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Abstract

Motivated by applications arising in networked systems, this work examines con-
trolled regime-switching systems that stem from a mean-variance formulation. A main
point is that the switching process is a hidden Markov chain. An additional piece
of information, namely, a noisy observation of switching process corrupted by white
noise is available. We focus on minimizing the variance subject to a fixed terminal
expectation. Using the Wonham filter, we convert the partially observed system to a
completely observable one first. Since closed-form solutions are virtually impossible
be obtained, a Markov chain approximation method is used to devise a computational
scheme. Convergence of the algorithm is obtained. A numerical example is provided
to demonstrate the results.
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1 Introduction

Using a switching diffusion model, in our recent work [15], three potential applications in

platoon controls were outlined based on mean-variance controls. The first concerns the lon-

gitudinal inter-vehicle distance control. To increase highway utility, it is desirable to reduce

the total length of a platoon, resulting in reducing inter-vehicle distances. This strategy,

however, increases the risk of collision in the presence of vehicle traffic uncertainties. To

minimize the risk with desired inter-vehicle distance can be mathematically modeled as a

mean-variance optimization problem. The second one is communication resource allocation

of bandwidths for vehicle to vehicle (V2V) communications. For a given maximum through-

put of a platoon communication system, the communication system operator must find a

way to assign this resource to different V2V channels, which may also be formulated as a

mean-variance control problem. The third one is the platoon fuel consumption that is total

vehicle fuel consumptions within the platoon. Due to variations in vehicle sizes and speeds,

each vehicle’s fuel consumption is a controlled random process. Tradeoff between a platoon’s

team acceleration/maneuver capability and fuel consumption can be summarized in a desired

platoon fuel consumption rate. Assigning fuels to different vehicles result in coordination

of vehicle operations modeled by subsystem fuel rate dynamics. This problem may also be

formulated as a mean-variance control problem.

To capture the underlying dynamics of these problems, it is natural to model the under-

lying system as diffusions coupled by a finite-state Markov chain. For example, in the first

case of applications, the Markov chain may represent external and macro states including

traffic states (road condition, overall congestions), weather conditions (major thunder/snow

storms), etc. These macro states are observable with some noise.

This paper extends the mean-variance methods to incorporate possible hidden Markov

chains and to apply the results to network control problems. In particular, the underlying

system is modeled as a controlled switching diffusion modulated by a finite-state Markov

chain representing the system modes. The state of the Markov chain is observable with

additive white noise. Given the target expectation of the state variable at the terminal time,

the objective is to minimize the variance at the terminal. We use the mean-variance approach

to treat the problem and aim at developing feasible numerical methods for solutions of the

associated control problems.

Ever since the classical Nobel prize winning mean-variance portfolio selection models for

a single period was established by Markowitz in [9], there has been much effort devoted to

studying modern portfolio theory in finance. Extensions toward different directions have been

pursued (for example, [10,11]). Continuous-time mean-variance hedging problems were also
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examined; see [3] among others, in which hedging contingent claims in incomplete markets

problem was considered and optimal dynamic strategies were obtained with the help of

projection theorem. In the traditional set up, the tradeoff between the risk and return is

usually implicit, which makes the investment decision much less intuitive. Zhou and Li [23]

introduced an alternative methods to deal with the mean-variance problems in continuous

time, which embedded the original problem into a tractable auxiliary problem, following

Li and Ng’s paper [8] for the multi-period model. They were able to solve the auxiliary

problem explicitly by linear quadratic theory with the help of backward stochastic differential

equations; see the linear quadratic control problems with indefinite control weights in [1]

and also [20] and references therein. Recently, much attention has been drawn to modeling

controlled systems with random environment and other factors that cannot be completely

captured by a simple diffusion model. In this connection, a set of diffusions with regime

switching appears to be suitable for the problem. Regime-switching models have been used

in options pricing [16], stock selling rules [22], and mean-variance models [24] and [18]. The

regime-switching models have also been considered in our work [15] using a two-time-scale

formulation.

In connection with network control problems, while the current paper concentrates on the

formulation and numerical methods. Detailed treatment of the specific platoon applications

will be considered in a separate paper. In our formulation, the coefficients of the systems

are modulated by a Markov chain. In contrast to many models in the literature, the Markov

chain is hidden, i.e., it is not completely observable. In this paper, we consider the case

that a function of the chain with additive noise is observable. In networked systems, such

measurement can be obtained with the addition of a sensor.

The underlying problem is a stochastic control problems with partial observation. To

resolve the problem, we resort to Wonham filter to estimate the state. Then the original

system is converted into a completely observable one. In stochastic control literature, a

suboptimal filter for linear systems with hidden Markov switching coefficients was considered

in [2] in connection with a quadratic cost control problem. In this paper, we formulate the

problem as a Markov modulated mean-variance control problem with partial information.

Under our formulation, it is difficult to obtain a closed-form solution in contrast to [24]. We

need to resort to numerical algorithms. We use the Markov chain approximation methods

of Kushner and Dupuis [7] to develop numerical algorithms. Different from [13] and [21],

the variance is control dependent. In view of this, extra care must be taken to address such

control dependence. The main purpose of this paper is to develop numerical methods for

the partially observed mean-variance control problem. Applications in networked systems

including implementation issues will be considered elsewhere.
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Starting from the partially observed control problems, our contributions of this paper

include:

(1) We use Wonham filtering techniques to convert the problem into a completely observ-

able system.

(2) We develop numerical approximation techniques based on the Markov chain approx-

imation schemes. Although Markov chain approximation techniques have been used

extensively in various stochastic systems, the work on combination of such a methods

with partial observed control systems seems to be scarce to the best of our knowledge.

Different from the existing work in the literature, we use Markov chain approximation

for the diffusion component and use a direct discretization for the Wonham filter.

(3) We use weak convergence methods to obtain the convergence of the algorithms. A

feature that is different from the existing work is that in the martingale problem

formulation, the states include a component that comes from Wonham filtering.

The rest of the paper is arranged as follows. Section 2 presents the problem formulation.

Section 3 introduces the Markov chain approximation methods. Section 4 deals with the

approximation of the optimal controls. In Section 5, we establish the convergence of the

algorithm. Section 6 gives one numerical example for illustration; also included are some

further remarks to conclude the paper.

2 Formulation

This section presents the formulation of the problem. We begin with notation and assump-

tions. Given a probability space (Ω,F , P ) in which there are w1(t), a standard d dimensional

Brownian motion with w1(t) = (w1
1(t), w

2
1(t), . . . , w

d
1(t))

′ where z′ denotes the transpose of

z, and a continuous-time finite states Markov chain α(t) that is independent of w1(t) and

that takes values in M = {1, 2, . . . , m} with generator Q = (qij)m×m. We consider such a

networked system that there are d+1 nodes in which one of the nodes follows the stochastic

ODE
dx1(t) = r(t, α(t))x1(t)dt, t ∈ [s, T ]
x1(s) = x1,

(2.1)

where r(t, i) ≥ 0 for i = 1, 2, . . . , m is the increase rate corresponding to different regimes in

the network systems. The flows of other d nodes xl(t), l = 2, 3, . . . , d+ 1 satisfy the system

of SDEs
dxl(t) = xl(t)bl(t, α(t))dt+ xl(t)σ̄l(t, α(t))dw1(t)

= xl(t)bl(t, α(t))dt+ xl(t)σ̄l(t, α(t))dw1(t), t ∈ [s, T ]
xl(s) = xl,

(2.2)
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where for each i, bl(t, i) is the increase rate process and σ̄l(t, i) = (σ̄l1(t, i), . . . , σ̄ld(t, i)) is the

volatility for the lth node. In our framework, instead of having full information of the Markov

chain, we can only observe it in white noise. That is, we observe y(t), whose dynamics is

given by
dy(t) = g(α(t))dt+ σ0dw2(t),
y(s) = 0,

(2.3)

where σ0 > 0 and w2(·) is a standard scalar Brownian motion, where w2(·), w1(·), and α(·)
are independent. Moreover, the initial data p(s) = p = (p1, p2, . . . , pm) in which pi = pi(s) =

P (α(s) = i) is given for 1 ≤ i ≤ m. By distributing Nl(t) shares of flows to lth node at time

t and denoting the total flows for the whole networked system as x(t) we have

x(t) =

d+1∑

l=1

Nl(t)xl(t), t ≥ s.

Therefore, the dynamics of x(t) are given as

dx(t) =

d+1∑

l=1

Nl(t)dxl(t)

= [r(t, α(t))N1(t)x1(t) +

d+1∑

l=2

bl(t, α(t))Nl(t)xl(t)]dt

+

d+1∑

l=2

Nl(t)xl(t)

d∑

j=1

σ̄lj(t, α(t))dw
j
1(t)

= [r(t, α(t))x(t) +

d+1∑

l=2

(bl(t, α(t))− r(t, α(t)))ul(t)]dt+

d+1∑

l=2

d∑

j=1

σ̄lj(t, α(t))ul(t)dw
j
1(t)

= [x(t)r(t, α(t)) +B(t, α(t))u(t)]dt+ u′(t)σ̄(t, α(t))dw1(t),

x(s) =

d+1∑

l=1

Nl(s)xl(s) = x,

(2.4)

in which u(t) = (u2(t), . . . , ud+1(t))
′ and ul(t) = Nl(t)xl(t) for l = 2, . . . , d + 1 is the actual

flow of the network system for the lth node and u1(t) = x(t)−∑d+1
l=2 ul(t) is the actual flow

of the networked system for the first node, and

B(t, α(t)) = (b2(t, α(t))− r(t, α(t)), . . . , bd+1(t, α(t))− r(t, α(t))),
σ̄(t, α(t)) = (σ̄1(t, α(t)), σ̄2(t, α(t)), . . . , σ̄d(t, α(t)))

′ = (σ̄lj(t, α(t)))d×d.

We define Ft = σ{w1(s̃), y(s̃), x(s) : s ≤ s̃ ≤ t}. Our objective is to find an Ft admissible

control u(·) in a compact set U under the constraint that the expected terminal flow value

is Ex(T ) = κ for some given κ ∈ R, so that the risk measured by the variance of terminal

flow is minimized. Specifically, we have the following goal

min J(s, x, p, u(·)) := E[x(T )− κ]2

subject to Ex(T ) = κ.
(2.5)
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To handle the constraint part in problem (2.5), we apply the Lagrange multiplier technique

and thus get unconstrained problem (see, e.g., [23]) with multiplier λ:

min J(s, x, p, u(·), λ) := E[x(T ) + λ− κ]2 − λ2

subject to (x(·), u(·)) admissible.
(2.6)

A pair (
√

Var (x(T )), κ) ∈ R2 corresponding to the optimal control, if exists, is called an

efficient point. The set of all the efficient points is called the efficient frontier.

Note that one of the striking feature of our model is that we have no access to the value

of Markov chain at a given time t, which makes the problem more difficult than [24]. Let

p(t) = (p1(t), . . . , pm(t)) ∈ R1×m with pi(t) = P (α(t) = i|Fy(t)) for i = 1, 2, . . . , m, with

Fy(t) = σ{y(s̃) : s ≤ s̃ ≤ t}. It was shown in Wonham [14] that this conditional probability

satisfies the following system of stochastic differential equations

dpi(t) =

m∑

j=1

qjipj(t)dt+
1

σ0
pi(t)(g(i)− α(t))dŵ2(t),

pi(s) = pi,

(2.7)

where α(t) =
∑m

i=1 g(i)p
i(t) and ŵ2(t) is the innovation process. It is easy to see that ŵ2(·)

is independent of w1(·).

Remark 2.1 Note that in connection with portfolio optimization, the additional observation

process y(t) can be related to non-public (insider) information. Insider information is often

corrupted by noise and may reveal the direction of the underlying security prices.

Remark 2.2 In [21], a much simpler model was considered in connection with an asset

allocation problem. In particular, the diffusion gain σ is independent of α(t). This makes

it possible to convert the original system into a completely observable one with the help of

Wonham filter. Nevertheless, under our framework, the dependence on α(t) in σ is crucial

and the corresponding nonlinear filter is of infinity dimensional. In view of this, we can only

turn to approximation schemes.

With the help of Wonham filter, given the independence conditions, we can find the best

estimator for r(t, α(t)), B(t, α(t)), and σ̄(t, α(t)) in the sense of least mean square prediction

error and transform the partial observable system into completely observable system given

as below:

dx(t) = [ ̂r(t, α(t))x(t) + ̂B(t, α(t))u(t)]dt+ u′(t) ̂σ̄(t, α(t))dw1(t),

6



where

̂r(t, α(t))
def
=

m∑

i=1

r(t, i)pi(t) ∈ R
1,

̂B(t, α(t))
def
= (

m∑

i=1

(b2(t, i)− r(t, i))pi(t), . . . ,

m∑

i=1

(bd+1(t, i)− r(t, i))pi(t)) ∈ R
1×d,

̂σ̄(t, α(t))
def
= (

m∑

i=1

σ̄lj(t, i)p
i(t))d×d.

(2.8)

Note that u′(t) ̂σ̄(t, α(t)) is an R1×d row vector which is defined as

u′(t) ̂σ̄(t, α(t)) = σ(x(t), p(t), u(t))
= (σ1(x(t), p(t), u(t)), σ2(x(t), p(t), u(t)), . . . , σd(x(t), p(t), u(t))).

In this way, by putting the two components p(t) and x(t) together, we get

(x(t), p(t)) = (x(t), p1(t), ..., pm(t)),

a completely observable system whose dynamics are as follows

dx(t) = [

m∑

i=1

r(t, i)pi(t)x(t) +

d+1∑

l=2

m∑

i=1

(bl(t, i)− r(t, i))pi(t)ul(t)]dt

+

d+1∑

l=2

d∑

j=1

m∑

i=1

ul(t)σ̄lj(t, i)p
i(t)dwj

1(t)

= b(x(t), p(t), u(t))dt+ σ(x(t), p(t), u(t))dw1(t)

dpi(t) =
m∑

j=1

qjipj(t)dt+
1

σ0
pi(t)(g(i)− α(t))dŵ2(t), for i = {1, . . . , m}

x(s) = x, pi(s) = pi.

(2.9)

To proceed, for an arbitrary r ∈ U and φ(·, ·, ·) ∈ C1,2,2(R), we first define the differential

operator Lr by

Lrφ(s, x, p) =
∂φ

∂s
+
∂φ

∂x
b(x, p, r) +

1

2

∂2φ

∂x2
[σ(x, p, r)σ′(x, p, r)]

+

m∑

i=1

∂φ

∂pi

m∑

j=1

qjipj +
1

2

m∑

i=1

∂2φ

∂(pi)2
1

σ2
0

[pi(g(i)− α)]2.
(2.10)

Let W (s, x, p, u) be the objective function and let Eu
s,x,p denote the expectation of func-

tionals on [s, T ] conditioned on x(s) = x, p(s) = p and the admissible control u = u(·).

W (s, x, p, u) = Eu
s,x,p(x(T ) + λ− k)2 − λ2 (2.11)

and V (s, x, p) be the value function

V (s, x, p) = infu∈U W (s, x, p, u). (2.12)
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The value function is a solution of the following system of HJB equation

infr∈U LrV (s, x, p) = 0, (2.13)

with boundary condition V (T, x, p) = (x+ λ− κ)2 − λ2.

We have successfully converted an optimal control problem with partial observations to

a problem with full observation. Nevertheless, the problem has not been completely solved.

Due to the high nonlinearity and complexity, a closed-form solution of the optimal con-

trol problem is virtually impossible to obtain. As a viable alternative, we use the Markov

chain approximation techniques [7] to construct numerical schemes to approximate the op-

timal strategies and the optimal values. Different from the standard numerical scheme, we

construct a discrete-time controlled Markov chain to approximate the diffusions of the x(·)
process. For the Wonham filtering equation, we approximate the solution by discretizing it

directly. In fact, to implement the Wonham filter, we take logarithmic transformation to

discretize the resulting equation.

3 Discrete-time Approximation Scheme

In this section, we deal with the numerical algorithms for the two components system. First,

for the second component pi(t), numerical experiments and simulations show that discretizing

the stochastic differential equation about pi(t) directly could produce undesirable results

(such as producing a non-probability vector and numerically unstable etc.) due to white

noise perturbations. It may produce a non-probability result. To overcome this difficulty,

we use the idea in [17, Section 8.4] and transform the dynamic system of pi(t), then design

a numerical procedure for the transformed system. Let vi(t) = log pi(t) and apply the Itô’s

rule lead to the following dynamics to obtain

dvi(t) = [

m∑

j=1

qji
pj(t)

pi(t)
− 1

2σ2
0

(g(i)− ᾱ(t))2]dt +
1

σ0
[g(i)− ᾱ(t)]dŵ2(t),

vi(s) = log(pi).

(3.1)

By choosing the constant step size h2 > 0 for time variable we can discrete (3.1) as

follows:

vh2,i
n+1 = vh2,i

n + h2[

m∑

j=1

qji
ph2,j
n

ph2,i
n

− 1

2σ2
0

(g(i)− ᾱh2

n )2] +
√
h2

1

σ0
(g(i)− ᾱh2

n )εn,

vh2,i
0 = log(pi),

ph2,i
n+1 = exp(vh2,i

n+1),

ph2,i
0 = pi,

(3.2)
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where ᾱh2

n =
∑m

i=1 g(i)p
h2,i
n and {εn} is a sequence of i.i.d. random variables satisfying

Eεn = 0, Eε2n = 1, and E|εn|2+γ <∞ for some γ > 0 with

εn =
ŵ2((n + 1)h2)− ŵ2(nh2)√

h2
.

Note that ph2,i
n appeared as the denominator in (3.2) and we have focused on the case that

ph2,i
n stays away from 0. A modification can be made to take into consideration the case of

ph2,i
n = 0. In that case, we can choose a fixed yet arbitrarily large positive real number M

and use the idea of penalization to construct the approximation as below:

vh2,i
n+1 = vh2,i

n + h2{[
m∑

j=1

qji
ph2,j
n

ph2,i
n

− 1

2σ2
0

(g(i)− ᾱh2

n )2]I{ph2,in ≥e−M} −MI{ph2,in <e−M}}

+
√
h2

1

σ0
(g(i)− ᾱh2

n )εn,

vh2,i
0 = log(pi),

ph2,i
n+1 = exp(vh2,i

n+1),

ph2,i
0 = pi.

(3.3)

In what follows, we construct a discrete-time finite state Markov chain to approximate

the controlled diffusion process, x(t). Given that in our model, we have both time vari-

able t and state variable p(t) and x(t) involved. Our construction of Markov chain needs

to take care of time and state variables as follows. Let h1 > 0 be a discretizatioin pa-

rameter for state variables, and recall that h2 > 0 is the step size for time variable. Let

Nh2
= (T − s)/h2 be an integer and define Sh1

= {x : x = kh1, k = 0,±1,±2, . . .}. We

use uh1,h2

n to denote the random variable that is the control action for the chain at discrete

time n. Let uh1,h2 = (uh1,h2

0 , uh1,h2

1 , . . .) denote the sequence of U-valued random variables

which are the control actions at time 0, 1, . . . and ph2 = (ph2

0 , p
h2

1 , . . .) are the correspond-

ing posterior probability in which ph2

n = (ph2,1
n , ph2,2

n , . . . , ph2,m
n ). We define the difference

∆ξh1,h2

n = ξh1,h2

n+1 − ξh1,h2

n and let Eh1,h2,r
x,p,n , V arh1,h2,r

x,p,n denote the conditional expectation and

variance given {ξh1,h2

k , uh1,h2

k , ph2

k , k ≤ n, ξh1,h2

n = x, ph2

n = p, uh1,h2

n = r}. By stating that

{ξh1,h2

n , n <∞} is a controlled discrete-time Markov chain on a discrete time state space Sh1

with transition probabilities from state x to another state y, denoted by ph1,h2((x, y)|r, p),
we mean that the transition probabilities are functions of a control variable r and posterior

probability p. The sequence {ξh1,h2

n , n <∞} is said to be locally consistent with (2.9), if it

satisfies
Eh1,h2,r

x,p,n ∆ξh1,h2

n = b(x, p, r)h2 + o(h2),
V h1,h2,r
x,p,n ∆ξh1,h2

n = σ(x, p, r)σ′(x, p, r)h2 + o(h2),
supn |∆ξh1,h2

n | → 0, as h1, h2 → 0.
(3.4)

Let Uh1,h2 denote the collection of ordinary controls, which is determined by a sequence of

such measurable functions F h1,h2

n (·) that uh1,h2

n = F h1,h2

n (ξh1,h2

k , ph2

k , k ≤ n, uh1,h2

k , k < n). We
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say that uh1,h2 is admissible for the chain if uh1,h2

n are U valued random variables and the

Markov property continues to hold under the use of the sequence {uh1,h2

n }, namely,

P{ξh1,h2

n+1 = y|ξh1,h2

k , uh1,h2

k , ph2

k , k ≤ n}
= P{ξh1,h2

n+1 = y|ξh1,h2

n , uh1,h2

n , ph2

n } = ph1,h2((ξh1,h2

n , y)|uh1,h2

n , ph2

n ).

With the approximating Markov chain given above, we can approximate the objective func-

tion defined in (2.11) by

W h1,h2(s, x, p, uh1,h2) = Euh1,h2

s,x,p (ξh1,h2

Nh2
+ λ− k)2 − λ2. (3.5)

Here, Euh1,h2

s,x,p denote the expectation given that ξh1,h2

0 = x, ph2

0 = p and that an admissible

control sequence uh1,h2 = {uh1,h2

n , n <∞} is used. Now we need the approximating Markov

chain constructed above satisfying local consistency, which is one of the necessary conditions

for weak convergence. To find a reasonable Markov chain that is locally consistent, we first

suppose that control space has a unique admissible control uh1,h2 ∈ Uh1,h2, so that we can

drop inf in (2.13). We discrete (2.10) by the following finite difference method using step-size

h1 > 0 for state variable and h2 > 0 for time variable as mentioned above.

V (t, x, p) → V h1,h2(t, x, p); (3.6)

For the derivative with respect to the time variable, we use

Vt(t, x, p) → V h1,h2 (t+h2,x,p)−V h1,h2(t,x,p)
h2

; (3.7)

For the first derivative with respect to x, we use one-side difference method

Vx(t, x, p) →
{

V h1,h2 (t+h2,x+h1,p)−V h1,h2(t+h2,x,p)
h1

for b(x, p, r) ≥ 0
V h1,h2 (t+h2,x,p)−V h1,h2 (t+h2,x−h1,p)

h1

for b(x, p, r) < 0.
(3.8)

For the second derivative with respect to x, we have standard difference method

Vxx(t, x, p) →
V h1,h2(t+ h2, x+ h1, p) + V h1,h2(t + h2, x− h1, p)− 2V h1,h2(t+ h2, x, p)

h21
.

(3.9)

For the first and second derivative with respect to posterior probability, we also have the

similar expression as above. Let V h1,h2(t, x, p) denote the solution to the finite difference

equation with x and p be an integral multiplier of h1 and nh2 < T . Plugging all the

necessary expressions into (2.13) and combining the like terms and multiplying all terms by

10



h2 yield the following expression:

V h1,h2(nh2, x, p)

= V h1,h2(nh2 + h2, x, p)[1−
|b(x, p, r)|h2

h1
− h2σ(x, p, r)σ

′(x, p, r)

h21
]

+V h1,h2(nh2 + h2, x+ h1, p)
σ(x, p, r)σ′(x, p, r)h2 + 2h1h2b

+(x, p, r)

2h21

+V h1,h2(nh2 + h2, x− h1, p)
σ(x, p, r)σ′(x, p, r)h2 + 2h1h2b

−(x, p, r)

2h21

+
m∑

i=1

V h1,h2(nh2 + h2, x, p
i + h1)

1
σ2

0

[pi(g(i)− α)]2h2 + 2h1(
∑m

j=1 q
jipj)+h2

2h21

+

m∑

i=1

V h1,h2(nh2 + h2, x, p
i − h1)

1
σ2

0

[pi(g(i)− α)]2h2 + 2h1(
∑m

j=1 q
jipj)−h2

2h21

+
m∑

i=1

V h1,h2(nh2 + h2, x, p
i)[−

1
σ2

0

[pi(g(i)− α)]2h2

h21
−
h2|

∑m
j=1 q

jipj |
h1

],

(3.10)

where b+(x, p, r), (
∑m

j=1 q
jipj)+ and b−(x, p, r), (

∑m
j=1 q

jipj)− are positive and negative parts

of b(x, p, r) and
∑m

j=1 q
jipj, respectively. Note the sum of the coefficient of the first three

line in the above equation is unity. By choosing proper h1 and h2, we can reasonably assume

that the coefficient

1− |b(x, p, r)|h2
h1

− h2σ(x, p, r)σ
′(x, p, r)

h21

of term V h1,h2(nh2 + h2, x, p) is in [0, 1]. Therefore, the coefficients can be regarded as the

transition function of a Markov chain. We define the transition probability in the following

way,

ph1,h2((nh2, nh2 + h2))|x, p, r) = 1− |b(x, p, r)|h2
h1

− h2σ(x, p, r)σ
′(x, p, r)

h21

ph1,h2((nh2, x), (nh2 + h2, x+ h1)|p, r) =
σ(x, p, r)σ′(x, p, r)h2 + 2h1h2b

+(x, p, r)

2h21

ph1,h2((nh2, x), (nh2 + h2, x− h1)|p, r) =
σ(x, p, r)σ′(x, p, r)h2 + 2h1h2b

−(x, p, r)

2h21

(3.11)

Theoretically, we can find approximation of V (s, x, p) in (2.12) by using (3.5) and

V h1,h2(s, x, p) = inf
uh1,h2∈Uh1,h2

W h1,h2(s, x, p, uh1,h2). (3.12)

Practically, with the transition probability defined as above, we can compute V h1,h2(s, x, p)

11



by the following iteration method

V h1,h2(nh2, x, p)
= ph1,h2((nh2, x)(nh2 + h2, x+ h1)|p, r)V h1,h2(nh2 + h2, x+ h1, p)
+ph1,h2((nh2, x), (nh2 + h2, x− h1)|p, r)V h1,h2(nh2 + h2, x− h1, p)
+ph1,h2((nh2, nh2 + h2)|x, p, r)V h1,h2(nh2 + h2, x, p)

+
m∑

i=1

V h1,h2(nh2 + h2, x, p
i + h1)

1
σ2

0

[pi(g(i)− α)]2h2 + 2h1(
∑m

j=1 q
jipj)+h2

2h21

+

m∑

i=1

V h1,h2(nh2 + h2, x, p
i − h1)

1
σ2

0

[pi(g(i)− α)]2h2 + 2h1(
∑m

j=1 q
jipj)−h2

2h21

+
m∑

i=1

V h1,h2(nh2 + h2, x, p
i)[−

1
σ2

0

[pi(g(i)− α)]2h2

h21
−
h2|

∑m
j=1 q

jipj |
h1

].

(3.13)

Note that we used local transitions here, we can avoid the problem of “numerical noise” or

“numerical viscosity” in this way, which appears in non-local transitions case, and is even

more serious in higher dimension, see [6] for more details. We can show that the Markov chain

{ξh1,h2

n , n <∞} with transition probability ph1,h2(·) defined in (3.11) is locally consistent with

(2.9) by verifying the following equations:

Eh1,h2,r
x,p,n ∆ξh1,h2

n

= h1

(
σ(x, p, r)σ′(x, p, r)h2 + 2h1h2b

+(x, p, r)

2h21

)

−h1
(
σ(x, p, r)σ′(x, p, r)h2 + 2h1h2b

−(x, p, r)

2h21

)

= b(x, p, r)h2,

V h1,h2,r
x,p,n ∆ξh1,h2

n

= h21

(
σ(x, p, r)σ′(x, p, r)h2 + 2h1h2b

+(x, p, r)

2h21

)

+h21

(
σ(x, p, r)σ′(x, p, r)h2 + 2h1h2b

−(x, p, r)

2h21

)

= σ(x, p, r)σ′(x, p, r)h2 +O(h1h2).

(3.14)

4 Approximation of Optimal Controls

4.1 Relaxed Control and Martingale Measure

Note the fact that the sequence of ordinary control constructed in Markov chain approxi-

mation scheme may not converge in a traditional sense due to the issue of closure. That is,

a bounded sequence ξh1,h2

n with ordinary controls uh1,h2

n would not necessarily have a subse-

quence which converges to a limit process which is a solution to the equation driven by a

desirable ordinary control. The use of the relaxed control gives us an alternative to obtain

12



and characterize the weak limit appropriately. Although the usage of relaxed control enlarges

the control space of the problem, it does not alter the infimum of the objective function. We

first give the definition of relaxed control as follows.

Definition 4.1 For the σ-algebra B(U) and B(U × [s, T ]) of Borel subsets of U and U ×
[s, T ], an admissible relaxed control or simply a relaxed control m(·) is a measure on B(U ×
[s, T ]) such that m(U × [s, t]) = t− s for all t ∈ [s, T ].

For notional simplicity, for any B ∈ B(U), we write m(B × [s, T ]) as m(B, T − s). Since

m(U , t− s) = t− s for all t ∈ [s, T ] and m(B, ·) is nondecreasing, it is absolutely continuous.

Hence the derivative ṁ(B, t) = mt(B) exists almost everywhere for each B. We can further

define the relaxed control representation m(·) of u(·) by

mt(B) = I{u(t)∈B} for any B ∈ B(U). (4.1)

Therefore, we can represent any ordinary admissible control u(·) as a relaxed control by using

the definition mt(dr) = Iu(t)(r)dr, where Iu(r) is the indicator function concentrated at the

point u = r. Thus, the measure-valued derivative mt(·) of the relaxed control representation

of u(t) is a measure which is concentrated at the point u(t). For each t, mt(·) is a measure on

B(U) satisfying mt(U) = 1 and m(A) =
∫
U×[s,T ]

I{(r,t)∈A}mt(dr)dt for all A ∈ B(U × [s, T ]),

i.e., m(drdt) = mt(dr)dt.

On the other hand, note that we have control in the diffusion gain. The similar problem

arises even with the introduction of relaxed control. Therefore, we need to borrow the idea of

martingale measure to allow the desired closure and at the same time keep the same infimum

for the objective function. We say that M(·) is a measure-value Ft martingale with values

M(B, t) if M(B, ·) is an Ft martingale for each B ∈ U , and for each t, the following hold:

supB∈U EM
2(B, t) <∞, M(A ∪ B, t) =M(A, t) +M(B, t) w.p.1. for all disjoint A,B ∈ U ,

and EM2(Bn, t) → 0 if Bn → ∅. M(·) is said to be continuous if eachM(B, ·) is. We say that

M(·) is orthogonal ifM(A, ·),M(B, ·) is an Ft martingale whenever A∩B = ∅. IfM(·), M̄(·)
are Ft martingale measures and M(A, ·), M̄(B, ·) are Ft martingales for all Borel set A,B,

then M(·) and M̄(·) are said to be strongly orthogonal. Let M(·) = (M1(·), . . . ,Md(·))′, a
vector valued martingale measure, we impose the following conditions.

(A1) M(·) = (M1(·), . . . ,Md(·))′ is square integrable and continuous, each component is

orthogonal, and the pairs are strongly orthogonal.

Under this assumption, there are measure-valued random processes mi(·) such that the

quadratic variation processes satisfies, for each t and B ∈ U
〈
Mi(A, ·),Mj(B, ·)

〉
(t) = δijmi(A ∩ B, t).

13



(A2) The mi’s do not depend on i, so mi(·) = m(·), and m(U, t) = t for all t.

With the use of relaxed control representation, the operator of the controlled diffusion is

given by

Lmf(s, x, p) = fs +

∫
fxb(x, p, c)mt(dc) +

1

2

∫
fxxσ(x, p, r)σ

′(x, p, r)mt(dc)

+

m∑

i=1

fpi
m∑

j=1

qjipj +
1

2

m∑

i=1

fpipi
1

σ2
0

[pi(g(i)− α)]2

=

∫
Lrf(s, x, p)mt(dc).

(4.2)

Let there be a continuous process (x(·), p(·)) and a measure m(·) satisfying assumption

(A1) and (A2) such that for each bounded and smooth function f(·, ·, ·),

f(t, x(t), p(t))− f(s, x, p)−
∫ ∫

Lrf(z, x(z), p(z))mz(dc)dz = Qf (t)

is an F̃t martingale, where F̃t measures {x(z), p(z), mz(·), s ≤ z ≤ t}. Then (x(·), p(·), m(·))
solves the martingale problem with operator Lr and there is a martingale measureM(·) with
quadratic variation m(·)I satisfying assumption (A1) and (A2) such that

x(t) = x+

∫ t

s

∫

U
b(x(z), p(z), c)mz(dc)dz +

∫ t

s

∫

U
σ(x(z), p(z), c)M(dc, dz)

pi(t) =

∫ t

s

m∑

j=1

qjipj(z)dz +

∫ t

s

1

σ0
[pi(z)(g(i)− α(z))]dŵ2(z), for i = {1, . . . , m},

(4.3)

where

σ(x(z), p(z), c) = (σ1(x(z), p(z), c), . . . , σd(x(z), p(z), c)) ∈ R
1×d.

Equation (4.3) represents our control system. In the next section, we work on approximation

of (x(t), p(t),M(t), m(t)). We say that (M(·), m(·)) is an admissible relaxed control for (4.3)

if (A1) and (A2) hold and
〈
M(·)

〉
= m(·)I. To proceed, we first suppose that

(A3) b(·, ·, ·), σ(·, ·, ·) are continuous, b(·, p, c), σ(·, p, c) are Lipschitz continuous uniformly

in p, c and bounded.

(A4) σ(x, p, r) = (σ1(x, p, r), . . . , σd(x, p, r)) > 0

4.2 Approximation of (x(t), p(t),M(t), m(t))

Using Eh1,h2

n to denote the conditional expectation given {ξh1,h2

k , ph2

k , u
h1,h2

k , k ≤ n}. Define

Rh1,h2

n = (∆ξh1,h2

n −Eh1,h2

n ∆ξh1,h2

n ). By local consistency, we have

ξh1,h2

n+1 = ξh1,h2

n + b(ξh1,h2

n , ph2

n , u
h1,h2

n )h2 +Rh1,h2

n ,
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where covh1,h2

n Rh1,h2

n = a(ξh1,h2

n , ph2

n , u
h1,h2

n ) =
∑d

j=1 σ
2
j (ξ

h1,h2

n , ph2

n , u
h1,h2

n )h2 + O(h1h2). Note

that we can decompose a(ξh1,h2

n , ph2

n , u
h1,h2

n ) = P h1,h2

n (Dh1,h2

n )2(P h1,h2

n )′, in which P h1,h2

n =

( 1√
d
, · · · , 1√

d
) ∈ R1×d and Dh1,h2

n is diagonal

Dh1,h2

n = {
√
dσ1(ξ

h1,h2

n , ph2

n , u
h1,h2

n ),
√
dσ2(ξ

h1,h2

n , ph2

n , u
h1,h2

n ), · · · ,
√
dσd(ξ

h1,h2

n , ph2

n , u
h1,h2

n )} ∈ R
d×d,

then we can represent Rh1,h2

n in terms of Brownian motion defined as

∆wh1,h2

n = (Dh1,h2

n )−1(P h1,h2

n )′Rh1,h2

n .

In this way, Rh1,h2

n = σ(ξh1,h2

n , ph2

n , u
h1,h2

n )∆wh1,h2

n + εh1,h2

n (see [7, Section10.4.1] for details).

We can thus represent ξh1,h2

n+1 as

ξh1,h2

n+1 = ξh1,h2

n + b(ξh1,h2

n , ph2

n , u
h1,h2

n )h2 + σ(ξh1,h2

n , ph2

n , u
h1,h2

n )∆wh1,h2

n + εh1,h2

n . (4.4)

To take care of the control part, let {Ch1,h2

l , l ≤ kh1,h2
} be a finite partition of U such that

the diameters of Ch1,h2

l → 0 as h1, h2 → 0. Let cl ∈ Ch1,h2

l . Define the random variable

∆wh1,h2

l,n = ∆wh1,h2

n I{uh1,h2
n =cl}

+∆ψh1,h2

l,n I{uh1,h2
n 6=cl}

.

Then we have

ξh1,h2

n+1 = ξh1,h2

n + b(ξh1,h2

n , ph2

n , u
h1,h2

n )h2 +
∑

l=1

σ(ξh1,h2

n , ph2

n , u
h1,h2

n )I{uh1,h2
n =cl}

∆wh1,h2

l,n + εh1,h2

n ,

mh1,h2

n (cl) = I{uh1,h2
n =cl}

.

(4.5)

In order to approximate the continuous time process (x(t), p(t),M(t), m(t)), we use continuous-

time interpolation. We define the piecewise constant interpolations by

ξh1,h2(t) = ξh1,h2

n , ph2(t) = ph2

n , ᾱ
h1,h2(t) =

m∑

i=1

g(i)ph2

n , u
h1,h2(t) = uh1,h2

n ,

zh2(t) = n, wh1,h2

l (t) =

zh2(t)−1∑

k=0

∆wh1,h2

l,k , εh1,h2(t) = εh1,h2

n , for t ∈ [nh2, (n+ 1)h2).

(4.6)

Define relaxed representation mh1,h2(·) of uh1,h2(·) by mh1,h2

t (B) = I{uh1,h2 (t)∈B} for any B ∈
B(U). mh1,h2(dc, dt) = mh1,h2

t (dc)dt and mh1,h2

t (·) = mh1,h2

n (·) for t ∈ [nh2, nh2 + h2). Here

a sequence mh1,h2

n (·) of measure-valued random variables is an admissible relaxed control if

mh1,h2

n (U) = 1 and

P{ξh1,h2

n+1 = y|ξh1,h2

i , ph2

i , m
h1,h2

i , i ≤ n} =

∫
ph1,h2(ξh1,h2

n , y|ph2

n , c)m
h1,h2

n (dc).
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For cl ∈ Ch1,h2

l , {M(Ch1,h2

l , ·), l ≤ kh1,h2
} are orthogonal continuous martingale with

〈
M(Ch1,h2

l , ·)
〉
=

m(Ch1,h2

l , ·). There are mutually independent d dimensional standardWiener process wh1,h2

l (·), l ≤
kh1,h2

such that

M(Ch1,h2

l , t) =
∫ t

s
(mz(C

h1,h2

l ))
1

2dwh1,h2

l (z). (4.7)

LetMh1,h2(·) and mh1,h2(·) be the restrictions of the measures ofM(·) and m(·), respectively,
to the sets{Ch1,h2

l , l ≤ kh1,h2
}. The following lemma demonstrate the fact that we can

approximate (x(t), p(t),M(t), m(t)) by a quadruple satisfying

ξh1,h2(t) = x+

∫ t

s

∫

U
b(ξh1,h2(z), ph2(z), c)mh1,h2

z (dc)dz

+

∫ t

s

∫

U
σ(ξh1,h2(z), ph2(z), c)Mh1,h2(dc, dz) + εh1,h2(t)

= x+

∫ t

s

∑

l

b(ξh1,h2(z), ph2(z), cl)mz(C
h1,h2

l )dz

+

∫ t

s

∑

l

σ(ξh1,h2(z), ph2(z), cl)(mz(C
h1,h2

l ))
1

2dwh1,h2

l (z) + εh1,h2(t),

(4.8)

where mh1,h2(·) is a piecewise constant and takes finitely many values and Mh1,h2(·) is rep-
resented in terms of a finite number of Wiener process. The idea is similar to the method

used in [5, Theorem 8.1], we omit the detail here for brevity.

Lemma 4.2 Assume (A1)− (A4) and satisfying (4.8), then

(ξh1,h2(·), ph2(·), mh1,h2(·),Mh1,h2(·)) ⇒ (x(·), p(·), m(·),M(·)).

Also, W (s, x, p,mh1,h2) → W (s, x, p,m) and we can suppose that mh1,h2(·) is piecewise con-

stant further.

Let Fh1,h2

t denote the σ-algebra that measures at least

{ξh1,h2(z), ph2(z), mh1,h2

z (·),Mh1,h2(·), wh1,h2

l (z), 1 ≤ l ≤ kh1,h2
, s ≤ z ≤ t}. (4.9)

Using Γh1,h2 to denote the set of admissible relaxed control mh1,h2(·) with respect to

{wh1,h2

l (·), ph2(·), l ≤ kh1,h2
} such that mh1,h2

t (·) is a fixed probability measure in the interval

[nh2, (n + 1)h2). With the notation of relaxed control given above, we can write (3.5) and

value function (3.12) as

W h1,h2(s, x, p,mh1,h2) = Emh1,h2

s,x,p (ξh1,h2(T ) + λ− k)2 − λ2. (4.10)

V h1,h2(s, x, p) = inf
mh1,h2∈Γh1,h2

W h1,h2(s, x, p,mh1,h2). (4.11)

Note also that (2.11) can be written in terms of the relaxed control:

W (s, x, p,m) = Em
s,x,p(x(T ) + λ− k)2 − λ2. (4.12)
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5 Convergence

Let (ξh1,h2(·), ph2(·), mh1,h2(·),Mh1,h2(·)) be a solution of (4.8), whereMh1,h2(·) is a martingale

measure with respect to the filtration Fh1,h2

t , with quadratic variation processmh1,h2(·). Then
we can proceed to obtain the convergence of the algorithm next.

Theorem 5.1 Under Assumption (A1)-(A5). Let the approximating chain {ξh1,h2

n , n < ∞}
be constructed with transition probability defined in (3.11), and ph2

n is approximated by (3.2).

Let {uh1,h2

n , n <∞} be a sequence of admissible controls, ξh1,h2(·) and ph2(·) be the continuous
time interpolation defined in (4.6), mh1,h2(·) be the relaxed control representation of uh1,h2(·)
(continuous time interpolation of uh1,h2

n ). Then {ξh1,h2(·), ph2(·), mh1,h2(·)} is tight. Denoting

the limit of a weakly convergent subsequence by {x(·), p(·), m(·)}, there exists a martingale

measure M(·), with respect to {Ft, t ≥ s}, and with quadratic variation process m(·) such

that (4.3) is satisfied.

Proof. Note that mh1,h2(·) is tight due to the compactness of the relaxed control under the

weak topology. Since (ξh1,h2(·), ph2(·)) ∈ Rm+1, the tightness of ph2(·) can be obtained as

in [17, Theorem 8.15]. Therefore, we just need to take care that of ξh1,h2(·) in the following

part. For the tightness of ξh1,h2(·), by assumption (A1), for s ≤ t ≤ T ,

Emh1,h2

s,x,p |ξh1,h2(t)− x|2 = Emh1,h2

s,x,p |
∫ t

s

∫

U
b(ξh1,h2(z), ph2(z), c)mh1,h2

z (dc)dz

+

∫ t

s

∫

U
σ(ξh1,h2(z), ph2(z), c)Mh1,h2(dc, dz)

+εh1,h2(t)|2
≤ Kt2 +Kt + εh1,h2(t).

(5.1)

Here K is a generic positive constant whose value may be different in different context.

Similarly, we can guarantee Emh1,h2

s,x,p |ξh1,h2(t + δ) − ξh1,h2(t)|2 = O(δ) + εh1,h2(δ) as δ →
0. Therefore, the tightness of ξh1,h2(·) follows. By the compactness of set U , we can see

that Mh1,h2(·) is also tight. In view of the tightness, we can extract a weakly convergent

subsequence, and denote its limit by {x(·), p(·), m(·),M(·)}. We next show that the limit is

the solution of SDE driven by (p(·), m(·),M(·)).
For δ > 0 and any process ν(·) define the process νδ(·) by νδ(t) = ν(nδ) for t ∈ [nδ, nδ+δ).

Then by the tightness of ξh1,h2(·) and ph2(·), (4.8) can be rewritten as

ξh1,h2(t) = x+

∫ t

s

∫

U
b(ξh1,h2(z), ph2(z), c)mh1,h2

z (dc)dz

+

∫ t

s

∫

U
σ(ξh1,h2,δ(z), ph2,δ(z), c)Mh1,h2(dc, dz) + εh1,h2,δ(t),

(5.2)
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where limδ→0 lim suph1,h2→0E|εh1,h2,δ(t)| → 0.

We further assume that the probability space is chosen as required by Skorohod representa-

tion. Therefore, we can assume the sequence {ξh1,h2(·), ph2(·), mh1,h2(·),Mh1,h2(·)} converges

to (x(·), p(·), m(·),M(·)) w.p.1 with a little bit abuse of notation.

Taking limit as h1 → 0 and h2 → 0, the convergence of {ξh1,h2(·), ph2(·), mh1,h2(·),Mh1,h2(·)}
to its limit w.p.1 implies that

E|
∫ t

s

∫

U
b(ξh1,h2(z), ph2(z), c)mh1,h2

z (dc)dz −
∫ t

s

∫

U
b(x(z), p(z), c)mh1,h2

z (dc)dz| → 0,

uniformly in t. Also, recall that mh1,h2(·) → m(·) in the “compact weak” topology if and

only if ∫ t

s

∫

U
φ(c, z)mh1,h2(dc, dz) →

∫ t

s

∫

U
φ(c, z)m(dc, dz).

for any continuous and bounded function φ(·) with compact support. Thus, weak conver-

gence and Skorohod representation imply that

∫ t

s

∫

U
b(x(z), p(z), c)mh1,h2

z (dc)dz →
∫ t

s

∫

U
b(x(z), p(z), c)mz(dc)dz as h1, h2 → 0, (5.3)

uniformly in t on any bounded interval w.p.1.

Recall that Mh1,h2(·) is a martingale measure with quadratic variation process mh1,h2(·).
Due to the fact that ξh1,h2,δ(·) and ph2,δ(·) are piecewise constant functions, following from

the probability one convergence, we have

∫ t

s

∫

U
σ(ξh1,h2,δ(z), ph2,δ(z), c)Mh1,h2(dc, dz) →

∫ t

s

∫

U
σ(xδ(z), pδ(z), c)Mh1,h2(dc, dz).

(5.4)

Recall that recall that Mh1,h2(·) → M(·) in the “compact weak” topology if and only if∫ t

s

∫
U f(c, z)M

h1,h2(dc, dz) →
∫ t

s

∫
U f(c, z)M(dc, dz) as h1, h2 → 0 for each bounded and con-

tinuous function f(·), we have

∫ t

s

∫

U
σ(xδ(z), pδ(z), c)Mh1,h2(dc, dz) →

∫ t

s

∫

U
σ(xδ(z), pδ(z), c)M(dc, dz),

uniformly in t on any bounded interval w.p.1; see [7, pp. 352]. Combining the above results,

we have

x(t) = x+

∫ t

s

∫

U
b(x(z), p(z), c)m(dc, dz) +

∫ t

s

∫

U
σ(xδ(z), pδ(z), c)M(dc, dz) + εδ(t).

(5.5)

Where limδ→0E|εδ(t)| = 0. Taking limit of the above equation as δ → 0 yields (4.3). �
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Theorem 5.2 Under assumptions (A1)-(A5), V h1,h2(s, x, p) and V (s, x, p) are value func-

tions defined in (4.11) and (2.12) respectively, we have

V h1,h2(s, x, p) → V (s, x, p), as h1 → 0, h2 → 0. (5.6)

Proof. For each h1, h2, let m̂
h1,h2 be an optimal relaxed control for {xh1,h2(·), ph2(·)}. i.e.

V h1,h2(s, x, p) = W h1,h2(s, x, p, m̂h1,h2) = inf
mh1,h2∈Γh1,h2

W h1,h2(s, x, p,mh1,h2)

Choose a subsequence {h̃1, h̃2} of {h1, h2} such that

lim inf
h1,h2→0

V h1,h2(s, x, p) = lim
h̃1,h̃2→0

V h̃1,h̃2(s, x, p) = lim
h̃1,h̃2→0

W h̃1,h̃2(s, x, p, m̂h̃1,h̃2).

Note that we can assume that {ξh̃1,h̃2(·), ph̃2(·), m̂h̃1,h̃2(·), M̂ h̃1,h̃2(·)} converges weakly to

{x(·), p(·), m(·),M(·)}. Otherwise, take a subsequence of {h̃1, h̃2} to assume its weak limit.

Theorem 5.1, Skorohod representation and dominance convergence theorem imply that as

h̃1, h̃2 → 0

Em̂h̃1,h̃2

s,x,p (ξh̃1,h̃2(T ) + λ− k)2 − λ2 → Em
s,x,p(x(T ) + λ− k)2 − λ2.

So

W h̃1,h̃2(s, x, p, m̂h̃1,h̃2) → W (s, x, p,m) ≥ V (s, x, p).

It follows that

lim inf
h1,h2→0

V h1,h2(s, x, p) ≥ V (s, x, p)

Next, we need to show lim suph1,h2→0 V
h1,h2(s, x, p) ≤ V (s, x, p) to complete the proof. Given

any ρ > 0, there is a δ > 0, with the help of Lemma 4.2, we are able to approximate any

such quadruple (x(t), p(t), m(t),M(t)) by a quadruple satisfying

xδ(t) = x+

∫ t

s

∫

U
b(xδ(z), pδ(z), c)mδ

z(dc)dz +

∫ t

s

∫

U
σ(xδ(z), pδ(z), c)M δ(dc, dz),

where mδ(·) is piecewise constant and takes finitely many values and M δ(·) is represented

in terms of a finite number of d-dimensional Wiener process such that for the optimization

problem with (4.3) and (4.12) under the constraints that the control are concentrated on the

points c1, c2, . . . , cN for all t. They take on one value cj on each interval [ιδ, ιδ+δ), ι = 0, 1, . . . .

Let ûρ(·) be the optimal control and m̂ρ(·) be its relaxed control representation, and let

(x̂ρ(·), p̂ρ(·)) be the associated solution process. Since m̂ρ(·) is optimal in the chosen class of

controls, we must have

W (s, x, p, m̂ρ) ≤ V (s, x, p) + ρ

3
. (5.7)
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Note that for each given integer ι, there is a measurable function F ρ
ι (·) such that

ûρ(t) = F ρ
ι (wl(s), p(s), s ≤ ιδ, l ≤ N)

on [ιδ, ιδ + δ). We next approximate F ρ
ι (·) by a function that depends only on the sample

of (wl(·), p(·), l ≤ N) at a finite number of time points. Let θ < δ such that δ/θ is an

integer. Because the σ− algebra determined by {wl(νθ), p(νθ), νθ ≤ ιδ, l ≤ N} increases to

the σ-algebra determined by {wl(s), p(s), s ≤ ιδ, l ≤ N}, the martingale convergence theorem

implies that for each δ, ι, there are measurable function F ρ,θ
ι (·), such that as θ → 0,

F ρ,θ
ι (wl(νθ), p(νθ), νθ ≤ ιδ, l ≤ N) = uρ,θι → ûρ(ιδ) w.p.1.

Here, we select F ρ,θ
ι (·) such that there are N disjoint hyper-rectangles that cover the range

of its arguments and that F ρ,θ
ι (·) is constant on each hyper-rectangle. Let mρ,θ(·) denote

the relaxed control representation of the ordinary control uρ,θ(·) which takes value uρ,θι on

[ιδ, ιδ + δ), and let (xρ,θ(·), pρ,θ(·)) denote the associated solution. Then for small enough θ,

we have

W (s, x, p,mρ,θ) ≤W (s, x, p, m̂ρ) + ρ

3
. (5.8)

Next, we adapt F ρ,θ
ι (·) such that it can be applied to {ξh1,h2

n }. Let ūh1,h2

n denote the ordinary

admissible control to be used for the approximation chain {ξh1,h2

n } defined in (4.5).

For n such that nh2 < δ, we can use any control. For ι = 1, 2, . . . and n such that

nh2 ∈ [ιδ, ιδ+δ), use the control defined by ūh1,h2

n = F ρ,θ
ι (wh1,h2

l (νθ), ph2(νθ), νθ ≤ ιδ, l ≤ N).

Recall that m̄h1,h2(·) denote the relaxed control representation of the continuous interpolation

of ūh1,h2

n , then

(ξh1,h2(·), m̄h1,h2(·), wh1,h2

l (·), F ρ,θ
ι (wh1,h2

l (νθ), ph2(νθ), νθ ≤ ιδ, l ≤ N, ι = 0, 1, 2, . . .))
→ (xρ,θ(·), mρ,θ(·), wl(·), F ρ,θ

ι (wl(νθ), p(νθ), νθ ≤ ιδ, l ≤ N, ι = 0, 1, 2, . . .)).

Thus

W (s, x, p, m̄h1,h2) ≤W (s, x, p,mρ,θ) +
ρ

3

Note that

V h1,h2(s, x, p) ≤W (s, x, p, m̄h1,h2).

Combing the above inequalities, we can see lim suph1,h2→0 V
h1,h2(s, x, p) ≤ V (s, x, p) for the

chosen subsequence. By the tightness of (ξh1,h2(·), ph2(·), m̄h1,h2(·)) and arbitrary of ρ, we get

lim sup
h1,h2→0

V h1,h2(s, x, p) ≤ V (s, x, p)

and thus conclude the proof. �
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6 A Numerical Example

6.1 An Example

In this section, we provide an example to demonstrate our results.

Example 6.1 We consider a networked system with regime switching. There are 2 nodes

in the system. One of the node has dynamic given by

dx0(t) = r(t, α(t))x0(t)dt,

where r(t, α(t)) = t + α(t), the other node follows the systems of SDEs

dx1(t) = x1(t)b(t, α(t))dt+ x1(t)σ(t, α(t))dw1(t),

where b(t, α(t)) = 1 + t− α(t), and σ(t, α(t)) = α(t). Observation process is given by

dy(t) = g(α(t))dt+ dw2(t),

with g(1) = 2 and g(2) = 3. The Markov chain α(·) ∈ {1, 2} is generated by the generator

Q =

(
−0.5 0, 5
0.5 −0.5

)
.

Our objective is to distribute proportions of the network flow to each node so as to

minimize the total variance at time T subject to Ex(T ) = κ. Our system x(t) is pi(t)

dependent and given by

dx(t) = [x(t)[(t+ 1)p1(t) + (t+ 2)p2(t)]− (p1(t) + 3p2(t))u(t)]dt+ u(t)[p1(t) + 2p2(t)]dw1(t).

To get the efficient frontier, note that on the one hand, κ is given to us and we will choose

a series of value for κ starting from [1, 5.5]. On the other hand, we need to know λ, here we

use simplex method to get the its value. Using value iteration and policy iterations, we have

the outline of the procedure to find an improved values of V as follows:
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V h1,h2(nh2, x, p)

= min
r∈Uh1,h2

∑

y

ph1,h2((nh2, x)(nh2 + h2, y)|p, r)V h1,h2(nh2 + h2, y, p)

+ph1,h2(nh2, y)|x, p, r)V h1,h2(y, x, p)

+

m∑

i=1

V h1,h2(nh2 + h2, x, p
i + h1)

1
σ2

0

[pi(g(i)− α)]2h2 + 2h1(
∑m

j=1 q
jipj)+h2

2h21

+

m∑

i=1

V h1,h2(nh2 + h2, x, p
i − h1)

1
σ2

0

[pi(g(i)− α)]2h2 + 2h1(
∑m

j=1 q
jipj)−h2

2h21

+
m∑

i=1

V h1,h2(nh2 + h2, x, p
i)[−

1
σ2

0

[pi(g(i)− α)]2h2

h21
−
h2|

∑m

j=1 q
jipj|

h1
],

V h1,h2(T, x, p) = (x− 1

2
)2 for x 6∈ [0, 2].

(6.1)

The corresponding control u can be obtained as follows:

uh1,h2(nh2, x, p)

= arg min
r∈Uh1,h2

∑

y

ph1,h2((nh2, x)(nh2 + h2, y)|p, r)V h1,h2(nh2 + h2, y, p)

+ph1,h2(nh2, y)|x, p, r)V h1,h2(y, x, p)

+

m∑

i=1

V h1,h2(nh2 + h2, x, p
i + h1)

1
σ2

0

[pi(g(i)− α)]2h2 + 2h1(
∑m

j=1 q
jipj)+h2

2h21

+
m∑

i=1

V h1,h2(nh2 + h2, x, p
i − h1)

1
σ2

0

[pi(g(i)− α)]2h2 + 2h1(
∑m

j=1 q
jipj)−h2

2h21

+

m∑

i=1

V h1,h2(nh2 + h2, x, p
i)[−

1
σ2

0

[pi(g(i)− α)]2h2

h21
−
h2|

∑m

j=1 q
jipj |

h1
].

(6.2)

The value function is plotted in Figure 1, the corresponding control in Figure 2, and the

efficient frontier in Figure 3.

6.2 Further Remarks

This paper developed a numerical approach for a controlled switching diffusion system with

a hidden Markov chain. Using Markov chain approximation techniques combined with the

Wonham filtering, a numerical scheme was developed. In contrast to the existing work in

the literature, we used Markov chain approximation for the diffusion component and used a

direct discretization for the Wonham filter. Our on-going effort will be directed to use the

approach developed in this work to treat certain networked systems that involve platoon

controls with wireless communications.
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Figure 1: Approximate value function with h1 = 0.25 and h2 = 0.001 for fixed expectation
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Figure 2: Optimal feedback control with h1 = 0.25 and h2 = 0.001 for fixed expectation
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Figure 3: Efficient frontier h1 = 0.25 and h2 = 0.001 when using simplex method to find out
the optimal λ
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