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Abstract

In this paper, we complete the stability analysis of various human respiratory non-

linear time delay models introduced in (Vielle & Chavet 1998), (Kollár & Turi 2004),

(Batzel & Tran 2000a), and (Batzel & Tran 2000b). More precisely, we present a

detailed mathematical analysis of the stability of the nonlinear model trivial equilib-

rium, an estimate of its region of attraction and exponential estimates of the solutions

starting in this region. The proposed approach is constructive and it is based on the

use of Lyapunov-Krasovskii functionals of complete type for time-delay systems with

a cross term in the time derivative.

1 Introduction

Roughly speaking, the respiratory system includes two compartments, lungs and lumped

body tissue connected by the circulating blood (Timischl 1998), (Hoppensteadt & Peskin

1992) and it is characterized by the presence of two types of processes: the distribution of

O2 to the cells and the elimination of the CO2 in the tissues of the body (Murray 1993).

The classical way to represent the dynamics of such compartments defining the respiratory

system is based on the mass balance equations. For example, the change of CO2 volume

in the lung compartment is determined by the balance between the expired/diffusion rate

of CO2 expired from/into the lungs. A similar mass balance equation holds also for the

change of O2 (see, e.g., (Timischl 1998)). In the absence of voluntary control of breathing

or neurological induced changes in breathing, the physiological human respiratory control

system varies the ventilation rate in response to the levels of CO2 and O2. In this context,
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without any attempt for a deeper discussion on the modelling part, the breathing process in

the biological circuit controlling the carbon-dioxide level in the blood is a transport process

that is typically represented by a set of delay differential equations.

The aim of this paper is to propose a deeper analysis of the stability properties of the

trivial solution of different proposals of nonlinear models of the human respiratory system

with transport delays in their representation that are encountered in the literature. More

precisely, we will consider four models: (Vielle & Chavet 1998), (Kollár & Turi 2004),

(Batzel & Tran 2000b), and (Batzel & Tran 2000a). In our analysis, we will exploit explicitly

the particular structure of the system and the properties of the system’s nonlinearities.

Furthermore, the analysis is completed by providing an estimate of the region of attraction

of the trivial solution and an exponential estimate of the solutions whose initial conditions

are in this region. To the best of the authors’ knowledge, there does not exist similar results

and comparisons for the analysis of the respiration system. The approach considered here is

based on the use Lyapunov-Krasovskii functionals of complete type (Kharitonov & Zhabko

2003) with crossing term in the time derivative (Mondié, Kharitonov & Santos 2005). Such

an approach is inspired by the ideas introduced in (Melchor-Aguilar & Niculescu 2007). It

should be mentioned that the estimate of the domain of attraction has also been successfully

studied in the framework of Lyapunov Krasovwkii functionals with polynomial dependence

on the the system state (Coutinho & de Souza 2008).

The paper is organized as follows: In Section 2, we briefly introduce the respiratory system

models mentioned above (Vielle & Chavet 1998), (Kollár & Turi 2004), (Batzel & Tran

2000b), (Batzel & Tran 2000a). In Section 3, we give the main theoretical results on the

asymptotic stability of the trivial solution, an estimate of the region of attraction, and

exponential estimates for a class of nonlinear system. Finally, in Section 4, we perform the

detailed analysis of the stability properties of the corresponding respiratory system models.

Section 5 is devoted to the dirrect computation of estimates based on polar coordinates.

The paper ends with some concluding remarks.

2 Mathematical model of the respiratory system

The human respiratory system can be viewed as an interconnection between a plant which

describes the distribution of O2 to the cells and the elimination of the CO2 in the tissues
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of the body, and a physiological controller which regulates the CO2 and/or O2 partial

pressure P in the body by acting on the air flow in Lungs with a time lag h. Next, we

remind four models available in the literature were different structures of the plant and

controller are proposed.

2.1 Mathematical Model I

In the model introduced in Vielle and Chauvet (Vielle & Chavet 1998) the plant describes

the CO2 exchanges in lungs and tissues and the controller regulates the CO2 partial pressure

in lungs with a time lag h:

ṖT (t) = κ1PL(t) − κ1PT (t) + κ2,

ṖL(t) = κ3PT (t) − κ3PL(t) − κ4(PL(t) − κ5)F (PL(t− h)),
(1)

where κ1, κ2 κ3, κ4 and κ5 are strictly positive constants, PL and PT denote the CO2

partial pressures in lungs and tissues. Here, F (·) is the controller function. The following

assumptions hold:

(V1) The CO2 partial pressure in lungs is greater than the atmospheric pressure κ5: PL >

κ5.

(V2) The controller function F (ν) is a continuous positive function defined on R
+ which

has zero value for ν ≤ ν0 and a strictly positive derivative for ν > ν0.

As shown in (Vielle & Chavet 1998), the equilibrium point (P T , PL) of system (1) satisfies:

P T = PL +
κ2

κ1

, (2)

F (PL) =
κ2κ3

κ1κ4[PL − κ5]
. (3)

By introducing the new variables y1(t) = PT (t) − P T , y2(t) = PL(t) − PL and considering

that F (PL(t− h)) ≈ F (PL) + F ′(PL)y2(t− h), system (1) can be rewritten as:



ẏ1(t)

ẏ2(t)



 = A0




y1(t)

y2(t)



 + A1




y1(t− h)

y2(t− h)



 + f(y1(t), y2(t), y1(t− h), y2(t− h)) (4)

where

A0 =








−κ1 κ1

κ3 −[κ3 + κ4F ]







, A1 =








0 0

0−κ4F p[PL − κ5]







, (5)
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and

f(y1(t), y2(t), y1(t− h), y2(t− h)) =




0

−κ4F py2(t)y2(t− h)



 , (6)

with F = F (PL), F p = F ′(PL).

The following conditions for the stability of the linear part of system (4) known as the

nominal system is asymptotically stable are available:

Lemma 1 (Vielle & Chavet 1998) If κ1, κ3, κ4F , κ4F p[PL − κ5] are strictly positive

coefficients, and F < F p[P̄L −κ5], then there exists h0 > 0 such that the nominal system of

(4) is asymptotically stable for h ∈ [0, ho) and unstable for h ≥ h0.

Let us consider the following Hill controller function

F (ν) = Vm

νn

θn + νn
, ν ≥ 0, (7)

where Vm > 0 is the maximum air flow, n > 0 is the Hill coefficient, and θ > 0 is the Hill

parameter. Observe that function (7) satisfies (V2) if ν ≥ ν0 = 0.

Consider the parameters of system (4) and of the controller function (7) given in (Vielle &

Chavet 1998): κ1 = 0.0067, κ3 = 0.1448, κ4 = 3200−1, κ5 =0.3, θ = 48.6, V m = 1330,

and n =13.7.

Using (2) and (3) we obtain that the equilibrium is (P T , PL) =(47.27,39.97). Substituting

into (7) implies that F (PL) =85.38mls−1 and F ′(PL) =27.39.

By Lemma 1 we have that ωo =0.2897 and ho =7.249, hence the nominal system of (4) is

asymptotically stable for all h ∈ [0, 7.249) and unstable for all h ≥ 7.249.

2.2 Mathematical Model II

In Kollar and Turi (Kollár & Turi 2004) the plant describes CO2 and O2 arterial partial

pressures in lungs while the controller regulates the CO2 partial pressure and the O2 partial

pressure in lungs with a time lag h:

Ṗc(t) = 1 − αPc(t)F (Pc(t− h), Po(t− h)),

Ṗo(t) = 1 − βPo(t)F (Pc(t− h), Po(t− h)),
(8)

where Pc is the CO2 partial pressures in lungs, Po is the O2 partial pressures in lungs, α and

β are positive constants and F (·, ·) is the controller function with a transport delay. It is

biologically realistic to assume that the controller function satisfies the following properties:
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(K1) F (ν1, ν2) ≥ 0 and F (0, 0) = 0,

(K2) F (ν1, ν2) is differentiable, and

(K3) Fν1
= ∂F (ν1, ν2)/∂ν1 > 0, Fν2

= ∂F (ν1, ν2)/∂ν2 > 0.

The unique positive equilibrium (P c, P o) of system (8) is such that

0 = 1 − αF (P c, P o)P c,

0 = 1 − βF (P c, P o)P o.
(9)

By introducing the new state variables y1(t) = Pc(t)−P c, y2(t) = Po(t)−P o, and considering

a first order Taylor series approximation of F (Pc(t), Po(t)), the system (8) can be rewritten

as



ẏ1(t)

ẏ2(t)



 = A0




y1(t)

y2(t)



 + A1




y1(t− h)

y2(t− h)



 + f(y1(t), y2(t), y1(t− h), y2(t− h)) (10)

where

A0 =




−αF 0

0 −βF



 , A1 =




−αP cF Pc

−αP cF Po

−βP oF Pc
−βP oF Po



 , (11)

and

f(y1(t), y2(t), y1(t− h), y2(t− h)) =




−αF Pc

y1(t)y1(t− h) − αF Po
y1(t)y2(t− h)

−βF Pc
y2(t)y1(t− h) − βF Po

y2(t)y2(t− h)



 , (12)

with F = F (P c, P o), F Pc
= FPc

(P c, P o), and F Po
= FPo

(P c, P o).

The following stability result for the nominal system is given:

Lemma 2 (Cooke & Turi 1994) If F < P cF Pc
+P oF Po

, then there exists h0 > 0 such that

the nominal system of (10) is asymptotically stable for h ∈ [0, h0) and unstable for h ≥ h0.

In the following we analyze system (10) using the parameters α = 0.5, β = 0.8 and the

controller function

F (ν1, ν2) = GP e
−0.05(100−ν2)(ν1 − IP ) (13)

proposed in (Kollár & Turi 2004). Here Gp = 0.14 and IP = 0 are the control gains and

cutoff thresholds, respectively.

It follows from (9) that the the equilibrium is (P c, P o) = (29.1842, 18.2401). Consequently,

we obtain from (13) that F Pc
= 0.0023, F Po

= 0.0034, and F = 0.0685.

It follows from Lemma 2 that ho =30.8, hence the nominal system (10) is asymptotically

stable for all h ∈ [0, 30.8) and unstable for all h ≥ 30.8.
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2.3 Mathematical Model III

In Batzel and Tran (Batzel & Tran 2000b) the plant describes CO2 and O2 arterial partial

pressures in lungs and the controller regulates the CO2 partial pressure and the O2 partial

pressure in lungs with a time lag h:

Ṗc(t) = a1 − a2Pc(t) − a3Pc(t)F (Pc(t− h), Po(t− h)),

Ṗo(t) = b1 − b2Po(t) − b3Po(t)F (Pc(t− h), Po(t− h)).
(14)

The state variables and the assumptions are the name as those in the previous section. The

system (14) has a unique positive equilibrium (P c, P o) such that

0 = a1 − a2P c − a3F (P c, P o)P c,

0 = b1 − b2P o − b3F (P c, P o)P o.
(15)

By introducing the new state variables y1(t) = Pc(t)−P c, y2(t) = Po(t)−P o and considering

a first order Taylor series approximation of F (Pc(t), Po(t)), the system (14) can be rewritten

as



ẏ1(t)

ẏ2(t)



 = A0




y1(t)

y2(t)



 + A1




y1(t− h)

y2(t− h)



 + f(y1(t), y2(t), y1(t− h), y2(t− h)) (16)

where

A0 =




−a2 − a3F 0

0 −b2 − b3F



 , A1 =




−a3P cF Pc

−a3P cF Po

−b3P oF Pc
−b3P oF Po



 , (17)

and

f(y1(t), y2(t), y1(t−h), y2(t−h)) =




−a3F Pc

y1(t)y1(t− h) − a3F Po
y1(t)y2(t− h)

−b3F Pc
y2(t)y1(t− h) − b3F Po

y2(t)y2(t− h)



 , (18)

with F = F (P c, P o), F Pc
= FPc

(P c, P o), and F Po
= FPo

(P c, P o).

The stability of the nominal system has the following characterization:

Lemma 3 (Batzel & Tran 2000b) If K1K3− (K1K4 +K2K3) < 0, then there exists h0 > 0

such that the nominal system of (16) is asymptotically stable for h ∈ [0, h0) and unstable

for h ≥ h0. Here, K1 = a2 + a3F , K2 = a3P cF Pc
, K3 = b2 + b3F and K4 = b3P oF Po

.

In the following, we examine system (16) by setting a2 = 9.223, a3 = 0.2187, b2 = 0.5178,

b3 = 0.28, and the controller function

F (ν1, ν2) = Fp(ν1, ν2) + Fc(ν1, ν2) (19)
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proposed in (Batzel & Tran 2000b). Here

Fp(ν1, ν2) = Gpe
−0.05(146−ν2)(ν1 − Ip),

Fc(ν1, ν2) = KV c1 +KV c2(ν1 − Ic),
(20)

where Gp = 45 is the control gain, Ip = 35 is the cutoff thresholds and KV c1 = 3, KV c2 = 0.5

are positive constants.

It follows from (15) that the equilibrium is (P c, P o) = (39.57, 48.46). One obtains from

(19) that F Pc
=0.8429, F Po

= 0.0783, F =6.852.

By Lemma 3 we have that ω0 = 1.765 and h0 = 95, hence the nominal of system (16) is

asymptotically stable for all h ∈ [0, 95) and unstable for all h ≥ 95.

2.4 Mathematical Model IV

In (Batzel & Tran 2000b) a third state equation describing the CO2 partial pressure in

brain denoted by σ(t) is introduced in the model of the previous section:

Ṗc(t) = a1 − a2Pc(t) − a3Pc(t)F (Pc(t− h), Po(t− h), σ(t)),

Ṗo(t) = b1 − b2Po(t) − b3Po(t)F (Pc(t− h), Po(t− h), σ(t)),

σ̇(t) = c1 + c2Pc(t− h) − c2σ(t),

(21)

The assumptions on the controller function are now:

(T1) F (ν1, ν2, ν3) ≥ 0 and F (0, 0, 0) = 0,

(T2) F (ν1, ν2, ν3) is differentiable, and

(T3) Fν1
= ∂F (ν1,ν2,ν3)

∂ν1

> 0, Fν2
= ∂F (ν1,ν2,ν3)

∂ν2

> 0 Fν3
= ∂F (ν1,ν2,ν3)

∂ν3

> 0.

As shown in (Batzel & Tran 2000a), system (21) has a unique positive equilibrium (P c, P o, σ)

such that

0 = a1 − a2P c − a3F (P c, P o)P c,

0 = b1 − b2P o − b3F (P c, P o)P o,

0 = c1 + c2P c − c2σ.

(22)

By introducing the new state variables y1(t) = Pc(t)−P c, y2(t) = Po(t)−P o, y3(t) = σ(t)−σ

and considering a fist order Taylor series approximation of F (ν1, ν2, ν3), the system (21)

can be rewritten as



ẏ1(t)

ẏ2(t)



 = A0




y1(t)

y2(t)



 + A1




y1(t− h)

y2(t− h)



 + f(y1(t), y2(t), y1(t− h), y2(t− h)) (23)
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where

A0 =








−a2 − a3F 0 −a3P cF Pc

0 −b2 − b3F −b3P oF Po

0 0 −c2







, A1 =








−a3P cF Pc
−a3P cF Po

0

−b3P oF Pc
−b3P oF Po

0

c2 0 0







, (24)

and

f(y1(t),y2(t), y3(t), y1(t− h), y2(t− h), y3(t− h)) =







−a3F Pc
y1(t)y1(t− h) − a3F Po

y1(t)y2(t− h) − a3F σy1(t)y3(t)

−b3F Pc
y2(t)y1(t− h) − b3F Po

y2(t)y2(t− h) − b3F σy2(t)y3(t)

0







, (25)

with F = F (P c, P o, σ), F Pc
= FPc

(P c, P o, σ), F Po
= FPo

(P c, P o, σ), and F σ = Fσ(P c, P o, σ).

Using analytical methods to obtain stability conditions for the nominal systems of the

previous models is complicated. However, we can determine the stability with the help of

a Mikhailov hodograph (Kolmanosvkii & Myshkis 1999).

In the following we examine system (23) by setting a2 = 9.2233, a3 = 0.2187, b2 = 0.5178,

b3 = 0.28, c1=8.1871, c2 =0.8333 and the controller function

F (ν1, ν2, ν3) = FP (ν1, ν2, ν3) + FC(ν1, ν2, ν3), (26)

given in (Batzel & Tran 2000a). Here FP (ν1, ν2, ν3) = GP e
−0.05(146−ν2)(ν1−Ip), FC(ν1, ν2, ν3) =

GC(ν3 −
c1
c2
− IC),

where GP = 45 and GC = 1.2 are control gains and IP = 35 IC = 35 are cutoff thresholds.

It follows from (22) that the equilibrium is (P c, P o, σ) = (39.41, 48.74, 49.23). We obtain

from (26) that F Pc
=0.3477, F Po

=0.0767, F σ =1.2, F =6.82, F P =1.5335, FC =5.2865

and the approximate critical delay is h0 =95.71.

3 Tools for the stability analysis of the trivial solution

In what follows we introduce results concerning the stability properties of the solutions of

nonlinear systems achieved in the framework of Lyapunov-Krasovskii functionals of com-

plete type.

We analyze nonlinear systems of the form

ẏ(t) = A0y(t) + A1y(t− h) + f(y(t), y(t− h)),

y(θ) = ψ(θ), θ ∈ [−h, 0],
(27)
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where A0, A1 ∈ R
n×n are given matrices, h is the delay and ψ ∈ C is the initial function.

We denote by y(t, ψ) the solution of the system with initial condition ψ, by yt(ψ) = {y(t+

τ, ψ) : τ ∈ [−h, 0]} the segment of trajectory of the system and by C := C([−h, 0],Rn) the

Banach space with norm ‖ψ‖h := maxτ∈[−h,0] ‖ψ(τ)‖.

We consider the following assumptions for system (27):

(A1) the nominal system

ẋ(t) = A0x(t) + A1x(t− h), (28)

is exponentially stable.

The function f(z0, z1) satisfies

(A2) f(0, 0) = 0, 0 ∈ R
n,

(A3) f(z0, z1), z0, z1 ∈ R
n, satisfies a Lipschitz condition in a neighborhood of the origin,

(A4) for any γ > 0 there exists ε = ε(γ) > 0 such that if ‖(z0, z1)‖ < ε, then ‖f(z0, z1)‖ <

γ‖(z0, z1)‖Q. Here

‖(z0, z1)‖
2
Q =




z0

z1





T 


Q11Q12

Q12Q22





︸ ︷︷ ︸

Q




z0

z1



 ,

where Q ∈ R
2n×2n is a positive definite matrix. Observe that if Q = In, then ‖(z0, z1)‖Q =

‖(z0, z1)‖. In is the identity matrix in R
n×n.

3.1 Stability of the trivial solution of nonlinear systems

We now obtain asymptotic stability conditions for the trivial solution of the nonlinear

system (27) based on the fact that a Lyapunov-Krasovskii functional of complete type v(yt)

admits a quadratic bound and that its time derivative v̇(yt) along the trajectories of system

(27) is negative (Kharitonov & Zhabko 2003).

Lemma 4 Consider a nonlinear system of the form (27). Let positive definite matrices

Wi ∈ R
n×n, i = 0, 1, 2 and a symmetric real matrix Z ∈ R

n×n such that




W0 ZA1

AT
1Z W1



 > 0

be given. Then the trivial solution of the nonlinear system (27) is asymptotically stable if

9



there exists γ > 0 such that

γ








Γ

h
Q11 + uoz

h
In

Γ

h
Q12 0

Γ

h
Q12

Γ

h
Q22 0

0 0 a1u1In







<








W0

h

ZA1

h
0

A
T

1
Z

h

W1

h
0

0 0 W2







, (29)

where Γ = uoz/h + a1u1, a1 = ‖A1‖, uoz = ‖U(0,W ) − Z‖, u1 = maxτ∈[0,h]{‖U(τ,W )‖},

Q11, Q22, Q12, In ∈ R
n×n. Here, U(τ,W ) is the Lyapunov matrix defined in Remark 12

of the appendix.

Proof. It follows from Assumption A1 that the nominal system (28) is exponentially

stable. Then given a quadratic functional of the form

w(xt) =xT (t)W0x(t) + xT (t− h)W1x(t− h) + 2xT (t)ZA1x(t− h) +

∫ 0

−h

xT (t+ τ)W2x(t+ τ)dτ,

where Wi, i = 0, 1, 2, are positive definite matrices, there exists a unique Lyapunov-

Krasovskii functional of complete type v(xt) described by (52) in the appendix such that

the time derivative of the functional along the trajectories of the nominal system (28) is

v̇(xt) = −w(xt) (Mondié et al. 2005).

Now, we observe that the time derivative of the functional along the trajectories of system

(27) is

v̇(yt) = −w(yt) + 2fT (y(t), y(t− h))
[ [

U(0,W ) − Z
]
y(t) +

∫ 0

−h

U(−h− θ,W )A1y(t+ τ)dτ
]

.

(30)

It follows from Assumption A4 that for every γ > 0 the function f(z0, z1) satisfies ‖f(z0, z1)‖ <

γ‖(z0, z1)‖Q. Substituting this inequality into (30) leads to

v̇(yt) ≤ −w(yt) + 2γuoz ‖y(t)‖ ‖(y(t), y(t− h))‖Q + 2γa1u1

∫ 0

−h

‖y(t+ τ)‖ ‖(y(t), y(t− h))‖Qdτ

≤ −

∫ 0

−h








y(t)

y(t− h)

y(t+ θ)








T

M








y(t)

y(t− h)

y(t+ θ)







dθ, t ≥ 0, (31)

where

M =








W0

h
ZA1

h
0

AT

1
Z

h
W1

h
0

0 0 W2








− γ








Γ
h
Q11 + uzo

h
In

Γ
h
Q12 0

Γ
h
Q12

Γ
h
Q22 0

0 0 a1u1In







,

with Γ = a1u1h+ uoz, a1 = ‖A1‖, uoz = ‖U(0,W ) − Z‖, u1 = maxτ∈[0,h]{‖U(τ,W )‖}.
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Now, if there exists γ > 0 such that M > 0, we have that

v̇(yt) ≤ −

∫ 0

−h

λmin(M)‖(y(t), y(t− h), y(t+ τ))‖2dτ≤ −ζ‖y(t)‖2, t ≥ 0, (32)

where ζ = λmin(M)/h.

In addition, the functional v(yt) satisfies

α1‖y(t)‖
2 ≤ v(yt) ≤ α2‖yt‖

2
h, ∀ t ≥ 0, (33)

with α1 and α2 given by (56) and (57) of Theorem 11 of the Appendix, respectively.

Thus, it follows from (32) and (33) that the functional v(yt) satisfies the conditions of the

Krasovskii asymptotic stability theorem (Krasovskii 1956) and we conclude that the trivial

solution of system (27) is asymptotically stable.

3.2 Estimate of the region of attraction

The asymptotic stability of the equilibrium of the system is indeed a crucial property. But

it is important from a practical point of view to know the set of initial conditions of system

(27) that generates trajectories that converge to the equilibrium as t approaches infinity.

This set is called the region of attraction of the equilibrium.

Definition 5 Let the trivial solution of system (27) be asymptotically stable. The set

RA =
{

ψ ∈ C : y(t, ψ) is defined ∀ t ≥ 0 and y(t, ψ) −→
t→∞

0
}

,

is the region of attraction of the trivial solution of system (27).

Definition 6 Let the trivial solution of system (27) be asymptotically stable. A set Ω ⊂ C

is said to be an estimate of the region of attraction of the trivial solution of system (27) if

i. 0h ∈ Ω,

ii. Ω ⊂ RA.

The result stated below provides an estimate of the region of attraction of the trivial solution

of system (27):

11



Theorem 7 Consider a system of the form (27) and let γ be a positive constant such that

(29) holds. Then, the set

Ω = {ψ ∈ C : ‖ψ‖h < ν} (34)

with ν =
√

α1

α2

ε/2 is an estimate of the region of attraction of the trivial solution of the

system. Here, the constant ε = ε(γ) is obtained from Assumption A4 and the constants α1

and α2 are given in (56) and (57) of Theorem 11 of the appendix.

Proof. We prove that the set (34) satisfies the Conditions of Definition 6.

First, we observe that the set (34) contains the trivial solution, i.e., ψ = 0h ∈ Ω.

Now, we shows that for any initial condition in the set (34) the solution of system (27)

converge to zero as t approaches infinity.

It follows from Lemma 4 and Assumption A4 that for γ > 0 such that (29) holds, there

exists ε = ε(γ) > 0 such that

‖(y(t), y(t− h))‖ < ε ⇒ v̇(yt) < 0, ∀ t ≥ 0.

This implies that the functional v(yt) is decreasing for all t ≥ 0, hence

v(yt) ≤ v(ψ), ∀ t ≥ 0.

It follows from equation (54) of Theorem 11 of the Appendix that

α1‖y(t)‖
2 ≤ v(yt) ≤ v(ψ) ≤ α2‖ψ‖

2
h, ∀ t ≥ 0,

therefore, for any ψ ∈ Ω we have that

‖y(t)‖ ≤
ε

2
, ∀ t ≥ 0.

Moreover,

‖y(t)‖ ≤
ε

2
, ⇒ v̇(yt) < 0, ∀ t ≥ 0.

Thus,

lim
t→∞

y(t, ψ) = 0, ∀ ψ ∈ Ω. (35)

We conclude that the set described by (34) is an estimate of the region of attraction of the

trivial solution of system (27).
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3.3 Exponential estimate of the system response

In this section, we obtain an exponential estimate for the solution of system (27) whose

initial condition ψ belongs to the estimate of the region of attraction.

Corollary 8 Consider a system of the form (27). Then, for any ψ ∈ Ω the solution y(t, ψ)

of system (27) satisfies the following exponential estimate

‖y(t, ψ)‖ ≤ δ‖ψ‖he
−ςt, t ≥ 0, (36)

where δ =
√

α2

α1

and 2ς = min{λmin(R1)/η1, λmin(R2)/η2}, η1 = uzo + hu1a1, η2 = u1a1 +

w1 + hw2 + hu1a
2
1, R2 = W2 − γ a1u1In and R1 =




W0 − γ[ΓQ11 + uozIn]ZA1 − γΓQ12

AT
1Z − γΓQ12 W1 − γΓQ22



.

Proof. We know that

v̇(yt) ≤−
(

yT (t) yT (t− h)
)

R1




y(t)

y(t− h)





−

∫ 0

−h

yT (t+ τ)R2y(t+ τ)dτ

≤− λmin(R1)‖y(t)‖
2 − λmin(R2)

∫ 0

−h

‖y(t+ τ)‖2dτ, t ≥ 0. (37)

It follows from (52) that

v(yt) ≤ η1‖y(t)‖
2 + η2

∫ 0

−h

‖y(t+ τ)‖2dτ, t ≥ 0. (38)

Now, using (37) and (38) we have that

dv(yt)

dt
+ 2ςv(yt) ≤ 0, t ≥ 0, (39)

where 2ς = min{λmin(R1)/η1, λmin(R2)/η2}. Multiplying by e−2ςt both sides of (39) we get

d

dt
(e2ςtv(yt)) < 0, t ≥ 0.

Integrating this inequality from 0 to t and using the fact that the solution goes to zero as

t tends to infinity we get

v(yt) ≤ e−2ςtv(ψ), t ≥ 0,

thus (56) and (57) imply that

α1‖y(t)‖
2 ≤ v(yt) ≤ e−2ςtv(ψ) ≤ α2e

−2ςt‖ψ‖, t ≥ 0.

Finally, recalling that y(t) depends on ψ, i.e. y(t) = y(t, ψ), we conclude that ‖y(t, ψ)‖ ≤
√

α2

α1

‖ψ‖he
−ςt, t ≥ 0.
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4 Analysis of the human respiratory system

We now analyze the stability properties of the respiratory systems described in Section 2.

Due to space limitations we provide the detailed analysis for model I and we give final

results for the remaining ones.

The asymptotic stability and exponential stability are equivalent for time delay linear sys-

tems because theirs solutions are of exponential type (Gu, Kharitonov & Chen 2003).

Therefore, the Assumption A1 holds in all cases. It is trivial to prove that the Assump-

tions A2 and A3 hold in all the models under study.

In the following subsections we proceed as follows for each respiratory model:

First, we prove that Assumption A4 is satisfied,

Second, we propose positive definite matrices Wi ∈ R
n×n, i = 0, 1, 2 and a symmetric real

matrix Z ∈ R
n×n such that 


W0 ZA1

AT
1Z W1



 > 0

holds. Following the methodology proposed in (Garcia-Lozano & Kharitonov 2006) we

compute the Lyapunov matriz U(τ,W ) associated to W = W0 +W1 + hW2 −AT
0Z −ZA0.

Third, we obtain a positive constant γ such that the LMI (29) is feasible. Substituting γ

into Assumption (A4) yields ε = ε(γ).

Fourth, we get the quadratic bounds α1 and α2 using Theorem 11 of the appendix. The

estimate of the region of attraction Ω of the trivial solution of the respiratory system follows

from substituting these quadratic bounds and γ into (34).

Finally, an exponential estimate of the solution is obtained from Corollary 8.

Detailed computations for Model I

First, for the nonlinear part (6) we have that

‖f(z0, z1, z2, z3)‖
2 <

(κ4F p)
2ε2

4
‖(z0, z1, z2, z3)‖

2
Q,

where Q = I4 is the identity matriz in R
4×4. Therefore, for any γ > 0 there exits ε = ε(γ)

solution of the equation

ε =
2γ

κ4F p

(40)

such that ‖f(z0, z1, z2, z3)‖ < γ‖(z0, z1, z2, z3)‖Q if ‖(z0, z1, z2, z3)‖ < ε.
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Second, choosing h = 0.5 and the matrices

W0 =




1.0766 -1.9225

-1.9225 6.3512



 ,W1 =




0.5379 -0.8637

-0.8637 2.7929



 ,

W2 =




0.6935 -1.8198

-1.8198 5.3915



 , Z =




0.8711 -0.3431

-0.3431 1.0586



 ,

and following the methodology proposed in (Ochoa & Kharitonov 2005, Garcia-Lozano &

Kharitonov 2006) we compute the function U(τ,W ) associated to W = W0 +W1 + hW2 −

ZA− ATZ . In this case, uoz =87.174 and u1 =88.0726.

Third, using (29) we have γ ∈(0,0.002378). Substituting γ =0.002377 into (40) yields

ε =0.5554. We also have from (56) and (57) that α1 ∈(0,6.2347] and α2 ≥153.1868.

Fourth, we conclude from Theorem 7 that for α1 =6.2346 and α2 =153.1868 the set

Ω = {ψ ∈ C : ‖ψ‖0.5 ≤ 0.05603}.

is an estimate of the region of attraction of the trivial solution of system (4).

Finally, it follows from Corollary 8 that the solution y(t, ψ) of system (4) such that ψ ∈ Ω

satisfies

‖y(t, ψ)‖ ≤ 5.394‖ψ‖0.5e
−2.593×10−7t, t ≥ 0. (41)

Summary of results for models I to IV

Region of Attraction Exponential estimate

Parameter ν δ ς

Model I 0.05603 5.394 2.593×10−7

Model II 0.00618 5.4471 1.054×10−7

Model III 0.00479 53.81 6.72×10−7

Model IV 0.00846 18.5 3.67×10−7

Remark 9 The estimates of the regions of attractions presented here are conservative.

Notice that the matrices Wi, i = 0, 1, 2 and Z can be used as free parameters for further

improvements.

5 Estimates of the region of attraction based on polar coordinates

The estimates obtained in the previous section are very conservative due to the type of

inequalities used to compute γ and ε. In this section we achieve a better estimate by using
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a direct model analysis to find the constant ρ greater than ε/2 such that

‖y(t)‖ < ρ ⇒ v̇(yt) < 0, t ≥ 0.

As in the previous section, we only present the detailed analysis for Model I. The analysis

of the other models is similar to the first one.

If the nominal system of (4) is exponentially stable, then there exists a unique Lyapunov-

Krasovskii quadratic functional of complete type v(·) such that the time derivative of the

functional along the trajectories of system (4) is

v̇(yt) = −w(yt)

+ 2fT (y(t), y(t− h))
[ [

U(0,W ) − Z
]
y(t)

+

∫ 0

−h

U(−h− τ,W )A1y(t+ τ)dτ
]

, t ≥ 0. (42)

where the function f(y(t), y(t−h)) and the matrix A1 are given by (6) and (5), respectively.

Now, we define U(0,W )−Z :=




u01 u02

u02 u03



, U(−h−τ,W ) :=




u11(−h− τ)u12(−h− τ)

u21(−h− τ)u22(−h− τ)



.

Substituting into (42) we have that

v̇(yt) = −w(yt)

− 2κ4F p

[
u02y1(t)y2(t)y2(t− h) + u03y

2
2(t)y2(t− h)

]

+ 2(κ4F p)
2(PL − κ5)

∫ 0

−h

u22(−h− τ)y2(t)y2(t− h)y2(t+ τ)dτ

≤ −w(yt)

+ 2κ4F p

[
| u02 | | y1(t)y2(t)y2(t− h) | + | u03 | | y

2
2(t)y2(t− h) |

]

+ 2(κ4F p)
2(PL − κ5)u22

∫ 0

−h

| y2(t)y2(t− h)y2(t+ τ) | dτ, (43)

where u22 = maxτ∈[−h,0]{| u22(−h− τ) |}.

Taking

y1(t) = ρ(t) sin θ(t), and y2(t) = ρ(t) cos θ(t), (44)

leads to

‖(y(t), y(t− h), y(t+ τ))‖2 = ‖y(t)‖2 + ‖y(t− h)‖2 + ‖y(t+ τ)‖2, τ ∈ [−h, 0]

≤ 3ρ2, τ ∈ [−h, 0], (45)
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where ρ = maxτ∈[−h,0]{ρ(t+ τ)}.

Now, substituting (45) and (44) into (43) we get

v̇(yt) ≤

∫ 0

−h

{

− 3λmin(N)ρ2

+ 2κ4F pρ
3

[
|u02|

h
| sin θ(t) cos θ(t) cos θ(t− h)| +

|u03|

h
| cos θ(t) cos θ(t− h)|

]

+ 2(κ4F p)
2(PL − κ5)u22ρ

3| cos θ(t) cos θ(t− h) cos θ(t+ τ)|
}

dτ, (46)

where

N =








W0/h ZA1/h 0

AT
1Z/h W1/h 0

0 0 W2







. (47)

We see that, | sin θ(t) cos θ(t) cos θ(t− h)| ≤ 0.5, | cos θ(t) cos θ(t− h)| ≤ 1, and

| cos θ(t) cos θ(t− h) cos θ(t+ τ)| ≤ 1, for all t ≥ 0, therefore

v̇(yt) ≤

∫ 0

−h

(

−3λmin(N)ρ2 + 2κ4F p

[
0.5|u02|

h
+

|u03|

h
+ u22κ4(PL − κ5)F p

]

ρ3

)

dτ. (48)

Thus,

if ‖y(t)‖ < ρ, then v̇(yt) < 0, , ∀ t ≥ 0,

where

ρ =
3λmin(N)

2κ4F p

[
0.5|u02|

h
+ |u03|

h
+ u22κ4(PL − κ5)F p

] . (49)

We are now ready to estimate the region of attraction of system (4) with the help of

Theorem 7.

Choosing h = 0.5 and the matrices

W0 =




0.5 0

0 0.5



 ,W1 =




0.5 0

0 0.5



 ,

W2 =




1 0

0 1



 , Z =




0 0

0 0



 ,

(50)

we compute the function U(τ,W ) associated to W = W0 +W1 +hW2 −ZA−ATZ (Ochoa

& Kharitonov 2005). For this case we obtain that |u02| =2.6, |u03| =1.76 and u22 =1.76. It

follows from (47) that λmin(N) = 1, using (49) we obtain ρ = 26.06877. We also have from

(56) and (57) that α1 ∈(0,0.898] and α2 ≥296.56.
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Thus, for α1 =0.897 and α2 =296.56 it follows from Theorem 7 that the set

Ω = {ψ ∈ C : ‖ψ‖0.5 ≤ 1.4341}

is an estimate of the region of attraction of the trivial solution of system (4).

Summary results for models I to IV

Region of attraction

parameters σ α1 α2 ν

Model I 26.068 0.897 296.56 1.4341

Model II 6.514 3.387 28.63 2.2407

Model III 0.489 0.02 89.23 0.00748

Model IV 1.016 0.0227 32.1 0.02702

Remark 10 For the Model IV we use spherical coordinates:

y1(t) = ρ sin θ(t)cosφ(t), y2(t) = ρ sin θ(t) sinφ(t), and y3(t) = ρ cos θ(t),

6 Discussion of results

In the following table we summarize relevant data from sections 4 and 5. The first column

is the CO2 arterial partial pressure in lung equilibrium, while the second and third columns

are the values of the parameter ν for the estimates of the region of attraction obtained via

the functional general approach and the polar coordinate direct approach, respectively.

PCO2
(mmHg) ν (section 4) ν (section 5)

Model I 39.97 0.05603 1.4341

Model II 29.18 0.0615 2.2407

Model III 39.57 0.004792 0.008458

Model IV 39.41 0.008458 0.02702

The main advantage of the approach based on Lyapunov-Krasovskii functionals introduced

in section 3 is that it allows to estimate the region of attraction of a wide class of systems

using a systematic methodology. In addition, it allows to obtain exponential estimates of

the system response. A consequence of the generality of the method is the conservativeness

of the results.
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The approach of section 5 is based on the use of polar (or spherical) coordinates combined

with a direct, case by case, analysis of the negativity of the time derivative of the functional.

As one can observe on the above Table, a significant reduction of the conservatism of the

result obtained with this direct approach, when compared to the approach of section 3. The

improvement is the consequence of the direct analysis of each model and of the use of polar

coordinates. However, this approach does not provide a general methodology. Moreover, it

is restricted to two or tree variable systems.

It is acknowledged in the literature (Gaohua & Kimura 2008), (Howard, Milhorn, Benton,

Ross & C. Guyton 1965) that the CO2 arterial partial pressures in lungs is about 40 mmHg.

Clearly, the equilibriums of the model of Kollar (Kollár & Turi 2004) is far from this value

while those of Vielle, Batzel y Batzel II are close to it. As the model of Vielle provides the

less conservative region of attraction and a realistic equilibrium we recommend this model

for analyzing the behavior of the system with respect to initial conditions.

7 Concluding remarks

In this paper, we derive conditions under which the trivial solution of the nonlinear respi-

ratory system models proposed in (Vielle & Chavet 1998), (Kollár & Turi 2004), (Batzel

& Tran 2000b), and (Batzel & Tran 2000a) are asymptotically stable, and we propose two

estimate of the region of attraction and an exponential estimate for the solutions of systems

that starting in the estimate of the region of attraction. The approach considered in the

paper is based on the use of Lyapunov-Krasovskii functionals of complete type with a cross

term in the time derivative.
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8 Appendix

In this appendix we recall the main results on the functionals of complete type needed in

our analysis.

8.1 Lyapunov-Krasovskii functionals of complete type

We summarize the result presented in (Kharitonov & Zhabko 2003) and (Mondié et al. 2005)

on functionals with prescribed time derivative with cross terms.

We consider a time delay system of the form

ẋ(t) = A0x(t) + A1x(t− h), (51)

where A0 and A1 ∈ R
n×n.

Theorem 11 If the system (51) is exponentially stable, then for any given positive definite

matrices Wi ∈ R
n×n, i = 0, 1, 2 and a symmetric real matrix Z ∈ R

n×n such that



W0 ZA1

A1Z W1



 > 0,

the functional

v(xt) = − xT (t)Zx(t) + xT (t)U(0,W )x(t)

+ 2xT (t)

∫ 0

−h

U(−h− τ,W )A1x(t+ τ)dτ

+

∫ 0

−h

∫ 0

−h

xT (t+ τ1)A
T
1 U(τ1 − τ2,W )A1x(t+ τ2)dτ1dτ2

+

∫ 0

−h

xT (t+ τ)
[
W1 + [h+ τ ]W2

]
x(t+ τ)dτ, (52)

satisfies the following:

v̇(xt) = −w(xt), ∀ t ≥ 0, (53)
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and

α1‖x(t)‖
2 ≤ v(xt) ≤ α2‖xt‖

2
h, ∀ t ≥ 0, (54)

where

w(xt) =xT (t)W0x(t) + xT (t− h)W1x(t− h)

+ 2xT (t)ZA1x(t− h)

+

∫ 0

−h

xT (t+ τ)W2x(t+ τ)dτ. (55)

α1 ∈ (0, α∗], with α∗ such that




W0 ZA1

AT
1Z W1



 + α∗




A0 + AT

0 A1

AT
1 0



 > 0, (56)

and α2 > 0 satisfies

α2 ≥ κ(1 + h). (57)

Here, κ ≥ max{uzo + hu1a1, u1a1 + w1 + hw2 + hu1a
2
1}, uoz = ‖U(0,W ) − Z‖, u1 =

maxτ∈[0,h]{‖U(τ,W )‖}, a1 = ‖A1‖ and wi = ‖Wi‖, i = 1, 2.

Remark 12 The matrix U(τ,W ) is called the Lyapunov matrix associated to W = W0 +

W1 + hW2 − AT
0Z − ZA0 ∈ R

n×n and the unique solution of the analogue of the Lyapunov

Equation for time delay systems is (Ochoa & Kharitonov 2005)

U ′(τ,W ) = U(τ,W )A0 + U(τ − h,W )A1, τ ≥ 0, (58)

U(−τ,W ) = UT (τ,W ), τ ≥ 0, (59)

−W = U ′(+0,W ) − U ′(−0,W ). (60)
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