(z( Dl < [ISollxc + [I7a(t1)2(0)]]x + /Otl (t—s)""

Talts = 9) (5, i) s

t
+ / (t - 3)a_17—a(t - 8) [Bui‘(s) + f(su jp(s,is)>} dS, te (Tkvtk-l—l]? k= 17 L
0

(4.3)
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Ma "
< ol + MO+ gy [ (1= )" ()

S“®M+ﬂﬂw®ﬂx+fé%%ﬁ(lh““‘ﬁ%*ﬁﬁkm(éhwm@yhh)”

Mo 77
<
< ol + MOV + Frr s a7 e

Ma T2, )
(14 a) pl— Tl ar ey

Mo 2797
< M v — N, 4.4
< Weollx + MO+ 7 gy 11 : (4.4)

< [IGollx + Ml (0) [l +

(J;R+)

where = $=2* and 1" = Hi[|¢)|| + Har. Further, using Assumption 2,12 we estimate

P ()
SH@&+H%&—mMMm@@DWX+A (ry — )"

tkt+1 )
+ / (tk+1 — S)Ol_ ‘
0

Tk
+ / (Tk — S)a_l
0
ds

Tk
+3/'<m+1—srhl
0 X

Ma 17 0‘1|| A Ma Gy
1"(1+ ):U“l a1 r! £a1

Talr = 5)F (5, T | s

E(tk+1 — S f S xp H

k—1

7\;(7—]9 - S)B Z u_(]?é,)\(S)X[Tj,tj+1) (S)

J=0

ds
X

k—1

ﬁ(tk—l—l - S)B Z u?,)\(S)X[ijthrl) (3)

J=0

< IGkllx + Ml + 17l

%];RT) * I'(1+a)pt-o L3 ([0, 1]R)

1{ MMa bi+1 o o
+ X( ) lepy HX/ (T — ) H(tjo1 — )% 'ds

J

1{ MMa tit1 o N
_I_ X ( ) ZHp] ||X/ (tk+1 - S) l(tj+1 — S) ldS

J
2Ma To—
F(1+ a) p

2( MMa fits o

+ X( ) ZHPJ ||X/ (tjr1 —)** Vds

2 MMO& J+1 — Tj)2a_
SNk—i_X( ) ZHPJ HX 20 — 1

2721 MMao
<N,
< N+ N2a—1) ( ) ZHP) Nk

< [ICkllx + Ml +
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k—1
= N+ B [lpi ()l
7=0
~ ~Oc 2 2a—1 a—a
where R = (A ) F and Ni = Gl + M+ 25 e bl o for k=

1,...,m. Applying the discrete Gronwall-Bellman lemma (Lemma 2.13), we obtain

(k+3)(k J—DR

12:(2(+)) [l <Nk+RZN T =0y, fork=1,...,m. (4.5)

7=0

Taking ¢ € [0, ;] and using the relation (2.5), Lemma [Z5 and Assumption (H1)-(H3),

we compute

r < [[(F") (0)]]x

_ ‘ To(000(0) + / (t— 52V Ta(t — ) [BuS(s) + (5, Fyenn))]ds

.
< 700+ [ = e = opasio)] o

[ = [Tate = 5] s
S LRy [ e M
< MOl + 5 (%) el =0 - syas

bt [ oy
< MO + (F*’(fﬂfZ))zM;j Sl

Fres (] - sﬁds)l_muw M o
< M(0)] + (Fﬂz)f IO+ s el e
< MOl + (;}fﬂfz))z a1 IO e e e
< MJ9(0)] + R]ﬁ;@ + e f ol e (4.6)

where Cy = Ny. For t € (t, 7], k =1,...,m, we obtain

r < (B (0l < ([t 2(8)) |
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- — 2T Ma
<[, <l R C; . 4.7
k kT ; J + Iul—al I‘(1_|_Oé>’|fy || al (JRJr) ( )
Taking t € (7, tr41], £ =1,...,m, we evaluate

r < [(Fa2") (@)l

ot — ) (70, 2(8)) — /OTk (i — )" Ta(7 — 5) [Bu(s) + f(5, Ep(ez,))]ds

+ /0 (t = )" Talt — ) [Busi(s) + f(5, Fp(sz,))] ds

HT (t)hy(Tx, T ))HX + /OTk(Tk —5)*”

Tk
—l-/ (Tk—s)a !
0

+/Ot(t—s)a !

MMa ™ o1l o Mo Tk o )
7T(1—|—a)/0 (7% — ) ||UA(S)||Ud8+F(1+a)/O (T = 8)* Y| £ (5, Fp(s.))| [ e
MMa

! a—11. « Mo t a1 B
e IARE ““A<S>“Uds+m = s s

1{ MMa tj+1 B o
S M+ X( ) lepj ||x/ (i — )% M (tjo1 — )% 'ds

J

MQ{ Tk a—1 1=
- — -« d
R ) el

1 ( Mila i i N
+ X( ) [ZHpﬂ HX/ (t— ) (tj41 — 5)*'ds

J
Mo t oy 11—y
. t_ 11— d .
+ M1+ a) </0 (8= syt S) e Hca1 ([0,¢];R+)

2( MMa tit1 B o
s M+ X( ) ZHP; HX/ (76— 8)* 1<tj+1 —s) 'ds

J

MQ{ Tk a—1 1=
— — 11—« d
TTi+a) </0 (=) 8) ol o gy

1( Mo ) Iutele [ (0= 5)" (g = 5)° s

X

To(Ti — 8)Bus(s)

ds
X

Ta(Th = 8)£(5, Fps.2) H ds + /Ot(t _ s)a—l‘

7A;(t — S)Bu‘i‘(s)Hde

Talt = )£ (5, Tps) | ds

< Ml +

T o)l / (= ) (tonr — )7 1ds

+X I'l+a)

MO{ t a—1 1_01
JE t_ 1—a d ”
+ I'l+ «) (/0 (f = st 8) e Hca1 ([0,4];RT)
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2( MMa tit1 o
< Ml + X( ) ZHpJ HX/T (tj1 — )2 Vds

J

Mo i o\
N, J— 11—« d
+F<1+oz></o =) 18) ol o gy

~ 2
1{ MM« ¢ 9 Mo ¢ a-1 e
— - . — (O‘_l) - — 1—aq
+A<m+a)> Il [ (0= 50 Vas+ et (= ™as) el e

2( Ma T
< Ml “ ]"F J
= k+>\< ) ZHPJ ||X 20 — 1

M« T PR
— — -«
Tt </0 (7% =) 1d8) el 2 o gy
~ 2 1—a
1{ MM« (t — 1)t Ma /t a-1 !
— - . t_ -« d r
A(F(lJra)) leleO = 5=+ s o\, C 77 ) el o ey

2721 MMo
< Ml
< Mig + N2a—1) ( ) ZHP) Nk

~ 2
Ma ™ T 27?21 [ MMa
Yy </o =) 1d8) Pl o gy T AZa =) (F(l + a)) o=t

Ma t a—1 -
_— t—s)Terd .
+ M1+ a) (/0 (8= syt S) e Hca1 ([0,¢];R+)

27 Ma o
pwrer T(1+4 «) L L3 (J;RH)

k
<Ml +RY Cj+
j=0
2T Ma
,ul—Oll I‘(]_ +

<Ml +RY Cj+

=0
Using Assumption 2.12] (H2)(ii), we easily obtain

0l ey

v || 2 Yol

.. Lot TR+ ..
lim inf ( ) — = lim inf
r—00 r r—00 r

Lot (J;R+)
/

/
X T— :HQB
r

Thus, dividing by r in expressions (4.6]), (A1), (£8)) and then passing r — oo, we obtain

M Hyo8 2T (m+1D)(m+2)R  mm+ 1R omenomsnr
1 > 1
T(1+a) gl { i 2 * 2 D e :

j=0
which is a contradiction to (4.2]). Hence, for some r > 0, F\(E,) C E,.

Step (2):  The operator F) is continuous. To achieve this goal, we consider a sequence
{z"}>2; C E, such that 2™ — =z in E,, that is,

. n _
nh_{TolOHSC IHPC(J;X) 0.
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From Lemma 2.7, we infer that

H% < H, 801611;“5”(9) — :E(@)HX = Hs||lz" — zllpgyx) = 0 as n— oo,

|3 — 2
for all s € Q(p~) U J. Since p(s,z%) € Q(p~) U J, for all k € N, then we conclude that

|

In particular, we choose k& = n and use the above convergence together with Assumption
212 (H1) to obtain

N — L% —0 as n— o0, forall seJ and k€ N.
p(sak) ~ Lp(sah)|| o

}}f(s>inp(s,m~?)) - f(s>jp(s,fs))“x S Hf(S,l’an(s@”?)) - f(S z p(s,27) H

+ “f(sajp(s,x~g)) - f(S xp (s,%s) HX
— 0 as n — oo, uniformly for s € J. (4.9)

From the above convergence and the dominated convergence theorem, we evaluate

1Po(@™ () — pola() 1y < '

X
Mo« h o B )

S P(]_ —I— Oé) /0 (tl - S) 1H‘f(8’xnp(s,w~?)) — f(S,ZL'p(S7555))Hde

— 0 as n — oo. (4.10)

Using the convergences (£.10) and the relation (IQEI), we calculate
IR, @5 )po(a™ (1) = R(A, @G )po(@() ||y = HAR(% @) (po(2" () — po(x(1))) I

< —Ilpo(x"(-)) — po(x())llx
—0 as n — o0.
Since the mapping J : X — X* is demicontinuous, it is easy to obtain
j[R(A, @iﬁ“)po(x”(-))} SN j[R(A, @i’;*l)po(x(-))] as n— oo in X*. (4.11)

From Lemma 2.5 we infer that the operator 7A;(t) is compact for t > 0. Therefore, the

operator 7A;(t)* is also compact for t > 0. Hence, by using the compactness of this operator
together with the weak convergence (4.11]), one can obtain

[ (&) = ug (Bl
< ||t =0 B Tt = 0" [T [ROL @5 pole” ()] = T RO 25 pok(z()] ]|

< (h Talt = 1) [T[ROL @ o ()] = T [ROL @ ol ()] |
— 0 as n — oo, foreach tel0,t). (4.12)

U

Similarly, for £ = 1, we compute

lpa(2™ () = pr(@ ()l < || Talte = ) [P (r, 2an(47) = ha(m, 2(60))] [l

T / () T — 8) (52 amy) — F (5, ey ds

X
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to - 5
+ / (t2 - 3)a_17;(t2 - S) [f(S, znp(s,m~?)) - f(S, jp(s,is))} ds
0

X

+ /On (1 — s)o‘—lﬁ(ﬁ - S)B[ug,’j‘(s) — U&A(S)]ds

X

+ /071 (to — S)a—lﬁ(tz —s)B {ua’f(s) — U&)\(S)}ds

X

< Mth 1, 2 (t]) — ha(m, 2())] |

1+Oé /0 7_1_8 Hfs " (sx”)>_f(s Ip HX
/0 t2 - S>a_1Hf(87 lfnp(&x?)) - f(sa jp(s,is))“xds

MMa h a1l na N
+ T(1+a) /0 (1= ) Hugx (s) — ugA(s)]| ,ds

MM tl n,o
r(1 +Z) /0 (2 — S)a_lHuo,’A (s) — U(?,A(S)HUdS

—0 as n — oo, (4.13)

where we used Assumption 212 (H3), convergences (L), (£12) and the dominated conver-
gence theorem. Moreover, similar to the convergence (£I2)), one can obtain

Hu’f:\l(t) —uf ()|l =0 as n— oo, foreach t€ [r,ts).
Further, applying a similar analogy as above for k = 2,..., m, one can compute
HuZi(t) —up \(t)|lu = 0 as n — oo, for each t € [m, tp11),k=2,...,m.
Therefore, we have
|luy®(t) —uS(t)|lu = 0 as n — oo, for each t € [r,t541),k=0,1,...,m. (4.14)

Using the convergences (£.9), ([AI4)) and the dominated convergence theorem, we arrive at
t
(R0 = (POl < [ @ =s|7
t
+ /0 (t - 8)a_1 7—04(t - 8) [f(87 xnp(s,x?;)) - f(S, jp(s,is))} HXdS

MMa ! o—11l T o
<m0 ) — )l

Talt = $)B[u; " (5) — u3(s)] | ds

Mao

t
+ m /(; (t— S)Q—le(S, inp(s,ig)) — f(s, i’p(s’js))Hde

— 0 as n— oo, for te0,t]

Similarly, for t € (7, tg11], k=1,...,m, we deduce that
I(Fa™) () = (Faa) (Bl < || Ta(t = 7) [ha(r 2 (8) = b, 2(85)] ||
+ /0 (Tk - 3)a_ Aa(Tk - S) [f(S, :L:vnp(s,x?;)) - f(‘S? jp(57i5)>} des
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S ACED
+ [

[Tl = 9 i) = 7t
< M|, () = b, 2(8)) Iy

~

Ta(m = 9Bl "(s) — w3 ()| ds

~

Talt = 9)Bu3(s) — us ()] ds

Mo Tk o . )
+ m/o (T — 5) 1Hf(s,x”p(s’x~?)) — f(s,xp(sis))Hde
MMa Tk ol na N
Tt / (7 = ) luy ™ (s) — ug (5) [ pds
MMO( ' a—=1|, n,a a
v AGRU RO HE TS
Ma ¢ o . i
+ m /0 (t—s) 1Hf(S, x”p(s,ig)) — f(s, xp(s,:gs))Hde

— 0 as n — oo.
Moreover, for t € (tg, 7], kK =1,...,m, applying Assumption 212 (H3), we obtain
[(Fa™)(0) — (Fxe) ()l < ||t 2(5)) — Bt 25, — 0 as 1= oc.
Hence, it follows that F)\ is continuous.

Step (3): F)\ is a compact operator. In order to prove this claim, we use the well-known
Ascoli-Arzela theorem. According to the infinite-dimensional version of the Ascoli-Arzela
theorem (see, Theorem 3.7, Chapter 2, [26]), it is enough to show that

(i) the image of E, under F) is uniformly bounded (which is proved in Step I),
(ii) the image of E, under F) is equicontinuous,
(iii) for an arbitrary t € J, the set V(t) = {(Faz)(t) : « € E,.} is relatively compact.

First, we claim that the image of E, under F) is equicontinuous. For si, s, € [0,%1] such
that s; < s and = € E,., we compute

[(Fx)(s2) — (Fxe)(s1)llx

< ITol52) = Tl 0O + \

52

+ (89 — S)a_lﬁ(SQ — s)Bu§(s)ds

/ (52— 5)° " Tals2 — 8) (5, Fp(s.z))ds

S1

X

[(s2 — §)*t — (51 — s)o‘_l}ﬁ(SQ —5)f(5,Tp(s,2,))ds

i / (52— 577 = (51— 5)2 1] Fa(s2 — 5)Bul(s)ds )
+ /031(31 —s5)*t [’?;(32 —38)— ’?\;(81 — s)} Bu§(s)ds .

X
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.

/81(81 — )t [’ﬁ(sz —38)— ’?\;(81 — s)} J(5, 2p(s,3,))ds
0

X

< [|Ta(s2) — 7;(51)H£(X)||¢(0)||x + ﬂ /82(52 - S)a_l%'(s)ds

Fi+a)l,
+ % <%>2 /0 (g — )™ = (51— )7 (1 — 5)*Ads
" %ﬁf@j [ = e =) = Tatsa = )| = 90 s
Ma

+ m/() (52— )% = (51— 8)* |y (s)ds

s1
+ / (81 — S)a_l‘
0

< I7ato0) = Taloen IO + s G ([ s

%( MMO( )2(82 —81)2a_1
)

7A;(52 —8) — 7A;(sl — S)HE(X)’}/TJ(S)CLS

AN\T(1+a 20— 1

NO MMO( ’ 51 a—1 a—1 a—1
+7<m>/0\<82—s> ~ (o1 =91 — 5) s

MM?Nyow [ e ~ »
+ m/o (s1—s) To(s2 —s) — Tal(s1 — S)H (X)(tl s)* Lds
Mo 81 ol -
] /0 (52 = 5) (51— )|y (s)ds

Tolso — 8) — Ta(s1 — S)HE(X)%/(S)dS. (4.15)

s1
+ / (81 — S)a_l‘
0

If s; =0, then from the above estimate, we deduce that

lim ||(Faz)(s2) — (FAz)(s1)|lx = 0 unifromly for z € E,.

82—>0+

For 0 < v < s1 < t;1, we have
[(Faz)(s2) — (Fax)(s1)]lx

< 17252) = Tl llaga IO e + s 0 ([Pt has)

~ 2
% MMao (82 — Sl)Za—l
AN\T(1+a) 200 — 1
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Ny [ MMa Lo o1 a—1 a1
S () [t = ==

N M M?Nya /Sl—” ( )a_l‘
—_— S1 — S
A(1+ ) !

7AZ«(52 —8) — 7AZ«(31 —5) .

| M Nya T - N
m /51 u(81 —8)* | Ta(s2 — 8) — Tals1 — S)HE(X)(tl —5)*ds
M 51
+ 1“(174?04)/ (52— 8)* " = (s1— 8)* |y (s)ds
+ o (51— 8)* M| Ta(s2 — 5) — Tal(s1 — 5) E(X)%r(s)ds
+ 81 —5) ’?;(52 —5) = Tals) — S)HE(X)%/(s)ds
MOZ (S — s )a—al S2 i al

< 7 52) = Tolot)lan O+ e (| (o)

~ 2
n % MM« (82 — 81)2a_1
AN\T(+a) 200 — 1

No[ MMa Yo a1l a—1 a—1

N MM? Ny«
)\F(l + Oé) tE[O 51—V

2
2 MM2a I/2a_1 Ma S1 ) .
ol _ 90— (51 — 51U r(s)d
+>\<F(1+0z)> 2a—1+F(1+a)/0 ‘(52 s) (s1—s) ‘”Y (s)ds
b [T =) =Tl =0 [ (1= 9" ulo)ds
te[0,51 -] LX) Jo
2M a—a1 S1 n 51
([ eetntas) (4.16)

(14 «a) pl—

Tlss—1) — Tals: —t)HE(X) /0 U (51— 801 (1 — )0 1ds

Similarly for s, s € (Tg, trs1], £k =1,...,m with s; < sy and = € E,., one can estimate

[(Fxe) (s2) — (Fxx)(s1)]lx

MO[ (82 — Sl)a_al 52 1 o
< 7ot = ) = Tolor = )l + g (| o)

MMO( So — 81 2a_1 MMOZ 51 a—1 _ el «
( ) b IO [ = 9177 (o1 = ) s

M'l+« 200 —1 M'l+a

+ M sup
te€[0,s1—v]

Talss=0) =Tl =), [ (51 =9 (o) s
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- 2
2ck<./\4./\4204)ym—l Ma

AN\TI'l+a)) 2a—1 + I'(1+ ) /0 ‘(52 —5)* 7 — (51— S)a_l‘%(S)ds

Tolso — 1) — Ta(s1 —t)H

S1—V
© sup / (51— 8)* 1 (s)ds
te[0,s1—v] ) Jo

2Mo > 1 a1 o
g (s
M So — § a—oq 52 1 €3}
< s — ) — Talsr — )Lyl + o (52 = 1) ( / w(s))alds)

Fl+a) ploo
~ 2
Ch ( MM« (82 — 81)2a_1
)

"I\ Tira 200 — 1

k—1 ~ 2
C‘ MMa b a— a— o—
. =0 By (W) /Tj (52 = 8)"7" = (51 = )" [ (1 = )°7'ds
~ 2
C MM« 51 o o -
+Tk<m> /Tk (52 = 5)°7" = (51— )" [(thar — 5)°'ds
k—1 ~ _
~ ~ C MM2O{ tj+1
+ su 7—043—t —7;8—tH _]7/ S—Sa_lt- _Sa_lds
o [ Telez 1) = Talsr = O ;o AT va) ), 17T
fa ~ Ck‘ MM2O[ s1—V
+ 7—04 —t _7:1 —tH —7/ _ a—lt . a—ld
te[i}f—u} (52 =) (s1=8) ce) A T(1+a) J, (s1 = 8)* (tht1 — ) s
- 2
2Cy ( MM?a vt Ma . a-1 a-1
A (F(l—l—a)) 200 —1 T(1+a) /0 (52— 8)*" = (51— 8)* |y (s)ds
~ —~ s1—V
-+ sup 7—04(32 - t) — 7;(81 — t)H / (Sl _ S)Q_lfyr/(S)dS
t€[0,s1—v] £x) Jo

QMo v> ™ 51 1 o
’ 1 . 4]_

Moreover, for si,s9 € (tg, %], k=1,...,m with s; < sy and = € E,, we have
[(Fr)(s2) — (Bra)(s)le < [[PCsa, 2(6)) — A1, 2(60) - (4.18)

Similar to the estimate ([B.I1]), one can easily get that the right hand side of the expressions
(4.10)) (£17) and (AI8)) converge to zero as for the arbitrariness of v and |sy —s;| — 0. Thus,
the image of E, under F) is equicontinuous.

Next, we show that the set V(¢) = {(F\x)(t) : z € E,.} is relatively compact for each ¢ € J.
For ¢t = 0, it is easy to check the set V(%) is relatively compact in E,. Let us take 0 <t < t;
be fixed and for given n with 0 < n <t and any 6 > 0, we define

(FY2)(1)

_ /5 T oalT(HEH(0)E +a /O /5 Tt — ) n( €T — 7€) Bug(s)déds
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t—n [ee]
a1 o\
ta / / £t — )2 L 0a(€)T((t — 5)°€) (5, Ty, )dEds
— () [ [ ea@rToe — wrawione
t—n 00
ta / / E(t — )7 pa(©)T((t — 5)°€ — 176)Bug(s)deds

+a/0 /55<t—s>a— )T ((t = $)°€ — 1°8) (5, Fpe.y )&

=T(0*0)y(t,n,9),
where y(+, -, ) is the term appearing inside the parenthesis. Using Assumption [2.12] one can
calculate

(e, m,8)l < /OO SONT(E — 7 8)p(0) e
ta / B / £t — ) (@I T((t — )€ — 176)Bug ()| xdéds

+a/ /gt—s Yoa (O] T (= 8)%E = n*8) f (5, Tp(s.z)) || dEds

N MM o t2a 1 7720:—
< M|[4(0)]lx + T(F(l%—a)) A(2a — 1)

M tH — 1—on t—n n [e51
a < 7 ) (/ (%,(s))%) < oo, for te 0t
0

X
I'l+a) 1
The compactness of the operator 7(-) implies that the set V, 5(t) = {(F}"z)(t) : x € E,} is
relatively compact in X. Hence, there exist a finite x;’s, for ¢ = 1,...,n in X such that

t) C US(mi,5/2),

for some £ > 0. Let us choose § > 0 and n > 0 such that

oo -l

<

+a

/ / E(t — )" pa(E)T(t — 5)°€)Bug (s)déds

/0 SOTE)(0)E

X

ta / |« £t—s“‘1%£T((t—s)“£)BU§(s)d£ds
t—m J 4§

X

t )
fa / / £t — )" on(O)T(t = 5)°€) F(5. Ty nny)déds

X

+a / [ €= s el OT (= 9605,

M2M2 2a—1
< MOl [ paleac + 2 N e

X
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Ny [ Mita \° - -
Y (F(l - a)) /t—n(t B

Mot ’ Mo !
el o () + s [ (t—5)* e (s)d
b e [, S0€006 + s [ s
£
< -
=2
Consequently

V(t) C U S(as, ).

Thus, for each ¢t € [0, t1], the set V(t) is relatively compact in X. Next, we take t € (7x, tg11],
for k =1,...,m and for given n with 0 < n < min{t — 7, 7} and any 6 > 0, we define

(FY2)(t)

_ / T Gl OT (= 7" e, 217

—a /OTM /;O E(m — 8)*al&) T (1 — 9)7€) [Bus(s) + (5, Tps,2,))] dEds

ta / / T E(t = 5" pal€)T((t = 5 [Bus(5) + (5. Fy05,)] dEdls
—T() [ /5 T Ral€)T((t = 7)€ — (i, 3(6))dE

fa / / e~ 9 Ral T (7 — )7 — 10) [BUS(s) + (s, Fygun)] dds

- a/o i /5 E(t — 5)° T pa(E)T((t — )€ — 78) [Bus(s) + (5, Tp(s.50))] déds .

Proceeding similarly for the case ¢t € [0,¢;], one can prove that the set V(t), for ¢ €
(T, tet1), k= 1,...,m is relatively compact in X. Moreover for t € (ty, %],k = 1...,m,
the fact that the set V() is relative compact follows by the compactness of the impulses hy,
for k = 1,...,m. Therefore, the set V(t) = {(F)z)(t) : x € E,.}, for each t € J is relatively
compact in X.

Hence, by invoking the Arzela-Ascoli theorem, we conclude that the operator F) is com-
pact. Then Schauder’s fixed point theorem yields that the operator F) has a fixed point in
E,, which is a mild solution of the system (L.TI). O

In order to prove the approximate controllability of the system ([LIJ), we replace the
assumption (H2) by the following stronger assumption:
(H4) The function f : J x B, — X satisfies the assumption (H2)(i) and there exists a

function € L1 (J;R*) with a; € [0, 1) such that
1f (¢t ¥)[x < ~(t), forall (¢,4) € J x B,

Theorem 4.3. Suppose that Assumptions (H0)-(H1), (H3)-(Hj) and the condition (L2]) of
Theorem [{.3 are satisfied. Then the system (L) is approzimately controllable.
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Proof. By using Theorem [£2] we infer that for every A > 0 and (, € X for £ =0,1,...m,
there exists a mild solution z* € E, such that

p

To(000)+ [ (6= Tolt = ) [Bug(s) + £(5.%, )]st € 0,11,
hi(t, 2 (E)),t € (g 1), k=1,...,m,
(1) = Tt = 7) (i 2N(E)) — /0 (71— ) Ml — ) [Bug(s) + f(5. 7, ) ds

+ /O (Tt — ) Bus(s) + f(s5,%,, )| ds.

L tE(Tk,tk_H], kzl,...,m,

(4.19)
with the control defined in (@T]). Next, we estimate

NT) = TolT = 7)o (7, 2 (17,))
- /0 (= 8 T — ) [Bug () + fls. 2, ) ds

T —~ ~
(T = )" TolT = 8)[Bus(s) + f (5,22, )] ds

o

_'_
= TolT = 7o) o (T, T(87))

= [ = 9 Talr = ) [Bus ) + 7 )0

= [ = 9 Talr = ) [BU) + 7 )0

+/O (T — )" MTo(T — 5) f (s, T e) T /OTm (T — )" "To(T — s)Bu$(s)ds
+ @7, TR, @7, )pm(27())]
= Gn = AR(A, @7 )pm(27(1))- (4.20)

Moreover, that fact that z* € E, is bounded implies that the sequence x*(t), for each t € .J
is bounded in X. Then by the Banach-Alaoglu theorem, we can find a subsequence, still
denoted as 2*, such that

2 Mt) B 2(t) in X as A =0T, te
Using the condition (H3) of Assumption 212 we obtain
B (t, 22 () — ha(t, 2(8,,)) in X as A — 07, (4.21)
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Furthermore, by using Assumption (H/), we get

59 - S92 59 1 2a1
/ f(s 2 (5.0 H ds < / 7*(s)ds < (/ yal(s)ds) (51— 52)'7?* < +00,
S1 S1 S1

for any s1,s9 € [0,7] with s; < s5. Therefore, the sequence {f(-,:gf\p(s xgs)) A > 0} in

L?([s1, 52]; X) is bounded. By an application of the Banach-Alaoglu theorem, we can find a
subsequence still denoted as {f(-, x/\p(s :Eks)) : A > 0} such that

FOa o) = () in L2([s1, 805 X). (4.22)

We now calculate

| Isods
0
- [ Mzds+ [ sts nUds+1/’nuA Meds 4ot [ g lEds
tm
o 2
= [+ [Cusaelas o [ e R
—1
MMao '\ T2
< CF = 4.23
_()\F(1+a> a—lz (423)
where Cy, for k =1,...,m — 1 are the same as given in (L3) and Cy = Ny given in (4.4]).

Moreover, the above estimate ensures that the sequence {u$(-) : A > 0} in L2([0, 7,,]; U) is

bounded. Further, by the Banach-Alaoglu theorem, we can find a subsequence, still denoted
as {u§(-) : A > 0} such that

us () = u*(-) in L*([0,7,); U). (4.24)

Next, we compute

[ (@) = wlly < [ Tal = 7)o, 2 (852)) = (s 250D

X

+ /0 T 80T (1 — $)B[uS(s) — 1 (s)]ds

X

_l_

+ /OT’”(Tm — 8)* Mo (T — 8)B[u(s) — u®(s)]ds ]
+ /OT’"(Tm — ) (T — 8) [f(s o o) f(s)}ds .
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N T2a—1 _ (T _ Tm)2a—1 /Tm
20 — 1 0

T ~ ~
/0 (=) TalT = 9) |15, 2,) = F5)] s
—0as A — 0", (4.25)

T(T — 5)Blus(s) — ua(s)]HQdS)é

X

_l_

where
W= Cm— Ta(T = 7)) b (Tin, 2(,,)) + /OTm (T — s)o‘_lﬁ(Tm — 5)[Bu®(s) + f(s)]ds

_ /0 T = )V TT — ) Bu(s)ds — /0 (T — $)* ' To(T — 5) f(5)ds.

Here, we used the convergences (4.21)),([4.22)),([4.24]), the dominated convergence theorem and
the compactness of the operator f(-) — [;(- — $)* ' Ta(- — 5) f(s)ds : L*(J;X) — C(J;X),
(see Lemma [3.2)). Finally, by using the equality (£20), we evaluate

[#M(T) = Gl < [AR(A, @7 Jpun ()|

< AR, ®F ) (pm(2() — w)|| + AR, @F ]|,
< AR L) || g 1Pm () = wlly + AR, @7 o]l (4.26)

Using the above inequality, (£.25) and Assumption (HO), we obtain
|22(T) = G| = 0, as A — 07,

which ensures that the system ([LT]) is approximately controllable on J. O

Remark 4.4. The works [9, [32], [46], etc considered a different kind of control for the frac-
tional order semilinear problems. If one follows Remark [3.6, the controllability operator

defined in ([2.3) changes to B20) and uf \(-) appearing in the control defined in (A1) takes
the form

U () = B To(tesr — )" T [RO\, @51 )py(2())],

fort € [, tpr1),k =0,1,...,m. The control provided in ([{AI) is motivated from the linear
regulator problem with the cost functional defined in (31]). The proof of Theorems[{.3 and
[4-3 follows in a similar way with some obvious modifications in the calculations.

5. APPLICATION

In this section, we discuss a concrete example to verify the results developed in previous
sections.
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Example 5.1. Let us take the following fractional heat equation with non-instantaneous
impulses and delay:

(o =g e+ [ b= 0 alletol). s

t T, t J =10,T], 0,7,
< GkUO(k k1] C 0,77, £ € [0, 7] (5.1)

2(t, &) = hi(t, 2(t, €)), t € (te, ), k=1,...,m, £ €[0,7],
2(t,0) =0 =z(t,m), t €[0,1],
L 2(60,8) =v(0,8), {€[0,7], 6<0.

where the function n : [0,1] x [0, 7] — [0, 7] is continuous in t and the functions o : [0,00) —
[0, 00) are also continuous.

Step 1: Cy-semigroup and phase space: Let X, = LP([0,7];R) with p € [2,00), and
U = L*([0,7];R). Note that X, is separable and reflexive with strictly convex dual X% =

L71([0,7];R) and U is separable. We define the linear operator A,:DA)) CX, > X, as

Apg (&) = 9"(8),

where D(A,) = W2?([0, 7]; R) N WyP([0, 7]; R). Since we know that C°([0,7]; R) C D(A,)
and hence D(A,) is dense in X, and one can easily verify that the operator A, is closed.
Next, we consider the following Sturm-Liouville system:

(AL = Ap)g(§) =U(€), 0 <& <,
L 40~ gtr) o >
One can easily rewrite the above system as
(AL=A)g(§) = 1(S), (5.3)

where Ag(€) = ¢”(€¢). Multiplying both sides of (5.3)) by g|g|[P~2 and then integrating over
0, ], we obtain

/ G(OPdE + (p— 1) / (O] £'(€)d = / e (5.4)

Applying Holder’s inequality, we get
s [Tl < ([Toteras) T ( [T nepa)”

1
IR, Ap)lle = llglleer < I,

Thus, we have

so that we obtain
1
RN, Apllzr) < T (5.5)
Hence, by applying the Hille-Yosida theorem, we obtain that the operator A, generate a
strongly continuous semigroup {7,(t) : t > 0} of bounded linear operators.
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Moreover, the infinitesimal generator A, and the semigroup 7,(t) can be written as

Apg = Z _n2<gawn>wn> g€ D(Ap)>
n=1
g = Zexp g7wn>wn7 g € va (56)

where, w,(§) = \/E sin(ng) are the normalized eigenfunctions corresponding to the eigen-

values A, = —n? (n € N) of the operator A, and (g, w,) := [ g( €)d¢. Further, the

resolvent operator R(A, A,) is compact (see [41] for more details). Therefore the generated

semigroup T,(t) is compact for ¢ > 0. Thus, the condition (HI) of Assumption holds.
We now define the following operators

Toplt)g = /Ooosoa(f) £)dg = / palé Zexp (—n2t€) (g, wahwn(E)dE.  (5.7)

Tosltlg = | €@ T 00(6)E = [~ ale) 3 exp(—nt7€) g, 1w, (E)E,

(5.8)

for all g € X,

Let us take B = PCy x L}(X) with h(f) = e, for some v > 0 (see Example 2.5]).
Proceeding similar arguments as in section 5, [48], one can verify that the space B = PCO X
L} (X) is a phase space, which satisfies the axioms (A1) and (A2) with A(¢ f h(6

and Y(t) = H(—t). We define K := sup |b}(L(£)|.
0e(—00,0]

Step 2: Abstract formulation and approximate controllability. Let us define
x(t)(&) = 2(t,§), for te J and & € 0,7,
and the bounded linear operator B : U — X, as
Bu(t)(©) = 1(1.€) = [ K@ Ou(OC, € 1 € € .,
0

where K € C([0, 7] x [0, 7]; R) with K((,&) = K(&,(), for all (,& € [0,7]. We assume that
the operator B is one-one. Let us estimate

| K@ un©
o Jo
Applying the Cauchy-Schwarz inequality, we have

[Bu), /[(/ KG9 Qdc) ([ moora)’ ] d

P
2

= ([ 2d<) ([ micorac) ae

Since the kernel K (-,-) is continuous, we arrive at

IBu®)llx, < Cllu®)lly,

IBu@®)lk, = dé.
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so that we get ||Bl|;yx,) < C. Hence, the operator B is bounded. Moreover, the symmetry

of the kernel implies that the operator B = B* (self adjoint). For example, one can take
K¢ =1+&+ (2 forall € €[0,7n]. The function 1 : (—oo,0] — X is given as

Y()(E) = v(t,€), £ €[0,7].
Next, the functions f,p: J x 8 — X are defined as
0

F(t0)E = / b(—0)(6, €)do,

plt)) - = t — o([[6(0) )

for £ € [0, 7]. Clearly, f is continuous and uniformly bounded by K. These facts guarantee
that the function f satisfied the condition (H2) of Assumption 212l and the condition (H4).
Moreover, the impulse functions hy, : [tg, 7] X X — X for k = 1,...,m, are defined as

hi(t, z)€ = /Oﬂ pr(t, &, 2) cosz(at(t,;)z)dz, for t e (t, T,

where, p, € C([0, 1] x [0, 7]%;R). It is easy to verify that the impulses hy, for k =1,...,m,
satisfy the condition (H3) of Assumption 2.12

The system (G.0]) can be transformed into the abstract form (IIl) by using the above
substitutions and it satisfies Assumption (H1)-(H3) and Assumption (H4). Moreover,
it remains to verify that the associated linear system of the equation (ILT]) is approximately
controllable. In order to prove this, we consider

(T — t)a_lB*ﬁ,p(T —t)*z" =0, forany 2" € X*, 0 <t <T.
Therefore, we have
B*7A;7p(T —t)'xz* =0, forany 2 € X*, 0<t < T,
and since the operator B* = B is one-one, then we obtain
7A;,p(T —t)*'z* =0, forall te[0,T).
Further, we have

~

Tap(T —t)"2" = /0 £a(§) D exp(—n*(T — 1)) (", wy)w,dé = 0
n=1

= (2", w,) =0, forall neN,

which implies z* = 0. Hence, the approximately controllability of the linear system follows
by using Lemma [3.4] and Remark Finally, by invoking Theorem .3}, we deduce that the
semilinear system ([[LT]) (equivalent to the system (5.0)) is approximately controllable.
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