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Abstract

In this paper we address the problem of reducing the order of a linear system affected by uncertainties from
the robust dissipative perspective introduced in [4]. Firstly, we show that all major balanced truncation techniques
developed and reported in the literature of the last two decades [21], [22], [31], [24], [27], [33], [34] can be treated
in a uniform fashion within the framework of dissipative systems. Accordingly, we shall generalize these results
to uncertain dissipative systems. The key role is played by balancing two positive definite robust solutions to the
uncertain dissipativity LMIs associated with the linear system in question and its dual. Determining the maximal
level of uncertainty for which such two solutions exists and computing them efficiently is well known to be NP-
hard. Our method is based on determining robust tractable approximations of these NP-hard entities by following
the novel method known as Matrix-Cube Theory. The proven results are accompanied by a numerical example.

Index Terms
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I. INTRODUCTION AND MOTIVATION

REDUCED order linear models of dynamical systems are obviously preferred over high-order ones
since essential engineering tasks like analysis, computer-based simulations and synthesis can be

performed faster and cheaper. The problem of obtaining low-order models from high-order ones has been
an active research filed over the past two decades. Not surprisingly, there exists a wealth of literature
published on this topic and since the inventory of even the most significant published results is beyond
the goal of this paper, we kindly invite the “less familiar with the subject” reader to consult a recently
published survey [23] and the references therein.

Most order reduction techniques reported so far in the literature have a common starting point – the
high-order model is exactly known. The reality is substantially different. For example, when such a nominal
is obtained from first-order principles, it is a convenient but imperfect description of the dynamical process
under study. It does not account for nonlinear behaviors which are neglected by linearizing more complex
nonlinear differential equations around certain equilibrium points, neglected high-frequency behaviors, etc.
When such a nominal model is obtained from system identification techniques applied to I/O data collected
from physical measurements done on the process in question, the system matrix realization coefficients
are also corrupted by uncertainty caused by the very imperfection of the measurement process itself. A
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specific feature of the uncertainty affecting identified high-order models has been motivating us to study
the order reduction problem from the robust perspective. Specifically, assume that the following set of
I/O data is known :

UN =
[

u(1) u(2) · · · u(N)
]

(1)
Y κ

N =
[

yκ(1) yκ(2) · · · yκ(N)
]
, κ = 1, · · · , K (2)

where u ∈ R
m is a test input signal of length N and yκ ∈ R

p are the corresponding measured system
outputs, assumed that the experiment has been repeated K-times under the same conditions. Let now

YN = [yK(1),yK(2), · · · ,yK(N)]

with yK(·) = 1
K

∑K

k=1 yk(·) denote the mean-value of the output measurements. By assuming the noise
Gaussian white with zero mean, the N -experimental values will respect a Gaussian-sort distribution
centered in the median. Clearly, the bigger are : the length N of each experimental set of values yκ(·) and
the larger is K the number of available experiments, the closer comes yK(·) to the true expectation of
y(·) – the output function of a certain “nominal system ” with coefficients corrupted by Gaussian white
noise. Let now such a nominal system obtained from system identification techniques applied to the pair
(UN ,YN) be described by

σx(t) = Ax(t) + Bu(t), x(t) = ξ (3)
y(t) = Cx(t) + Du(t) (4)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m, x(·) ∈ R
n is the state function, u(·) ∈ R

m is the
system input and y(·) ∈ R

p is the system output. Here the operator σ is interpreted as being either the
time differentiation operator when continuous time systems are considered or the advanced unit shift in
the discrete-time case. The system (3), (4) can also be parameter dependent in the sense that the true
values of the system matrix realization coefficients are of the form Σ = Σ(Σ, p), where p ∈ R

L is a
vector of parameters. In this paper we shall consider the affine parameter dependency case.

A convenient way to model the family of all system that can be identified from all possible system
outcomes of infinite length is the following :

UΣ

γ =

{
Σ ∈ R

(p+n)×(m+n), Σ = Σ +
L∑

`=1

δ`dΣ`, max
`=1,··· ,L

|δ`| ≤ γ

}
(5)

where Σ =

[
A B

C D

]
∈ R

(n+m)×(n+m) denote the system matrix realization of (3) and (4), ∆ =

[δ1, · · · , δL] are uncertainties of level γ and dΣ`, ` = 1, · · · , L are basic perturbation matrices having
all coefficients zero except one (different for every ` ) which equals the unit. Notice that the number of
independent perturbations is at most (p+n)×(m+n). For convenience we shall consider continuous-time
models of the form (3) and (4). All results we shall claim and prove in our paper hold also in discrete-
time with one notable classical exception ; the reduced order system obtained by truncating dissipative
balanced realizations is not in balanced form.

Let now G(s) = C(sI−A)−1B+D denote the transfer function of the system and let S : R
p×R

m → R

be a locally integrable functional referred in the the sequel as the system supply

S(y, u) =

[
u
y

]>

P

[
u
y

]
(6)

where P
.
=

[
Q L

L> R

]
∈ R

(m+p)×(m+p) is a symmetric real-valued matrix and for the time being no

definiteness is assumed on it.
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Definition 1: (Dissipative system) The system Σ is called strictly dissipative with respect to the supply
S (or (Σ,S) is a strictly dissipative pair) if there exists a positive monotonic non-increasing functional
V : R

n → R+, (V (x0) = 0), called (normalized) storage such that

V (x(t2)) +

∫ t2

t1

S(u(t), y(t))dt < V (x(t1)) (7)

for all t1 ≤ t2 and all trajectories (u, x, y) satisfying (3) and (4).
In this paper we shall provide a robust semi-definite optimization based solution to the following main

problem:
Problem 1:

Find a reduced-order system with state-space dimension ` < n described by

ż(t) = Az(t) + Bu(t), z(t) = ζ (8)
y(t) = Cz(t) + Du(t) (9)

with A ∈ R
`×`, B ∈ R

`×m, C ∈ R
p×, D ∈ R

m×m such that if G(s) = C(sI − A)−1B + D is its transfer
function then :

1) the reduced order system (8), (9) with system matrix realization Σ =

[
A B

C D

]
∈ R

(`+p)×(`+m) is

strictly dissipative w.r.t. the supply function (6)
2) for such a reduced system Σ, if ε > 0, then which is its minimal dimension such that the energy

stored in it is the fraction 1 − ε from the one stored in any system Σ ∈ UΣ

γ ,
3) ∀Σ ∈ Uγ with transfer function G(s), there exists a global bound γ > 0 measured in the H∞-norm

of the reduction error
‖G(s) − G(s)‖H∞

≤ γ

4) can we develop computationally tractable algorithms to solve these problems?
Firstly let us state our preference for the reduction method; in this paper we shall use the method of
truncating system realizations which are balanced w.r.t to some system I/O invariants. One technical
contribution of our paper consists in proving that all major “truncation-of-balanced-realizations” order
reduction techniques [21], [22], [31], [24], [27], [33], [34] can be formulated and solved in a unified
manner provided by the framework of dissipative linear systems with quadratic supply rates developed in
the pioneering works [41], [42]. Having this done, we shall extend this general order reduction method
to the class of uncertain systems UΣ

γ . Specifically, our method is based on truncating so-called dissipative
balanced realizations, obtained by commonly diagonalizing robust dissipativity certificates of the system.
Such certificates are positive definite solutions to the dissipativity LMI and its system theoretic dual and
they are robust in the sense that are common for all instances Σ ∈ Uγ . It is well known that determining
these certificates is NP-hard [32]. However, by using new results from the emerging field of robust convex
optimization [15], the authors of [4] have shown how one can determine a tight tractable approximation
of Γ – the maximal level of uncertainty for which such certificates exists together with the certificates in
question. The goal of this paper is to show that by applying this method (referred in the sequel as the
Matrix-Cube Theory) within the framework of robust dissipative systems one can build a tight suboptimal
solution to the Problem 1.

The rest of the paper is organized as follows: this section is followed by one devoted to dissipative
systems ; we shall develop the dissipative balanced-truncation method. Various extensions to other reduc-
tion results are mentioned and L∞ -norm error bounds are given. The third section is devoted to quickly
review the main Matrix-Cube Theory results from [15], while the forth one contains the main robust order
reduction result for uncertain dissipative systems that has been logically built until that stage in the paper.
The last section contains a numerical experiment and the conclusions are herewith drawn.

II. DISSIPATIVE LINEAR SYSTEM THEORY

In this section we shall review the basic results on dissipativity for linear systems.
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A. Basic results
Let (Σ,S) be a dissipative pair, where Σ is assumed to be in minimal form and stable, i.e. (A,B) is

controllable, (C>,A>) is observable and limt→∞ x(t) = 0, ∀ξ ∈ R
n) from (3).

According to [41], [42], every storage function V (·) for (Σ,S) is a quadratic function. This implies in
our case that there exist X � 0 such that V (x) = x>Xx > 0 . When the storage function is differentiable
w.r.t. the time variable, then (7) holds if and only if the following linear matrix inequality is feasible (i.e.
admits a positive definite solution X)

[
A>X + XA XB

B>X 0

]
+

[
0 I
C D

]>

P

[
0 I
C D

]
≺ 0 (10)

The following important result has been proven in various particular versions in [28], [35], [36], [37],
[38], [39].

Theorem 1: Let P
.
=

[
Q L

L> R

]
with R � 0 and let P̂ =

[
Q̂ L̂

L̂> R̂

]
such that P̂ = P−1. If Q̂ � 0

then the following statements are equivalent :
1) The pair (Σ,S) is strictly dissipative
2) There exist X,Y � 0 such that

DP

Σ
(X) =




I 0
A B

0 I
C D




> 


0 X 0 0
X 0 0 0
0 0 Q L

0 0 L> R







I 0
A B

0 I
C D


 ≺ 0 (11)

DP
−1

−Σ>(Y) =




−A> −C>

I 0
−B> −D>

0 I




> 


0 Y 0 0
Y 0 0 0

0 0 Q̂ L̂

0 0 L̂> R̂







−A> −C>

I 0
−B> −D>

0 I


 � 0 (12)

[
Y I
I X

]
� 0 (13)

[
I

G(ω)

]?

P

[
I

G(ω)

]
≺ 0,∀ω ∈ R ∪ ±∞ (14)

This result plays the central role in the dissipative reduction algorithm introduced in our paper, both for
nominal as well for uncertain systems.

B. Dissipative balanced realization and dissipative BTs
1) The physics behind dissipativity: Being given a trajectory (u, x, y) of the system Σ and two time

instants t0 ≤ t1, we interpret the supply
∫ t1

t0
S(y(t), u(t))dt as the work carried on the system in the time

interval [t0, t1] along the trajectory in question, if the supply is positive, and as minus the energy extracted
from the system, if the supply is negative.

The standard interpretation of a storage function is that V (x) is the internal energy stored by system
in state x; with this interpretation, dissipativity means that the work done on the system that is needed
to move it from one state to another is at least the resulting change in the internal energy stored by the
system, while the excess is thought of to be dissipated by the system.

According to [41], [42], [43], among the associated storage functions there exist the (pointwise) minimal
one, called “available storage”

Vav(x) = sup
(x,y,u)

{
−

∫ t1

0

S(y(t), u(t))dt, x(0) = x,

}
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and the (pointwise) maximal one, called “required supply”

Vreq(x) = inf
(x,y,u)

{∫ t1

0

S(y(t), u(t))dt, x(0) = 0, x(t1) = x

}

Every storage function V (·) for (Σ,S) satisfies satisfies Vav(x) < V (x) < Vreq(x) for all x. Both the
available storage and the required supply have the form Vav(x) = x>Xavx, Vreq(x) = x>Xreqx where
the positive definite matrices Xav, Xreq are, respectively, the ≺-minimal and the �-maximal solutions of
(10). Accordingly, the set of solutions to (10) is exactly the interval {X : 0 ≺ Xav ≺ X ≺ Xreq}.

Let now X = {Xav ≺ X ≺ Xreq} and Y = {Yreq ≺ Y ≺ Yav} be the interval of solutions to (11)
and (12). From Lemma 1 [33] we know that

X = {Xav ≺ X ≺ Xreq} = {Y−1
av ≺ Y−1 ≺ Y−1

req}

Scherer has extended this result in [38] by showing that X = Y−1 holds ∀X ∈ X and ∀Y ∈ Y. This fact
motivated us to introduce the following concept.

Definition 2: (Dissipative balanced form) Let X and Y be two solutions to the LMIs (11) and (12).
The system matrix realization Σ is called in dissipative balanced form if

X = Y−1 = Diag(ζ1, · · · , ζn)
The recipe of obtaining balanced realizations of linear systems is known in the literature for roughly three
decades. Essentially it amounts to finding an invertible transformation which commonly diagonalizes X

and Y. Since the construction of such a transformation can be found in many papers, we shall not outline
it here but tacitly make use of it when needed.

The entities ζ1, · · · , ζn are positive real numbers, possible with multiplicity. Following the classical line
of balanced realization theory we shall call them the dissipative singular values of the system (3),(4). The
motivation behind this choice is transparent. Indeed, recall that a storage function represents the measure
of the amount of energy that can be stored internally by the system or, alternatively, provides the measure
of the amount of energy that can be extracted. In balanced form, the storage function has the following
expression

V(x) =
n∑

i=1

ζix
2
i ,

where x = [x1, x2, · · · , xn]>. Accordingly, the positive entity ζi “measures” in which manner the ith-
component xi of the state-vector x ∈ R

n participates in the energy storage/extraction process. Clearly, the
state-components with high energy storage capacity are characterized by large valued ζ’s, while the ones
providing little contribution to the energy storage have corresponding small ζ’s.

This natural interpretation of the dissipative singular values points out the idea behind the reduction
scheme, namely discard the states with small ζ’s! Technically this is realized by partitioning Σ as follows

Σ =




A11 A12 B1

A21 A22 B2

C1 C2 D


 (15)

where the partition of A,B and C is induced by according to

ζ1 ≥ ζ2 ≥ · · · ≥ ζ`︸ ︷︷ ︸
large values

≥ ζ`+1 ≥ · · · ≥ ζn > 0︸ ︷︷ ︸
small values

The subsystem Σ1 =

[
A11 B1

C1 0

]
represents the energetic dominant part of Σ. In the corresponding

state components x1, · · · , xk one finds back the amount
∑

k

i=1 ζix
2
i∑

n

i=1
ζix

2
i

from the initial energy stored in the
components x1, · · · , xn. This last remark gives us the procedure to find the dimension of the reduced
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order system such that the fraction δ is lost. Indeed, one has to find the corresponding ζ1 ≥ · · · ≥ ζn and
determine ` such that

δ ≤ 1 −

∑`

i=1 ζix
2
i∑n

i=1 ζix
2
i

(16)

Then
∑

n

i=`+1 ζix
2
i∑

n

i=1
ζix

2
i

represents the energy stored in the state of the discarded subsystem Σ2 =

[
A22 B2

C2 D

]
.

The above result represents the answer to the second item of the questions listed in the formulation of
Problem 1. We shall extend these results to the case of uncertain systems.

C. L∞-norm error bounds
The link with the frequency domain is already established in Theorem 1. The inequality (14) is nothing

else than the celebrated Kalman-Yakubovich-Popov “positivity” condition and the left hand side of (14)
is nothing less than the Popov function [25]

ΠΣ(s) =

[
I

G(s)

]?

P

[
I

G(s)

]
(17)

Let now P̃
.
=

[
0 I
C D

]>

P

[
0 I
C D

]
=

[
Q̃ L̃

L̃> R̃

]
∈ R

(n+m)×(n+m). Then the Popov function

becomes

ΠΣ(s) =

[
I

(sI − A)−1B

]?

P̃

[
I

(sI − A)−1B

]
(18)

Since A was assume stable, it follows [25] that the Popov function is analytic factorizable i.e. that there
exists Ω ∈ RHm×m

∞,+ , Ω(s) = I − F(sI − A)−1B such that

ΠΣ(s) = Ω?(s)R̃Ω(s)

Let R̃ = R̃
1

2 R̃
1

2 . It follows that the Popov function can be written as a product of two spectral factors
ΠΣ(s) = Ψ?(s)Ψ(s), where Ψ(s) = R̃

1

2Ω(s). By making use of the dual LMI (12), one can show that
X and Y are generalized controllability and observability Grammians of the system with transfer function
Ψ(s). Accordingly, the dissipative BT is equivalent with the BT of Ψ(s), where balancing is done by
commonly diagonalizing the solution to its controllability and observability Lyapunov matrix inequalities

AΨX + XA>,Ψ + BΨB>,Ψ ≺ 0 (19)
AΨY + YAΨ + C>,ΨCΨ ≺ 0 (20)

where ΣΨ =

[
AΨ BΨ

CΨ DΨ

]
∈ R

(n+m)×(n+m) is the system matrix realization of Ψ = R̃
1

2Ω and Ω has

transfer function Ω(s) = I − F(sI − A)−1B.
The main result on determining an upper bound on ‖G(s) − G1(s)‖H∞

, where G1(s) is the transfer
function associated with Σ1 – the energetic dominant part of Σ retained by dissipative BT is given by
the following

Theorem 2: Being given a stable dissipative system Σ with transfer function G(s) let Σ1 be its energetic
dominant part obtained by dissipative BT. Let Ψ(s) = R̃

1

2Ω(s) be a spectral factor of the Popov function
associated with Σ. Then

∥∥ G(s) − G1(s)
∥∥
H∞

≤ 2
n∑

j=k+1

ζj (21)

The proof is a simple extension of the main bounded-real (particular case of dissipativity) result from
section V in [33] where the main truncation result on generalized Hankel singular values (of the spectral
factor in this case) has been applied ( see for instance the basic book [19])
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III. BASIC MATRIX-CUBE THEORY

Consider an uncertain LMI with affine box uncertainty

A0(x) +
L∑

`=1

u`A
`(x) � 0 ∀(u : ‖u‖∞ ≤ γ), (22)

where
• x ∈ R

d is the vector of decision variables;
• A`(x), ` = 0, 1, . . . , L, are symmetric m × m matrices affinely depending on x;
• u1, . . . , uL are perturbations, and γ ≥ 0 is the uncertainty level.

It is known that in general, it is NP-hard to solve (22) or even to check whether a given candidate solution
x is feasible. However, (22) admits a computationally tractable conservative approximation which is a
system of LMIs in original variables x and additional symmetric matrix variables X1, . . . , XL. Let us write
X � ±Y as a shortcut for the system of two matrix inequalities X � Y , X � −Y . The aforementioned
conservative approximation of (22) is as follows:

X` � ±A`(x), ` = 1, . . . , L; (23a)

γ

L∑

`=1

X` � A0(x). (23b)

The fact that (23) is indeed a conservative approximation of (22) is evident: if x can be extended by
appropriately chosen X1, . . . , XL to a feasible solution of (23), then from (23a) it follows that u`A

`(x) �
−γX` for all u` such that |u`| ≤ γ; hence

A0(x) +
L∑

`=1

u`A
`(x) � A0(x) − γ

L∑

`=1

X` ∀(u : ‖u‖∞ ≤ γ);

the right-hand side matrix in the latter relation is � 0 by (23b), so that x indeed satisfies (22).
It turns out that the “level of conservativeness” of the approximation (23) is not too big, provided that

the matrices A1(x), . . . ,AL(x) are of small ranks.
Proposition 1 (matrix cube theorem [15]): Let µ = maxx max`≥1 Rank(A`(x)). (Note ` ≥ 1 in the

max!). Then the relation between the feasible sets of (22) and (23) is as follows:
1. If x can be extended to a feasible solution of (23), then x is feasible for (22).
2. If x cannot be extended to a feasible solution of (23), then x is infeasible for (22) with γ replaced

by ϑ(µ)γ, where ϑ(·) is certain universal function such that ϑ(µ) ≤
π
√

µ

2
for all µ and ϑ(1) =

1, ϑ(2) = π
2

= 1.57 . . . , ϑ(3) = 1.73 . . . , ϑ(4) = 2.
In particular, for every set X ⊂ R

d one has

1 ≤
sup{γ : (22) has a solution in X}

sup{γ : (23) has a solution in X}
≤ ϑ(µ)

provided that the numerator in the fraction is positive.
Remark 1: Sometimes we shall be interested in a sufficient condition for the strict version

A0(x) +
L∑

`=1

u`A
`(x) � 0 ∀(u : ‖u‖∞ ≤ γ)

of the semi-infinite LMI (22). Such a sufficient condition can be obtained from (23) by replacing the
nonstrict LMI (23b) with its strict version. For the resulting pair of conditions, a statement completely
similar to the matrix cube theorem takes place.
A severe practical disadvantage of the tractable scheme presented above is that the sizes of these approx-
imations, although polynomial in the sizes m,n, p, L of the underlying dynamical system and uncertainty
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set, are quite large. However, in [15] has been proven that under favorable circumstances, the sizes of the
approximating systems can be reduced dramatically.

System (23a) and (23b) is of the generic form

P(x) � 0, (24a)
U` � ±Q`(x), ` = 1, . . . ,M, (24b)
V` � ±R`, ` = 1, . . . , N, (24c)

γ

[∑

`

U` +
∑

`

V`

]
� S(x), (24d)

where
• x is the collection of the original design variables for (23);
• U`, V` are additional K×K matrix variables (for (23) , K = m+n+p, M +N = L, the U -variables

are those of X` for which A`[x] indeed depends on x, while the V -variables correspond to those of
X` for A`[x] in fact does not depend on Z);

• P(x), Q`(x), S(x) are affine functions of x taking values in the spaces of symmetric matrices of
appropriate sizes, and R` are given K × K symmetric matrices.

Note that in the situations we are interested in, the ranks of the matrices Q`(x), R` are small, provided that
the ranks of basic perturbation matrices dA`, dB`, dC`, dD` are small (as indeed is the case in applications).
The undesirable large sizes of the approximating system (24) come exactly from the necessity to introduce
large-size “matrix bounds” U`, V` on the small rank matrices Q`(x), R`.

Note that in our applications all we are interested in are the x-components of the feasible solutions of
(24). Thus, for our purposes (24) can be replaced with any x-equivalent system of LMIs—a system of
LMIs L(x, y) � 0 in the original variables x and additional variables y such that the set of x-components
of feasible solutions to the latter system is exactly the same as the set of x-components of feasible solutions
of (24). What we intend to do is to demonstrate that under favorable circumstances we can build a system
of LMIs which is x-equivalent to (24), while being “much smaller” than the latter system. The key to
our construction is given by the following two observations.

Lemma 1 (see [15, Lemma 3.1 and Proposition 2.1]):

(i) Let a, b be two nonzero vectors. A symmetric matrix X satisfies the relation X � ±[ab> + ba> f
and only if there exists positive λ such that X � λaa> + 1

λ
bb>.

(ii) Let A be a n × n symmetric matrix of rank k > 0, so that A = P >ÂP for appropriately chosen
k×k matrix Â and k×n matrix P of rank k. A symmetric matrix X satisfies the relation X � ±A

if and only if there exists k × k symmetric matrix X̂ such that

X � P>X̂P,

X̂ � ±Â.
(25)

Now assume that the matrices Q`(x) are of the from

Q`(x) = a`b
>
` (x) + b`(x)aT

` , (26)

where a` 6= 0, b`(x) 6≡ 0 are, respectively, a vector and an affine vector-valued function of x. Let also

R` = P>
` R̂`P` : R̂` = R̂>

` ∈ S
k` , k` = Rank(R`) > 0.
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Applying Lemma 1, we see that (24) is x-equivalent to the following system of constraints in the original
variables x and the additional variables λ` ≥ 0, V̂` ∈ S

k` :

P(x) � 0,

V̂` � ±R̂`, ` = 1, . . . , N,

γ

[∑
`

[
λ`a`a

>
` + 1

λ`

b`(x)b>` (x)
]

+
∑
`

P>
` V̂`P`

]
� S(x)

(where 1
0
bb> is 0 for b = 0 and is undefined for b 6= 0). The resulting system, via the Schur complement

lemma, is x-equivalent to the system of LMIs

P(x) � 0, (27a)


X −
M∑
`=1

λ`a`a
>
` b1(x) b2(x) . . . bM(x)

b>1 (x) λ1

b>2 (x) λ2
... . . .

b>M(x) λM



� 0, (27b)

V̂` � ±R̂`, ` = 1, . . . , N, (27c)

γ

[
X +

∑

`

P>
` V̂`P`

]
� S(x) (27d)

in the original variables x and additional scalar variables {λ`}
M
`=1 and matrix variables X , {V̂`}

N
`=1.

System (27) is x-equivalent to our original system (24) and is usually much better suited for numerical
processing than the original system. Indeed, as compared to (24), in (27) there are

• a single K × K matrix variable X and M scalar variables {λ`}
M
`=1 instead of M K × K matrix

variables U`;
• k` × k` matrix variables V̂` instead of K ×K matrix variables V`, and k` × k` LMIs (27c) instead of

K × K LMIs (24c) (recall that k` are assumed to be small as compared to K);
• a single LMI (27b) instead of M LMIs (24b). Although the size of LMI (27b) is larger than those

of LMIs (24b), the LMI is of very simple arrow structure and is extremely sparse.

IV. THE MATRIX-CUBE SOLUTION TO THE MAIN PROBLEM

Recall now that our main goal is to obtain robust dissipativity certificates and tight bounds on the
maximal uncertainty level for which such certificates exist. The following results is a simple consequence
of Theorem 1.

Theorem 1: Let P
.
=

[
Q L

L> R

]
with R � 0 and let P̂ =

[
Q̂ L̂

L̂> R̂

]
such that P̂ = P−1. If Q̂ � 0

then the following statements are equivalent :
1) The pair (Σ,S) is strictly dissipative, ∀Σ ∈ UΣ

γ ,
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2) There exist X, Y � 0 such that

DP

Σ (X) =




I 0
A B
0 I
C D




> 


0 X 0 0
X 0 0 0
0 0 Q L

0 0 L> R







I 0
A B
0 I
C D


 ≺ 0 (28)

DP
−1

−Σ>(Y) =




−A> −C>

I 0
−B> −D>

0 I




> 


0 Y 0 0
Y 0 0 0

0 0 Q̂ L̂

0 0 L̂> R̂







−A> −C>

I 0
−B> −D>

0 I


 � 0 (29)

[
Y I
I X

]
� 0 (30)

[
I

G(ω)

]?

P

[
I

G(ω)

]
≺ 0,∀ω ∈ R ∪ ±∞ (31)

Notice that the dissipativity condition (28) can be written for arbitrary Σ ∈ UΣ

γ as follows :
[

A>X + XA XB

B>X 0

]
+

[
0 I
C D

]> [
Q L

L> R

] [
0 I
C D

]
≺ 0 ⇔




A>X + XA XB + C>L C>W

B>X + L>C L>D + D>L + Q D>W

W>C W>D −S


 ≺ 0 (32)

where R � 0 has been factorizes as R = WS−1W>, S � 0. Accordingly, let us write down the basic

perturbation matrices as dΣ =

[
dA dB
dC dD

]
. It follows that (32) has the following form:




(A + dA)>X + X(A + dA) X(B + dB) + (C + dC)>L (C + dC)>W

(B + dB)>X + L>(C + dC) L>(D + dD) + (D + dD)>L + Q (D + dD)>W

W>(C + dC) W>(D + dD) −S


 ≺ 0 (33)

Then the approximate robust counterpart of (33) as given by the Matrix-Cube Theorem is the following

X` � ±




dA>
` X + XdA` XdB` + dC>

` L dC>
` W

dB>
` X + L>dC` L>dD` + dD>

` L + Q dD>
` W

W>dC` W>dD` 0


 , ` = 1, · · · , L (34)

γ

L∑

`=1

X` �




A>X + XA XB + C>L C>W

B>X + L>C L>D + D>L + Q D>W

W>C W>D −S


 (35)

in variables X, X1, · · · , XL.
In a very similar fashion one can write down the approximate robust counterpart for (29) as

Y` � ±




dA`Y + YdA`> YdC>
` + dB`L̂ dB`Ŵ

dC`Y + L̂>dB`> L̂>dD>
` + dD`L̂ + Q̂ dD`Ŵ

Ŵ>dB>
` Ŵ>dD>

` 0


 , ` = 1, · · · , L (36)

γ

L∑

`=1

Y` �




AY + YA> YC> + BL̂ BŴ

CY + L̂>B> L̂>D> + DL̂ + Q̂ DŴ

Ŵ>B> Ŵ>D> −Ŝ


 (37)

in variables Y, Y1, · · · , YL and where Q̂ � 0 has been factorizes as Q̂ = ŴŜ−1Ŵ>, Ŝ ≺ 0.
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The following result holds:
Theorem 2:

Let X, Y � 0 be the X- and Y-components of the solution (X, Y, X1, · · · , XL, Y1, · · ·YL) to the semi-
definite feasibility problem (34), (35) and (36) and (37) and let Γ̂ be the maximal level of uncertainty
such that (34), (35) and (36) and (37) is solvable. Then

Ê X, Y � 0 are robust dissipative certificates ∀Σ ∈ UΣ

Γ̂

Ë If Γ is the true maximal uncertainty level for which (28), (29) have solutions, then Γ̂ ≤ Γ ≤ π
2
Γ̂.

Based on Theorem 2 we can formulate an prove the Matrix-Cube theory based result on robust order
reduction of uncertain dissipative linear systems.

Theorem 3: Let Σ =

[
A B
C D

]
be an arbitrary instance of the box of system matrix realizations UΣ

γ

and let

P1 : Γ = max
γ>0

γ

X, Y � 0


I 0
A B
0 I
C D




> 


0 X 0 0
X 0 0 0
0 0 Q L

0 0 L> R







I 0
A B
0 I
C D


 ≺ 0




−A> −C>

I 0
−B> −D>

0 I




> 


0 Y 0 0
Y 0 0 0

0 0 Q̂ L̂

0 0 L̂> R̂







−A> −C>

I 0
−B> −D>

0 I


 � 0

[
Y I
I X

]
� 0

Consider the following semi-definite optimization problem:

P2 : Γ̃ = max
γ>0

γ

X, Y � 0

X` � ±




dA>
` X + XdA` XdB` + dC>

` L dC>
` W

dB>
` X + L>dC` L>dD` + dD>

` L + Q dD>
` W

W>dC` W>dD` 0




γ
∑L

`=1 X` �




A>X + XA XB + C>L C>W

B>X + L>C L>D + D>L + Q D>W

W>C W>D −S




Y` � ±




dA`Y + YdA`> YdC>
` + dB`L̂ dB`Ŵ

dC`Y + L̂>dB`> L̂>dD>
` + dD`L̂ + Q̂ dD`Ŵ

Ŵ>dB>
` Ŵ>dD>

` 0




γ
∑L

`=1 Y` �




AY + YA> YC> + BL̂ BŴ

CY + L̂>B> L̂>D> + DL̂ + Q̂ DŴ

Ŵ>B> Ŵ>D> −Ŝ




` = 1, 2, · · · , L

Then
Ê ∀0 ≤ γ ≤ Γ̃ the X- and Y-components of the solution (X, Y, X1, · · · , XL, Y1, · · ·YL) to P2 represent

robust solutions to the problem P1 and they are tight up to Γ̃ ≤ Γ ≤ π
2
Γ̃.

Ë Whenever γ > π
2
Γ̃, the semi-infinite system of semi-definite constraints in P1 is unfeasible.
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Ì Let T ∈ R
n×n be a balancing transformation which balances X and Y, i.e.

X = Y = Diag(ζ1, · · · , ζ`, ζ`+1, · · · , ζn)

the diagonal matrix of generalized dissipative singular values (assumed in descending order) and

let Σ =




A11 A12 B1

A21 A22 B2u

C1 C2 D


 be the partitioned induced on Σ1 by the balancing transformation.

Let now Σ =

[
A11 B1u

C1y 0

]
. Then Σ is the solution to Problem 1 in the sense that ∀Σ ∈ UΣ

Γ̃
with

transfer function G(s), if G is the transfer function corresponding to Σ, then

‖G(s) − G(s)‖H∞
≤ 2

k∑

j=1

ζj + 4
n∑

j=k+1

ζj

Proof: By arriving at this stage in our exposure, the proof is trivial : item Ê is clearly a direct
application of the mainn Matrix-Cube theory result to (28) and (29). Indeed Σ is the energetic dominant
counterpart of any system Σ in the box ∀Σ ∈ UΣ

Γ̃
(see the interpretation of the dissipative singular values

which can be extended one-to-one to their generalized counterparts), hence also for Σ. Accordingly, by
truncating Σ balanced w.r.t. to the robust dissipative certificates one obtains a robustly reduced order
system which satisfies

‖G(s) − G(s) + G(s) − G(s)‖H∞
≤ ‖G(s) − G(s)‖H∞

+ ‖G(s) − G(s)‖H∞
≤

≤ 2
n∑

j=1

ζj + ‖G(s) − G(s)‖H∞
≤ 2

k∑

j=1

ζj + 4
n∑

j=k+1

ζj (38)

and claim Ì is also proved.
Let now δ > 0. One can find the corresponding 1 < ` < n by simply searching for the validity of the

condition

δ ≤ 1 −

∑`

i=1 ζix
2
i∑n

i=1 ζix
2
i

where xi are the states of Σ and xi are the states of the arbitrary chosen Σ, assumed both in generalized
dissipative balanced form.

V. NUMERICAL EXAMPLE

Let us consider from [29] the following nominal state-space representation of the aero-elastic system
including the model of unsteady aerodynamic forces

A = 103




0 0 0.0010 0
0 0 0 0.0010

−0.2911 −0.0012 −0.0034 −0.0001
1.8469 −0.0544 0.0202 −0.0003


 ,B> =




0 0 −0.1023 0.6493
0 0 −0.6493 19.5040
0 0 −0.1023 0.6493
0 0 0.6493 −19.5040
0 0 −8.5104 207.1568




C =




0 1.6956 0.2826 0.0420
0 −0.0231 −0.0039 −0.0006
0 0 5.0000 0
0 0.3500 0 0
1 0 0 0
0 1.0000 0 0




,D =




0 0 0 0 0.9067
0 0 0 0 0.4515
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0






13

We shall regard the coefficients of this system are interval entities since the nominal values in question
are experimentally determined. The system is exponentially stable with spectrum

Spec(A) =




−1.4390 + 16.7091
−1.4390 − 16.7091
−0.4297 + 8.0045
−0.4297 − 8.0045




and the maximal singular value of the system function has at 0.903 dB its highest peak of value 32.5166
Db, fact which gives an estimation of the H∞-norm of the transfer function as

‖D + C(sI − A)−1B‖H∞
≈ 42.2474

Let XR and YR be the stabilizing solutions to the bounded-real Riccati algebraic equations associated with
Σ. By balancing them we obtain the following set of nominal bounded-real singular values of the system

Ξ = {18.7990, 16.1204, 6.6772, 6.4024}

The Matrix-Cube based robust solution has been obtained by solving (38) for L = 28. The set of
generalized bounded-real singular values are obtained by balancing the robust bounded-realness certificates
which are components of the solution to (38). More precisely one obtains :

Ξ = {0.8256, 0.6466, 0.3531, 0.0437}

The estimated level of uncertainty is Γ̂ = 11.53%. 1 As the reader can notice from the figure, the robustly
reduced order system performs equally well at low and high frequencies as it does the nominal reduced
order one. However, for the range of medium frequencies, the former one recovers slightly better the
frequency behavior of full-order system largest singular value.

VI. CONCLUDING REMARKS AND FUTURE WORK

A general robust dissipativity framework has been proven to represent the adequate framework for
solving the model reduction problem for uncertain linear systems. Although in general is NP-hard to
compute exactly, the generalized dissipative singular values – the corner stones of the balanced truncation
order reduction technique we have adopted in our paper, we have shown that using the novel results
from robust semi-definite optimization known as Matrix-Cube Theory, one can build tight bounds on the
maximal uncertainty level for which robust dissipativity certificates exists together with these certificates.
This has enabled us to generalize the dissipative order reduction theory to uncertain systems and to build
a computationally tractable algorithm to develop a suboptimal solution.

It would be in our opinion extremely interesting and practically relevant to extend these results for LFT
models of uncertain linear systems. The true difficulty (which is still an open problem) is that the level
of conservativeness of any robust relaxation of semi-infinite systems of LMIs (including the Matrix-Cube
type) is in this case difficult to be estimated.
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