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Abstract

Given a right coprime MFD of a strictly proper plant P (s) = NR (s)DR (s)
�1

with DR (s) column proper a simple numerical algorithm is derived for the
computation of of all polynomial solutions [XL (s) ; YL (s)] of the polyno-
mial matrix Diophantine equation XL (s)DR (s)+YL (s)NR (s) = DC (s)
which give rise to the class � (P;DC) of proper compensators C (s) :=
XL (s)

�1 YL (s) that when employed in a unity feedback loop result to
closed loop systems S (P;C) with a desired denominator DC (s) : The
parametrization of the proper compensators C (s) 2 � (P;DC) is ob-
tained and the number of independent parameters in the parametrization
is given.

1 Introduction

We consider linear, time invariant, multivariable systems which are assumed to
be free of unstable hidden modes and whose input-output relation is described
by a strictly proper transfer function matrix P (s) (the plant). In this note we
describe a numerically e¢ cient algorithm for the computation of the class of
proper compensators C (s) which, when employed in the unity feedback loop
of �gure 1, gives rise to a closed loop system S (P;C) with a speci�c closed
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Figure 1: The unity Feedback system S (P;C)

loop denominator DC (s) [6], [8]. In particular, given a right coprime MFD
of a strictly proper plant P (s) = NR (s)DR (s)

�1 with DR (s) column proper
(column reduced) and an appropriately de�ned polynomial matrix DC (s) with
desired zeros, we extend the Wolovich [1] resultant theorem and a theorem
by Callier and Desoer [13], Callier [14] and Kucera [9] in order to obtain an
algorithm for the computation of all polynomial solutions [XL (s) ; YL (s)] of the
polynomial matrix Diophantine equation

XL (s)DR (s) + YL (s)NR (s) = DC (s) (1)

which give rise to the class � (P;DC) of proper compensators C (s) := XL (s)
�1
YL (s)

that result to closed loop systems S (P;C) with DC (s) as their closed-loop
denominator: The issues of the parametrization of the proper compensators
C (s) 2 � (P;DC) and the number of independent parameters in the parame-
trization is also resolved. This is done by investigating the properties of a gener-
alized version of Wolovich�s resultant to obtain a series of new results regarding
its algebraic structure. Despite the fact that similar results for Sylvester-type
resultants have been presented in [3], the Wolovich resultant has not received
the expected attention, except perhaps [1] and [2] where Wolovich�s resultant is
used as a tool for testing the coprimeness of polynomial matrices.
The method presented here can be compared to the one in [11], where

Wolovich�s resultant is employed as a tool for the construction of the interpo-
lation matrix. However, our method requires only knowledge of the coe¢ cients
of the polynomial matrices DR(s); NR(s) and provides a parametrization of all
proper denominator assigning controllers unifying in this way the �resultant�
approach with the approaches in [13], [14] and [9]. The proposed approach
can be viewed as a generalization of the method presented in [10] (theorem
2.13, p. 547) where the solution of a degree-speci�c Diophantine equation is
obtained using Wolovich�s resultant. Furthermore, through the investigation of
the rank of the generalized Wolovich resultant, we establish the lower bound
for the (McMillan) degree of an arbitrary closed loop denominator, a fact which
has been used throughout the constructions in [13], [14], [9], but not justi�ed
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via some theoretic argument.

2 Preliminaries

In the following R;C;R (s) ;R [s] ;Rpr (s) ; Rpo (s) are respectively the �elds of
real numbers, complex numbers, real rational functions, the rings of polynomials,
proper rational and strictly proper rational functions all with coe¢ cients in R
and indeterminate s: For a set F; Fp�m denotes the set of p�m matrices with
entries in F: N+ is the set of positive integers. If m 2 N+ then m denotes the
set f1; 2; :::;mg : Finally �M [:] denotes the McMillan degree of [:]
Let NR(s) 2 R[s]p�m; DR(s) 2 R[s]m�m be a pair of polynomial matrices

with DR(s) invertible for almost every s 2 C and de�ne the compound matrix
F (s) :=

�
D>
R(s); N

>
R (s)

�>
: Respectively let DL(s) 2 R[s]p�p; NL(s) 2 R[s]p�m

(with DL(s) invertible for a.e. s 2 C) and E(s) := [�NL(s); DL(s)] such that

E(s)F (s) = 0 (2)

The pair of matrices NR(s); DR(s) (resp. NL(s); DL(s)) will be called right
(resp. left) coprime i¤ F (s) has full column rank (resp. E(s) has full row
rank) for every s 2 C. It is known that NR(s); DR(s) are right coprime and
NL(s); DL(s) left coprime, then

deg jDR(s)j = deg jDL(s)j (3)

A polynomial matrix X(s) 2 R[s]p�m(m � p) is called column proper or column
reduced i¤ its highest column coe¢ cient matrix denoted Xhc which is formed
by the coe¢ cients of the highest degrees of s in each column of X(s); has full
column rank. The column degrees of X(s) are usually denoted by degciX(s);
i 2 m. Respectively Y (s) 2 R[s]p�m (p � m) is called row proper or row
reduced i¤ Y T (s) is column proper and the row degrees of Y (s) are denoted by
degri Y (s); i 2 p: Furthermore a square polynomial matrix X(s) 2 R[s]m�mis
called row-column reduced [13] with row powers ri and column powers ci; i 2m
i¤ the matrix diag

i2m
fs�rigX(s)diag

i2m
fs�cig is biproper (i.e. it is proper and its

inverse exists and it is proper as well).

Lemma 1 [5] (Corollary 3.100, p. 144) If X(s) 2 R[s]p�m (p � m) is column
proper then X(s) has no zeros at in�nity and its (ordered) column degrees are
the orders of its poles at in�nity i.e. if

S1X(s) =

�
diagfsq1 ; sq2 ; :::; sqmg
0p�m;m

�
is the Smith - McMillan form of X(s) at in�nity, with q1 � q2 � ::: � qm � 0;
then qi = degciX(s); i 2 m: Furthermore since X(s) (as polynomial matrix)
has no �nite poles and due to sqi has (possibly) only poles at in�nity, �MX(s) =
mP
i=1

degciX(s).
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Obviously a similar result holds for row proper matrices..
When (2) is satis�ed and E(s) is row proper with DL(s); NL(s) left coprime,

E(s) is a minimal polynomial basis of the (rational) vector space spanning the
left kernel of F (s) and the row degrees degriE(s) =: �i; i 2 p of E(s) are the
invariant row minimal (dual) dynamical indices of

P (s) = NR(s)D
�1
R (s) = D�1

L (s)NL(s) (4)

In such a case it is known [4] that E(s) has the following properties

1. If p(s)> 2 R[s]1�(p+m) is a polynomial vector such that p(s)>F (s) = 0
then there exists a polynomial vector w(s)> = [w1(s); w2(s); :::; wp(s)] 2
R[s]1�p such that

p(s)> = w(s)>E(s) (5)

2. If p(s)> = w(s)>E(s) then

deg p(s)> = max
i2p

fdegwi(s) + �ig (6)

The following result establishes a relation between the McMillan degrees of
P (s) and E(s) (or F (s)):

Lemma 2 [5] (p. 140) If E(s) has no zeros in C [ f1g (equiv. DL(s); NL(s)
are left coprime in C [ f1g) then

�MP (s) = �ME(s) (7)

When E(s) is a minimal polynomial basis of the left kernel of F (s), i.e.
E(s) has no zeros in C and is row proper, by lemma 1 E(s) will have no zeros
in C [ f1g and thus from the last statement of lemma 1

�MP (s) = �ME(s) =

pX
i=1

degriE(s) (8)

Furthermore if also DR(s); NR(s) are right coprime and F (s) is column
proper then again from lemma 1 and lemma 2

�MP (s) = �MF (s) =
mX
i=1

degci F (s) (9)

thus in such a case we get the well known result [4] that

pX
i=1

degriE(s) =

mX
i=1

degci F (s) (10)
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3 Generalized Wolovich Resultant

Let ki = degci F (s); i 2 m be the invariant minimal column dynamical indices
of F (s) and similarly to [1] (page 242) for k � 1 de�ne the (m + p)k � m
polynomial matrix Xk (s) via

Xk (s) := Sk (s)

�
DR (s)
NR (s)

�
=

26664
Im+p
sIm+p
...

sk�1Im+p

37775
(m+p)k�(m+p)

�
DR (s)
NR (s)

�
(m+p)�m

=

26664
F (s)
sF (s)
...

sk�1F (s)

37775
(m+p)k�m

(11)
and notice that Xk (s) can be written

Xk (s) =Mek

26664block diagi2m

8>>><>>>:
26664

1
s
...

ski+k�1

37775
9>>>=>>>;
37775

�
mP
i=1

ki+mk

�
�m

=:MekSek (s) (12)

where Mek 2 R
(m+p)k�

�
mk+

mP
i=1

ki

�
: Notice that Mek does not coincide with the

one in [1] since Wolovich assumes that DR (s) is column proper and P (s) =
NR(s)D

�1
R (s) is proper. Apart of that essentially the two matrices di¤er only

up to row permutations.
One of our goals is to describe the left null space (kernel) of Mek which in

what follows is denoted

KerM>
ek = fx> 2 R1�(m+p)k : x>Mek = 0g (13)

The following theorem determines the dimension of KerM>
ek.

Theorem 3 Let NR(s) 2 R[s]p�m; DR(s) 2 R[s]m�m be a pair of polynomial

matrices with rankR(s)
�
D>
R(s); N

>
R (s)

�>
= m. Let also P (s) = NR(s)D

�1
R (s) 2

R(s)p�m, �i; i 2 p be the invariant row minimal dynamical indices of P (s) and

Mek 2 R
(m+p)k�

�
mk+

mP
i=1

ki

�
de�ned in (12). Then

dimR kerM
>
ek =

X
i:�i�k

(k � �i) (14)

Proof. The proof is identical to that of Theorem 1 in [3].
It is interesting to notice that the dimension of the kernel obtained here is

identical to the one given in theorem 1 in [3], despite the fact that the generalized
Sylvester resultant Sk in [3] does not coincide in general with Mek: Notice also
that the above result does not require DR(s); NR(s) to be right coprime nor
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DR(s) to be column proper. We give now a generalization of the result that
appears in [11] (Lemma 3.2), in the sense that we relax P (s) = NR(s)D

�1
R (s)

from the properness requirement as well as from the assumption that DR(s) is
column proper.

Corollary 4 Under the assumptions of theorem 3, we have

rankMek = (p+m)k �
X
i:�i�k

(k � �i) (15)

Furthermore if k is chosen s.t. k � �; where � = max
i2p

f�ig then

rankMek = mk + �MP (s) (16)

Proof. Equation (15) follows simply from the fact that rankMek = (p+m)k�
dimR kerM

>
ek and equation (14). Now for k � � (15) becomes rankMek =

(p +m)k �
Pp

i=1(k � �i) or equivalently rankMek = mk +
Pp

i=1 �i thus (16)
follows from the facts

Pp
i=1 �i = �ME(s) = �MP (s) in lemmata 1 and 2.

Notice that in case DR(s) is column proper and P (s) := NR(s)D
�1
R (s) is

proper, �MP (s) = f# of poles of P (s) in Cg = deg jDR(s)j. Therefore, for k � �
the above result coincides with the result of Lemma 3.2 in [11]. The following
corollary provides a generalization of the corresponding result in [1] (page 242).

Corollary 5 Let NR(s) 2 R[s]p�m; DR(s) 2 R[s]m�m be a pair of polynomial

matrices with F (s) =
�
D>
R(s); N

>
R (s)

�>
column proper with column degrees

degci F (s) = ki; i 2 m: Then NR(s); DR(s) are right coprime in C i¤ Mek

has full column rank for k � �, or equivalently if F (s) =
�
D>
R(s); N

>
R (s)

�>
is column proper then NR(s); DR(s) are right corpime in C i¤ for k � �;
rankMek = mk + �MF (s):

Proof. First notice that from (12) the number of columns in Mek is mk+
mP
i=1

ki: Since F (s) is column proper it has no zeros at in�nity and from lemma

1
mP
i=1

ki = �MF (s): Hence the number of columns in Mek is mk + �MF (s):

()) Let NR(s); DR(s) be right coprime in C. Then from Corollary 4 for
k � �; rankMek = km+ �MP (s): Since F (s) is column proper from lemma 1 it
has no zeros at in�nity, thus NR(s); DR(s) are right coprime at s = 1. Hence
NR(s); DR(s) are right coprime in C [ f1g, thus from lemma 2 �MP (s) =
�MF (s) and rankMek = km+ �MF (s):
(() Assume that NR(s); DR(s) are not right coprime in C. Then there

exists 0 6= x 2 Rm�1 and s0 2 C such that F (s0)x = 0: In view of (12)

Xk(s0)x =MekSek (s0)x = 0

hence Mek does not have full column rank.
The following remark establishes the fact that Mek can have full column

rank only for k � �:
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Remark 6 Let DR(s) 2 R[s]m�m; NR(s) 2 R[s]m�m such that DR(s); NR(s) be
right coprime in C and F (s) =

�
D>
R(s); N

>
R (s)

�>
be column proper with column

degrees degciF (s) = ki; i 2 m. Let also �i; i 2 p be the left minimal indices of
F (s) and de�ne � = max

i2p
f�ig: Then for k < �

rankMek < mk +
mX
i=1

ki (17)

i.e. Mek cannot have full column rank for k < �:

Proof. Assume k < � and let a be the number of �i�s satisfying �i > k: It is
easy to see that

ka <
X
i:�i>k

�i (18)

Using the fact that
pP
i=1

�i =
P

i:�i>k

�i +
P

i:�i�k
�i we can write (18) as ka +P

i:�i�k
�i <

Pp
i=1 �i or equivalently AS

pk � k(p� a) +
X
i:�i�k

�i <

pX
i=1

�i (19)

Notice that the number of terms in
P

i:�i�k
�i is exactly p� a; thus we can write

(19) as

pk �
X
i:�i�k

(k � �i) <
pX
i=1

�i (20)

Adding mk on both sides of (20) we get (m + p)k �
P

i:�i�k(k � �i) < mk +Pp
i=1 �i where obviously the left hand side is rankMek and

pP
i=1

�i =
mP
i=1

ki

due to the assumptions of coprimeness (of DR(s); NR(s) in C) and the column
properness of F (s) (see 10). Thus (17) follows.
The above result has a direct implication on the choice of the row degrees

of DC(s) in equation (1) which will be discussed in the following section

4 Application to matrix Diophantine equations

Consider a strictly proper linear multivariable plant, P (s) 2 Rpo (s)p�m with
m inputs and p outputs and let

P (s) = NR (s)DR (s)
�1
= DL (s)

�1
NL (s) (21)

be respectively right and left coprime MFDs of P (s) with NR (s) 2 R [s]p�m
and DR (s) 2 R [s]m�m and column proper with column degrees degDRci (s) =
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ki; i 2 m; NL (s) 2 R [s]p�m and DL (s) 2 R [s]p�pand row proper with row
degrees degDLri (s) = �i, i 2 p: De�ne � := max

i2p
f�ig (the observability index

of P (s)).
The problem of assigning the denominator of the closed-loop system using

unity feedback and a dynamic precompensator C(s) 2 R (s)m�p ; can be reduced
to the solution of the polynomial matrix Diophantine equation of the form

XL (s)DR (s) + YL (s)NR (s) = DC (s) (22)

where DC(s) 2 R [s]m�m is the desired closed-loop denominator matrix and
XL(s) 2 R [s]m�m ; YL(s) 2 R [s]m�p is a left (not necessarily coprime) MFD of
C(s); i.e.

C (s) = XL (s)
�1
YL (s) 2 R (s)m�p (23)

It is well known that (22) has a solution for arbitrary DC(s) i¤ DR(s),
NR(s) are right coprime. Furthermore if XL(s); Y L(s) is a particular solution
of (22) then every pair of the form XL(s) = XL(s) + T (s)NL(s); YL(s) =
Y L(s)�T (s)DL(s) is also a solution of (22) for any arbitrary polynomial matrix
T (s) 2 R [s]m�p :
However, the question usually posed is under what conditions equation (22)

can have solutions that give rise to a proper compensator C(s) 2 Rpr(s)m�p:
For a particular type of closed-loop denominator this problem has been studied
and solved by several authors (see [6],[7],[13], [8]) and a parametrization of all
possible proper denominator assigning compensators has been given (see [9],
[14]). According to this approach the desired denominator is chosen to be row-
column reduced with particular row and column degrees in order to be able to
apply degree control on the numerator and denominator of C(s):
The contribution of the present paper is to provide a numerical algorithm

which employes Wolovich�s resultant proposed in the previous section to ob-
tain a parametrization of all denominator assigning proper compensators. Let
XL(s); YL(s) be a solution of (22) for a particular choice of DC(s) and let k� 1
be the maximum degree of s occurring amongst the elements of the matrix

(s) := [ XL(s); YL(s)] 2 R [s]m�(m+p). Then 
(s) can be written


(s) = 
kSk(s) (24)

where 
 2 Rm�k(p+m) and Sk(s) as de�ned in (11). Then (22) can be written
as


kMekSek(s) = DC(s) (25)

with Sek(s) de�ned if (12). Comparing the degrees of s in both sides of (25) it
is easily seen that degciDC(s) � ki+ k� 1; i 2m thus DC(s) can be written as

DC(s) = DkSek(s); Dk 2 R
m�

�
mP
i=1

ki+mk

�
and (25) becomes


kMekSek(s) = DkSek(s) (26)

or equivalently

kMek = Dk (27)
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since (26) must hold for every s 2 C. Thus every solution of (22) can be deter-
mined from a set of numerical equations of the form (27) given the maximum
degree of 
(s) and selecting the appropriate k:
The following lemma can be found in [9] stated for the dual of equation (22),

i.e. for a left MFD of P (s). For our purposes we shall state the corresponding
assumptions and the result for a right MFD of P (s).

Lemma 7 ([9], Lemma 2) Consider equation (22) under the following assump-
tions

1. DR(s) is column proper with column degrees ki = degciDR(s); i 2m

2. DR(s), NR(s) are right coprime

3. P (s) = D�1
R (s)NR(s) = NL(s)D

�1
L (s) is strictly proper

4. NL(s); DL(s) are left coprime

5. DL(s) is row proper with row degrees �i = degriDL(s); i 2 p and de�ne
� = max

i2p
f�ig

6. DC(s) is row-column reduced with degciDC(s) = degriDC(s) = ki + �i;
i 2m where �i are integers s.t. �i � �� 1; i 2m:

If XL(s); YL(s) is a solution of (22) and C(s) = X
�1
L (s)Y (s) 2 Rpr (s) then

XL(s) is row proper with row degrees degriXL(s) = �i; i 2m:

Notice that if XL(s)�1Y (s) 2 Rpr (s)m�p then the row degrees of YL(s)
cannot exceed �i; i.e. degri YL(s) � �i; i 2m [12][13], thus the maximum degree
of the ith row of 
(s) = [ XL(s); YL(s)] will be �i: Denote the rows of 
(s) by
!>i (s) 2 R [s]

1�(m+p)
; i 2m: Write

!>i (s) =

�iX
j=0

!>ijs
j ; !>ij 2 R1�(m+p); i 2m (28)

and de�ne the row vectors !>i = [!
>
i0; !

>
i1; :::; !

>
i�i
] 2 R1�(p+m)(�i+1); i 2m:

Now let d>i (s); i 2m be the rows of DC(s) and using assumption 6 of lemma

7 de�ne di
> 2 R

1�m(�i+1)+
mP
i=1

ki
; i 2m from the relation

d>i (s) = di
>
Se(�i+1)(s); i 2m (29)

where Se(�i+1) is the
�
m (�i + 1) +

mP
i=1

ki

�
�m matrix de�ned in (12).

Theorem 8 Let the assumptions (1-6) of lemma 7 hold. Then every solution
pair XL(s); YL(s) of (22) such that C(s) = XL(s)

�1YL(s) 2 Rm�ppr (s) can be
obtained from the solutions of the numerical equations

!>i Me(�i+1) = di
>
; i 2m (30)
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and vice versa, i.e. every solution !>i of (30) gives rises via (28) to a 
(s) = [
XL(s); YL(s)]; s.t. C(s) = XL(s)�1YL(s) 2 Rm�ppr (s):

Proof. First notice that (30) are always solvable for arbitrary di
T
since �i+1 �

� and thus from lemma 5 in conjunction with assumptions 1-2 of lemma 7
Me(�i+1) has full column rank.
If XL(s); YL(s) is a solution of (22) and X

�1
L (s)YL(s) is proper according to

lemma 7 the row degrees of 
(s) will be �i and thus we can write !>i (s) as in
(28). It is easy to see that the corresponding !>i will satisfy (30).
Conversely, if !>i satisfy equations (30) then post-multiplying (30) by Se(�i+1)(s)

gives !>i Me(�i+1)Se(�i+1)(s) = di
>
Se(�i+1)(s); i 2m or equivalently from (12)

!>i S(�i+1)(s)

�
DR(s)
NR(s)

�
= d>i (s); i 2m

which equivalently gives

!>i (s)

�
DR(s)
NR(s)

�
= d>i (s); i 2m (31)

Obviously 
(s) =
�
!>1 (s); !

>
2 (s); :::; !

>
m(s)

�>
satis�es (22) and degri 
(s) �

�i; i 2m: Hence degriX(s) � �i and degri Y (s) � �i; i 2m.
Now let �k(s) = diagfsk1 ; sk2 ; :::; skmg, ��(s) = diagfs�1 ; s�2 ; :::; s�mg and

pre and post-multiply (22) respectively by ��(s)�1 and �k(s)�1 to get

��(s)
�1XL (s)DR (s) �k(s)

�1+��(s)
�1YL (s)NR (s) �k(s)

�1 = ��(s)
�1DC (s) �k(s)

�1

(32)
SinceDR(s) is column proper with column degrees ki,DR (s) �k(s)�1 is biproper.
Similarly since DC (s) is row-column reduced with row powers �i and column
powers ki; ��(s)�1DC (s) �k(s)�1 is also biproper. Using the fact that P (s) is
strictly proper degciNR(s) < ki; i 2 m thus NR (s) �k(s)�1 is strictly proper.
Finally, since degriX(s) � �i and degri Y (s) � �i; i 2 m; ��(s)�1XL (s) and
��(s)

�1YL (s) are proper in general. Thus taking limits for s ! 1 on both
sides of (32) we obtain the equation

Xhr
L D

hc
R = Dhrc

C

where Xhr
L is the highest row degree coe¢ cient matrix of XL(s); Dhc

R is the
highest column degree coe¢ cient matrix of DR(s) and Dhrc

C is the highest row-
column power coe¢ cient matrix of DC(s): Obviously Xhr

L is invertible since
Dhc
R ; D

hrc
C are invertible. Hence, XL(s) is row proper with row degrees �i and

since degri Y (s) � �i; i 2m; XL(s)�1YL(s) 2 Rpr (s) is proper.
The above result allows us to determine the number of independent parame-

ters in the parametrization of all proper denominator assigning compensators for
a strictly proper plant, in terms the McMillan degree of the plant, the number
of inputs and outputs and the particular choice of �i�s.
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Corollary 9 Let assumptions (1-6) of lemma 7 hold. Then the number of inde-
pendent parameters in the parametrization of all denominator assigning proper
compensators is

v = m(p� �MP (s)) + p
mX
i=1

�i (33)

Proof. Using the result of theorem 8 the degrees of freedom in the choice of
!Ti (s) is essentially equal to the dimension of the left kernel of Me(�i+1): Thus

the total number of independent parameters will be v =
mP
i=1

dimR kerMe(�i+1):

Now since �i + 1 � �;dimR kerMe(�i+1) =
pP
j=1

(�i + 1� �j): Thus

v =
mX
i=1

pX
j=1

(�i + 1� �j) = mp+ p
mX
i=1

�i �m
pX
j=1

�j

which using the fact that �MP (s) =
pP
j=1

�j gives (33).

Notice that in case we choose �1 = �2 = ::: = �m := � we don�t need to
solve (30) independently for each row, but we can use one resultant, namely
Me(�+1) to determine all rows !>i (s): In such a case the number of independent
parameters in the parametrization will be v = m(p(� + 1)� �MP (s)):
Although theorem 8 provides a way to reduce the computation of proper

compensators to the solution of a set of numerical equations of the form (30),
we can go a step further and propose a method that reduces the problem to a
single numerical equation. This can be done by exploiting the shift invariant
form of the generalized Wolovich resultant and using Gaussian elimination.
Let i1; i2; :::; im be indices such that �i1 � �i2 � ::: � �im . Let also � :=

�im = max
i2m

f�ig: In order to solve equation (30) for i = i1 we can apply Gaussian
elimination on the columns of Me(�i1+1)

to obtain the reduced column echelon
form Re(�i1+1): Due to the shift invariant form of the resultant, the columns of
Me(�i1+1)

appear in the �rst (p+m)�i1 rows of Me(�i2+1)
(together with m zero

columns). Since Me(�i1+1)
has full column rank, the reduced column echelon

form of Me(�i2+1)
will have the block triangular form

Re(�i2+1) =

�
Re(�i1+1) 0

Q11 Q12

�
Proceeding inductively it is easy to see that Re(�ij+1+1) will also have a similar
block triangular form

Re(�ij+1+1) =

�
Re(�ij+1) 0

Qj1 Qj2

�
for j = 1; 2; :::;m� 1: Thus reducing Me(�+1) into column echelon form, essen-
tially provides a solution to all equations (30) since Re(�+1) consists of blocks
that give successively Re(�ij+1); j 2m:
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In the light of the above analysis we provide the following algorithm:

� Step 1. Obtain a right coprime MFDNR (s) 2 R [s]p�m ; DR (s) 2 R [s]m�m
of P (s) with DR(s) column proper with column degrees degciDR(s) =
ki; i 2m.

� Step 2. Determine the minimum k for which Mek has full column rank.
Then � = k and choose �i � �� 1; i 2m.

� Step 3. Using (12) construct the generalized Wolovich resultant Me(�+1)

where � = max
i2m

f�ig:

� Step 4. Choose DC(s) 2 R [s]m�m to be row-column reduced with col-
umn powers ki; and row powers �i and construct D(�+1) by decomposing
DC(s) = D(�+1)Se(�+1)(s) as in (26).

� Step 5. Construct the compound matrix Me(�+1) =

�
Me(�+1)

D(�+1)

�
� Step 6. Reduce Me(�+1) into column echelon form to obtain Re(�+1) =�

Re(�+1)
�(�+1)

�
� Step 7. Compute the (general) solution for each row !>i for i = 1; 2; :::;m;
using the �rst (�i + 1)(p +m) rows of Re(�+1) and the ith row of Z(�+1)
(discarding the last (� � �i)m columns on both matrices because they
contain only zeroes).

� Step 8. Using (28) calculate !>i (s) of 
(s) from !>i for i = 1; 2; :::;m

Notice that the above method does not require calculation of a left coprime
MFD of P (s) for the parametrization of solutions as in [9] or [14] nor the com-
putation of a Y -minimal particular solution as in [9]. The only information that
a¤ects the choice of the closed loop denominator is the observability index � of
P (s) which can be determined using rank tests on Mek for successive choices
of k = 1; 2; 3; :::; since due to remark 6 � is equal to the minimum k for which
Mek has full column rank. This fact justi�es the choice of the lower bound
for the row powers �i of the desired closed loop denominator. In the previous
section we show that k � � is necessary and su¢ cient condition (provided that
DR(s); NR(s) are coprime andDR(s) is column proper) in orderMek to have full
column rank, imposing this way the lower bound for the choice of �i�s that make
equations (30) solvable for arbitrary choice of the right hand side matrix. This
lower bound on the choice of �i�s has been used in the past but has not justi�ed
via some theoretic argument. With �i = � � 1; i 2 m, the McMillan degree of
the controler C(s) = XL(s)�1YL(s) is genericaly �MC(s) = m(�� 1): However,
there might be cases whenXL(s); YL(s) turn out to have a left (non-unimodular)
common divisor, giving rise to a C(s) with McMillan degree �MC(s) < m(��1):
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We should also notice that the Gaussian elimination method has been chosen
here only for simplicity of presentation. The above algorithm can be applied
equally well using unitary Householder�s transformations to reduce Me(�+1) to
a lower (block) triangular form, which performs better from a numerical point
of view.
We demonstrate the above procedure via the following example (The plant

and MFD�s appear in the example in [14] but the desired closed loop denomi-
nator has been changed in order to illustrate the method for �1 6= �2).

Example 10 Let

P (s) =

"
s+1
s(s�2) 0
1

s(s�1)
1
s�1

#

with

DR (s) =

�
s2 � 2s 0
1 s� 1

�
; NR (s) =

�
s+ 1 0
1 1

�
so that k1 = 2; k2 = 1 and �MP (s) = k1 + k2 = 3: The observability index of
P (s) is � = 2; since it can be easily seen thatMe1 does not have full column rank
while Me2 does. Let the desired closed loop denominator polynomial matrix be

DC(s) = diagfs3 + 8s2 + 24s+ 32; s3 + 15s2 + 62s+ 48g

with �1 = 1; �2 = 2; � = maxf�ig = 2. We should expect the parametrization
of all proper compensators giving rise to DC(s); to have m(p � �MP (s)) +
p
mP
i=1

�i = 4 independent parameters. Create the generalized Wolovich resultant

for k = � + 1 = 3

Me3 =

26666666666666666664

0 �2 1 0 0 0 0 0 0
1 0 0 0 0 �1 1 0 0
1 1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0
0 0 �2 1 0 0 0 0 0
0 1 0 0 0 0 �1 1 0
0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0
0 0 0 �2 1 0 0 0 0
0 0 1 0 0 0 0 �1 1
0 0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 1 0

37777777777777777775

2 R12�9

Write DC(s) in terms of its coe¢ cients as follows

DC(s) = D3Se3(s)

=

�
32 24 8 1 0 0 0 0 0
0 0 0 0 0 48 62 15 1

�
Se3(s)

13



Now de�ne the compound matrix Me3 =

�
Me3

D3

�
and apply Gaussian elimi-

nation on the columns of Me3 to obtain the column echelon form which is

Re3 =

266666666666666666666664

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
�1 1 �2 1 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
1 0 0 0 1 0 2 0 0
0 1 �2 1 0 1 1 0 0
6 0 32 0 1 0 4 0 0
�63 78 �204 126 0 16 62 0 1

377777777777777777777775

=

�
Re3
�3

�

where Re3 2 R12�9;�3 2 R2�9: To determine !T1 (s) take the �rst (p+m)(�1 +
1) = 8 rows of Re3 as well as the �rst row of �3 discarding the last two columns
on both matrices. This corresponds to the reduced echelon form of equation
(30) for i = 1; i.e.

!>1

266666666664

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
�1 1 �2 1 0 0 1

377777777775
=
�
6 0 32 0 1 0 4

�

whose general solution is

!>1 =
�
6 0 32 0 1 0 4 0

�
+
�
1 �1 2 �1 0 0 �1 1

�
t1

where t1 2 R: Thus from (28)

!>1 (s) =
�
s+ 6 + t1 �t1 (4� t1)s+ 32 + 2t1 t1s� t1

�
Accordingly, to determine !T2 (s) take the �rst (p+m)(�2 + 1) = 12 rows of

Re3 as well as the second row of �3: This corresponds to the reduced echelon
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form of equation (30) for i = 2; i.e.

!>2

26666666666666666664

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
�1 1 �2 1 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
1 0 0 0 1 0 2 0 0
0 1 �2 1 0 1 1 0 0

37777777777777777775

=
�
�63 78 �204 126 0 16 62 0 1

�

whose general solution is

!>2 =
�
�63 78 �204 126 0 16 62 0 0 1 0 0

�
+

�
t2 t3 t4

� 24 1 �1 2 �1 0 0 �1 1 0 0 0 0
�1 0 0 0 �1 0 �2 0 0 0 1 0
0 �1 2 �1 0 �1 �1 0 0 0 0 1

35
where t2; t3; t4 2 R: Thus from (28)

!>2 (s) =
�
�63 + t2 � t3 � st3 78� t2 � t4 + s (16� t4) + s2

�204 + 2t2 + 2t4 + s (62� t2 � 2t3 � t4) + s2t3 126� t2 � t4 + st2 + s2t4
�

Now 
(s) = [XL(s); YL(s)] =
�
!>1 (s)
!>2 (s)

�
; thus the parametrization of all proper

compensators is

XL(s) =

�
s+ 6 + t1 �t1
�63 + t2 � t3 � st3 78� t2 � t4 + s (16� t4) + s2

�
YL(s) =

�
(4� t1)s+ 32 + 2t1 t1s� t1
�204 + 2t2 + 2t4 + s (62� t2 � 2t3 � t4) + s2t3 126� t2 � t4 + st2 + s2t4

�
for free parameters t1; t2; t3; t4 2 R: Notice that the number of parameters is the
expected one, i.e. 4. Obviously XL(s) is row proper with row degrees 1; 2 while
the corresponding row degrees of YL(s) do not exceed 1; 2: Thus X

�1
L (s)YL(s)

is proper.

5 Conclusions

In this paper we have investigated the problem of the determination of a proper
denominator assigning compensator for the class of strictly proper linear mul-
tivariable plants. Our approach focuses on the numerical computation of the
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coe¢ cients of the polynomial matrices that describe the dynamic compensator
and a parametrization of all such compensators corresponding to the one in [9]
and [14] has been provided.
The suggested method utilizes a generalized version of the resultant at-

tributed to Wolovich (see [1]) whose structural properties surprisingly have not
been studied in detail. In the light of the results presented in section 3 the gener-
alized Wolovich resultant is proved to be the ideal tool for handling polynomial
matrix Diophantine equations when degree control of the solution is required.
The entire procedure is reduced to the computation of a solution of a set of
numerical equations and the determination of the left kernel of the generalized
Wolovich resultant. Furthermore, our analysis shows that the number of inde-
pendent parameters in the parametrization of all proper compensators can be
calculated beforehand in terms of the row powers of the closed loop denominator
and the McMillan degree of the plant.
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