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Abstract

In this paper, we are concerned with the regional boundary controllability of the Riemann-

Liouville time fractional diffusion systems of order α ∈ (0, 1]. The characterizations of strate-

gic actuators are established when the systems studied are regionally boundary controllable.

The determination of control to achieve regional boundary controllability with minimum

energy is explored. We also show a connection between the regional internal controllability

and regional boundary controllability. Several useful results for the optimal control from an

implementation point of view are presented in the end.
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1. Introduction

In the past several decades, a lot of work has been carried out to deal with the problem of

steering a system to a target state, especially after the introduction of the notions of actuators

and sensors [1, 2]. However, in many real-world applications, we are only concerned with

those cases where the target states of the problem studied are defined in a given subregion of

the whole space domain. Then the regional idea emerges and we refer the reader to [3, 4, 5]

for more information on the concept of regional analysis for the Gaussian diffusion process.

Besides, it should be pointed out that not only does the concept of regional analysis make

sense closer to real-world problems, it also generalizes the results of existence contributions.

In addition, after the introduction of continuous time random walks (CTRWs) by Mon-

troll and Weiss [6], the anomalous diffusion equation of fractional order has attracted increas-

ing interest and has been proven to be a useful tool in modeling many real-world problems
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[7, 8, 9, 10, 11]. More precisely, the mean squared displacement (MSD) of anomalous diffu-

sion process is described by a power law of fractional exponent, which is smaller (in the case

of sub-diffusion) or bigger (in the case of super-diffusion) than that of Brownian motion. It

is confirmed that the time fractional diffusion system, where the traditional first order time

derivative is replaced by a Riemann-Liouville time fractional derivative of order α ∈ (0, 1],

can be used to well characterize those sub-diffusion process [7, 8]. For example, the flow

through porous media microscopic processes [12], or swarm of robots moving through dense

forest [13] etc. For the fractional calculus, as we all know, it has shown great potential in

science and engineering applications and some phenomena such as self-similarity, nonsta-

tionary, non-Gaussian process and short or long memory process are all closely related to

fractional calculus [14, 15, 16]. It is now widely believed that, using fractional calculus in

modeling can better capture the complex dynamics of natural and man-made systems, and

fractional order controls can offer better performance not achievable before using integer

order controls [17, 18], which in fact raise important theoretical challenges and open new

research opportunities.

Motivated by the argument above, the contribution of this present work is on the regional

boundary controllability of the anomalous transport process described by time fractional dif-

fusion systems. More precisely, for an open bounded subset Ω ⊆ Rn with smooth boundary

∂Ω, we consider:

• A subregion Γ of ∂Ω which may be unconnected.

• Various kinds of actuators (zone, pointwise, internal or boundary) acting as controls.

The rest of this paper is organized as follows. The mathematical concept of regional boundary

controllability and several preliminaries are presented in the next section, then we present an

example which is regional boundary controllability but not globally boundary controllable.

Section 3 is focused on the characterizations of Γ−strategic actuators and our main result

on regional boundary controllability with minimum energy problem is given in Section 4. In

Section 5, a connection between internal and boundary regional controllability is established

and at last, we work out some useful results for the optimal control from an implementation

point of view.

2. Regional boundary controllability

2.1. Problem statement

In this paper, we consider the following abstract time fractional diffusion system:






0D
α
t z(t) = Az(t) +Bu(t), t ∈ [0, b],

lim
t→0+

0I
1−α
t z(t) = z0,

(2.1)
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where A generates a strongly continuous semigroup {Φ(t)}t≥0 on the Hilbert space Z :=

H1(Ω), z ∈ L2(0, b;Z) and the initial vector z0 ∈ Z. It is supposed that B : Rp →

Z is the control operator and u ∈ L2(0, b;Rp) depends on the number and structure of

actuators. Moreover, the Riemann-Liouville fractional derivative 0D
α
t and the Riemann-

Liouville fractional integral 0I
α
t are, respectively, given by [15],[16]

0D
α
t z(t) =

d

dt
0I

1−α
t z(t), α ∈ (0, 1] and 0I

α
t z(t) =

1

Γ(α)

∫ t

0

(t− s)α−1z(s)ds, α > 0. (2.2)

Definition 2.1. [19] For any given f ∈ L2 (0, b;Z) , α ∈ (0, 1], a function v ∈ L2 (0, b;Z) is
said to be a mild solution of the following system

{

0D
α
t v(t) = Av(t) + f(t), t ∈ [0, b],

lim
t→0+

0I
1−α
t v(t) = v0 ∈ Z, (2.3)

if it satisfies

z(t) = Kα(t)v0 +

∫ t

0

(t− s)α−1Kα(t− s)f(s)ds, (2.4)

where Kα(t) = α
∫∞

0
θφα(θ)Φ(t

αθ)dθ, {Φ(t)}t≥0 is the strongly continuous semigroup gener-

ated by A, φα(θ) =
1
α
θ−1− 1

αψα(θ
− 1

α ) and ψα is a probability density function defined by

ψα(θ) =
1

π

∞
∑

n=1

(−1)n−1θ−αn−1Γ(nα + 1)

n!
sin(nπα), θ > 0. (2.5)

In addition, we have [20, 21]
∫ ∞

0

ψα(θ)dθ = 1 and

∫ ∞

0

θνφα(θ)dθ =
Γ(1 + ν)

Γ(1 + αν)
, ν ≥ 0. (2.6)

By Lemma 2.1, the mild solution z(., u) of (2.1) can be given by

z(t, u) = Kα(t)z0 +

∫ t

0

(t− s)α−1Kα(t− s)Bu(s)ds. (2.7)

Let H : L2(0, b;Rp) → Z be

Hu =

∫ b

0

(b− s)α−1Kα(b− s)Bu(s)ds, ∀u ∈ L2(0, b;Rp). (2.8)

Suppose that {Φ∗(t)}t≥0, generated by the adjoint operator of A, is also a strongly continuous

semigroup on the space Z. For any v ∈ Z, it follows from 〈Hu, v〉 = 〈u,H∗v〉 that

H∗v = B∗(b− s)α−1K∗
α(b− s)v, (2.9)

where 〈·, ·〉 is the duality pairing of space Z, B∗ is the adjoint operator of B and

K∗
α(t) = α

∫ ∞

0

θφα(θ)Φ
∗(tαθ)dθ.
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Let γ : H1(Ω) → H
1

2 (∂Ω) be the trace operator of order zero, which is linear continuous

and surjective, γ∗ denotes the adjoint operator. Moreover, if Γ ⊆ ∂Ω, pΓ : H
1

2 (∂Ω) → H
1

2 (Γ)

defined by

pΓz := z|Γ (2.10)

and for any z̄ ∈ H
1

2 (Γ), the adjoint operator p∗Γ can be given by

p∗Γz̄(x) :=

{

z̄(x), x ∈ Γ,

0, x ∈ ∂Ω\Γ.
(2.11)

2.2. Definition and characterizations

Let ω ⊆ Ω be a given region of positive Lebesgue measure. Denote the projection operator

on ω by the restriction map

pω : H1(Ω) → H1(ω), (2.12)

then we are ready to state the following definitions.

Definition 2.2. The system (2.1) is said to be exactly (respectively, approximately) region-
ally controllable on ω at time b if for any yb ∈ H1(ω), given ε > 0, there exists a control
u ∈ L2(0, b;Rp) such that

pωz(b, u) = yb
(

respectively, ‖pωz(b, u)− yb‖H1(ω) ≤ ε
)

. (2.13)

Definition 2.3. The system (2.1) is said to be exactly (respectively, approximately) region-

ally boundary controllable on Γ ⊆ ∂Ω at time b if for any zb ∈ H
1

2 (Γ), given ε > 0, there
exists a control u ∈ L2(0, b;Rp) such that

pΓ (γz(b, u)) = zb

(

respectively, ‖pΓ (γz(b, u))− zb‖
H

1
2 (Γ)

≤ ε
)

. (2.14)

Proposition 2.1. The following properties are equivalent:
(1) The system (2.1) is exactly regionally boundary controllable on Γ at time b;

(2) Im(pΓγH) = H
1

2 (Γ);

(3) Ker(pΓ) + Im(γH) = H
1

2 (∂Ω);

(4) For any z ∈ H
1

2 (Γ), there exists a positive constant c such that

‖z‖
H

1
2 (Γ)

≤ c‖H∗γ∗p∗Γz‖L2(0,b;Rp). (2.15)

Proof. By Definition 2.3, it is not difficult to see that (1) ⇔ (2).

(2) ⇒ (3) : For any z ∈ H
1

2 (Γ), let ẑ be the extension of z to H
1

2 (∂Ω). Since Im(pΓγH) =

H
1

2 (Γ), there exists u ∈ L2(0, b;Rp), z1 ∈ Ker(pΓ) such that ẑ = z1 + γHu.

(3) ⇒ (2) : For any z̃ ∈ H
1

2 (∂Ω), z̃ = z1 + z2, where z1 ∈ Ker(pΓ) and z2 ∈ Im(γH).

Then there exists a control u ∈ L2(0, b;Rp) such that γHu = z2. Hence, it follows from the

definition of pΓ that Im(pΓγH) = H
1

2 (Γ).
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(1) ⇔ (4) : The equivalence between (1) and (4) can be deduced from the following

general result [22]: Let E, F,G be reflexive Hilbert spaces and f ∈ L(E,G), g ∈ L(F,G).

Then the following two properties are equivalent

(1) Im(f) ⊆ Im(g),

(2) ∃ γ > 0 such that ‖f ∗z∗‖E∗ ≤ γ‖g∗z∗‖F ∗ , ∀z∗ ∈ G.

By choosing E = G = H
1

2 (Γ), F = L2(0, b;Rp), f = Id
H

1
2 (Γ)

and g = pΓγH , then we

complete the proof.

Proposition 2.2. There is an equivalence among the following properties:
〈1〉 The system (2.1) is approximately regionally boundary controllable on Γ at time b;

〈2〉 Im(pΓγH) = H
1

2 (Γ);

〈3〉 Ker(pΓ) + Im(γH) = H
1

2 (∂Ω);
〈4〉 The operator pΓγHH

∗γ∗p∗Γ is positive definite.

Proof. By Proposition 2.1, 〈1〉 ⇔ 〈2〉 ⇔ 〈3〉. Finally, we show that 〈2〉 ⇔ 〈4〉. In fact, since

Im(pΓγH) = H
1

2 (Γ) ⇔ (pΓγHu, z)H1/2(Γ) = 0 for any u ∈ L2(0, b;Rp) implies z = 0,

where (·, ·)H1/2(Γ) is the inner product of H
1

2 (Γ). Let u = H∗γ∗p∗ωz. Then we see that

Im(pΓγH) = H
1

2 (Γ) ⇔ (pΓγHH
∗γ∗p∗Γz, z)H1/2(Γ) = 0 implies z = 0, z ∈ H

1

2 (Γ),

i.e., the operator pΓγHH
∗γ∗p∗Γ is positive definite and the proof is complete.

Remark 2.1. (1) A system which is boundary controllable on Γ is boundary controllable on
Γ1 for every Γ1 ⊆ Γ.

(2) The definitions (2.2) can be applied to the case where Γ = ∂Ω and there exist systems
that are not boundary controllable but which are regionally boundary controllable. This is
illustrated by the following example

2.3. An example

Consider the following two dimension time fractional diffusion equation defined on Ω =

[0, 1]× [0, 1], which is excited by a zone actuator:














0D
α
t z(x, y, t) =

∂2

∂x2 z(x, y, t) +
∂2

∂y2
z(x, y, t) + pDu(t) in Ω× [0, b],

lim
t→0+

0I
1−α
t z(x, y, t) = 0 in Ω,

z(ξ, η, t) = 0 on ∂Ω × [0, b],

(2.16)

where α ∈ (0, 1], D = {0} × [d1, d2] ⊆ Ω, A = ∂2

∂x2 +
∂2

∂y2
with λij = −(i2 + j2)π2, ξij(x, y) =

2aij cos(iπx) cos(jπy), aij = (1 − λij)
− 1

2 , Φ(t)z =
∞
∑

i,j=1

exp(λijt)(z, ξij)Zξij and Kα(t)z(x) =

α
∫∞

0
θφα(θ)Φ(t

αθ)z(x)dθ =
∞
∑

i,j=1

Eα,α(λijt
α)(z, ξij)Zξij(x). Further, since

(H∗γ∗z)(t) = (b− t)α−1
∞
∑

i,j=1

Eα,α(λij(b− t)α)(γ∗z, ξij)Z(pD, ξij)Z

5



and (pD, ξij)Z =
2aij
jπ

[sin(jπd2)− sin(jπd1) + jπ(cos(jπd2)− cos(jπd1)], there exists d1, d2 ∈

[0, 1] satisfying Ker(H∗) 6= {0} (Im(pDH) 6= L2(ω)), i.e., the system (2.16) is not boundary

controllable.

Moreover, let d1 = 0, d2 =
1
2
, Γ = {0}×[1

4
, 3
4
] and z∗ = ξij(0, y), (i, j = 4k, k = 1, 2, 3, · · ·).

Obviously, z∗ is not reachable on ∂Ω. However, since

Eα,α(t) > 0 (t ≥ 0) and (pD, ξij)Z =
2aij
jπ

[sin(jπ/2) + jπ(cos(jπ/2)− 1)] , j = 1, 2, · · · ,

we see that

(H∗γ∗p∗Γz∗)(t) =
∞
∑

i,j=1

Eα,α(λij(b−t)α)

(b−t)1−α (ξij, γ
∗z∗)H1/2(Γ)(pD, ξij)Z

=
∞
∑

i,j=1,j 6=4k

2aijEα,α(λij(b−t)α)

jπ(b−t)1−α (ξij, γ
∗z∗)H1/2(Γ)

× [sin(jπ/2) + jπ(cos(jπ/2)− 1)]

6= 0.

(2.17)

Hence z∗ is regionally boundary controllable on Γ = {0} × [1
4
, 3
4
].

To end this section, we finally recall a necessary lemma to be used afterwards.

Lemma 2.1. [23] Let Ω ⊆ Rn be an open set and C∞
0 (Ω) be the class of infinitely differen-

tiable functions on Ω with compact support in Ω and u ∈ L1
loc(Ω) be such that

∫

Ω

u(x)ψ(x)dx = 0, ∀ψ ∈ C∞
0 (Ω). (2.18)

Then u = 0 almost everywhere in Ω.

3. Regional strategic actuators

The characteristic of actuators to achieve the regionally approximately boundary con-

trollable of the system (2.1) will be explored in this section.

As cited in [1], a actuator can be expressed by a couple (D, g) where D ⊆ Ω is the support

of the actuator and g is its spatial distribution. To state our main results, it is supposed that

the control are made by p actuators (Di, gi)1≤i≤p and let Bu =
p
∑

i=1

pDi
gi(x)ui(t), where p ∈ N,

gi(x) ∈ Z, u = (u1, u2, · · · , up) and ui(t) ∈ L2(0, b). As cited in [24], all these distributed

parameter systems with moving sensors and actuators form the so-called cyber-physical

systems, which are rich in real world applications. For instance, in the pest spreading process,

p is the number the spreading machines and ui(·) stands for the control input strategic of

every spreading machines with respect to time t [25]. Then the system (2.1) can be rewritten

as










0D
α
t z(t, x) = Az(t, x) +

p
∑

i=1

pDi
gi(x)ui(t), (t, x) ∈ [0, b]× Ω,

lim
t→0+

0I
1−α
t z(t, x) = z0(x).

(3.1)

6



Moreover, we suppose that −A is a self-adjoint uniformly elliptic operator, by [26], we get

that there exists a sequence (λj, ξjk) : k = 1, 2, · · · , rj, j = 1, 2, · · · such that

(1) For each j = 1, 2, · · ·, λj is the eigenvalue of operator A with multiplicities rj and

0 > λ1 > λ2 > · · · > λj > · · · , lim
j→∞

λj = −∞.

(2) For each j = 1, 2, · · ·, ξjk(k = 1, 2, · · · , rj) is the orthonormal eigenfunction corre-

sponding to λj , i.e.,

(ξjkm, ξjkn) =

{

1, km = kn,

0, km 6= kn,

where 1 ≤ km, kn ≤ rj, km, kn ∈ N and (·, ·) is the inner product of space Z.

Hence, the sequence {ξjk, k = 1, 2, · · · , rj, j = 1, 2, · · ·} is a orthonormal basis in Z, the

strongly continuous semigroup {Φ(t)}t≥0 on Z generated by A is

Φ(t)z(x) =

∞
∑

j=1

rj
∑

k=1

exp(λjt)(z, ξjk)ξjk(x), x ∈ Ω (3.2)

and for any z(x) ∈ Z, it can be expressed as z(x) =
∞
∑

j=1

rj
∑

k=1

(z, ξjk)ξjk(x).

Definition 3.1. A actuators (suite of actuators) is said to be Γ−strategic if the system
under consideration is regionally approximately boundary controllable on Γ at time b.

Before to show our main result in this part, by Eq.(3.2), for any z ∈ L2(Ω), we have

Kα(t)z(x) = α

∫ ∞

0

θφα(θ)Φ(t
αθ)z(x)dθ

= α

∫ ∞

0

θφα(θ)

∞
∑

j=1

rj
∑

k=1

exp(λjt
αθ)(z, ξjk)ξjk(x)dθ

=

∞
∑

j=1

rj
∑

k=1

∞
∑

n=0

α(λjt
α)n

n!
(z, ξjk)ξjk(x)

∫ ∞

0

θn+1φαdθ

=
∞
∑

j=1

rj
∑

k=1

∞
∑

n=0

α(n+ 1)!(λjt
α)n

Γ(αn+ α+ 1)n!
(z, ξjk)ξjk(x)

=

∞
∑

j=1

rj
∑

k=1

αE2
α,α+1(λjt

α)(z, ξjk)ξjk(x),

where Eµ
α,β(z) :=

∞
∑

n=0

(µ)n
Γ(αn+β)

zn

n!
, z ∈ C, α, β, µ ∈ C, Reα > 0 is the generalized Mittag-

Leffler function in three parameters and here, (µ)n is the Pochhammer symbol defined by

(see [27], Section 2.1.1)

(µ)n = µ(µ+ 1) · · · (µ+ n− 1), n ∈ N. (3.3)

7



If α, β ∈ C such that Reα > 0, Re β > 1, then (see Section 2.3.4, [28] or Section 5.1.1, [29])

αE2
α,β = Eα,β−1 − (1 + α− β)Eα,β. (3.4)

It then follows that

Kα(t)z(x) =
∞
∑

j=1

rj
∑

k=1

Eα,α(λjt
α)(z, ξjk)ξjk(x) (3.5)

and

∫ t

0

τα−1Kα(τ)Bu(t− τ)dτ =
∞
∑

j=1

rj
∑

k=1

p
∑

i=1

∫ t

0

gijkui(t− τ)τα−1Eα,α(λjτ
α)dτξjk(x), (3.6)

where gijk = (pDi
gi, ξjk), j = 1, 2, · · ·, k = 1, 2, · · · , rj, i = 1, 2, · · · , p and Eα,β(z) :=

∞
∑

i=0

zi

Γ(αi+β)
, Reα > 0, β, z ∈ C is known as the generalized Mittag-Leffler function in two

parameters.

Theorem 3.1. For any j = 1, 2, · · ·, define p× rj matrices Gj as

Gj =











g1j1 g1j2 · · · g1jrj
g2j1 g2j2 · · · g2jrj
...

...
...

...
gpj1 gpj2 · · · gpjrj











, (3.7)

where gijk = (pDi
gi, ξjk), j = 1, 2, · · ·, k = 1, 2, · · · , rj, i = 1, 2, · · · , p. Then the suite of

actuators (Di, gi)1≤i≤p is said to be Γ−strategic if and only if

p ≥ r = max{rj} and rank Gj = rj for j = 1, 2, · · · . (3.8)

Proof . For any z∗ ∈ H
1

2 (Γ), denote by (·, ·)H1/2(Γ) the inner product of space H
1

2 (Γ), we

then see that

(pΓγHu, z∗)H1/2(Γ) =
∞
∑

j=1

rj
∑

k=1

p
∑

i=1

∫ b

0

τα−1Eα,α(λjτ
α)ui(b− τ)dτgijkzjk = 0, t ∈ [0, b], (3.9)

where zjk = (pΓγξjk, z∗)H1/2(Γ), j = 1, 2, · · ·, k = 1, 2, · · · , rj. Further, Lemma 2.1 gives

∞
∑

j=1

rj
∑

k=1

tα−1Eα,α(λjt
α)gijkzjk = 0p := (0, 0, · · · , 0) ∈ Rp for t > 0, i = 1, 2, · · · , p. (3.10)

Then we conclude that the suite of actuators (Di, gi)1≤i≤p is Γ−strategic if and only if

∞
∑

j=1

bα−1Eα,α(λjb
α)Gjzj = 0p ⇒ z∗ = 0, (3.11)

8



where zj = (zj1, zj2, · · · , zjrj)
T is a vector in Rrj and j = 1, 2, · · ·.

(a) If we assume that p ≥ r = max{rj} and rank Gj < rj for some j = 1, 2, · · ·, there

exists a nonzero element z̃ ∈ H
1

2 (Γ) with z̃j =
(

z̃j1, z̃j2, · · · , z̃jrj
)T

∈ Rrj such that

Gj z̃j = 0p. (3.12)

It then follows from Eα,α(λjt
α) > 0 (t ≥ 0) that we can find a nonzero vector z̃ satisfying

∞
∑

j=1

bα−1Eα,α(λjb
α)Gj z̃j = 0p. (3.13)

This means that the actuators (Di, fi)1≤i≤p are not Γ−strategic.

(b) However, on the contrary, if the actuators (Di, gi)1≤i≤p are not Γ−strategic, i.e.,

Im(pΓγH) 6= H
1

2 (Γ), then there exists a nonzero element z 6= 0n satisfying

(pΓγHu, z)H1/2(Γ) = 0 for all u ∈ L2(0, b;Rp). (3.14)

Then we can find a nonzero element zj∗ ∈ Rrj such that

Gj∗zj∗ = 0p. (3.15)

This allows us to complete the conclusion of the theorem.

4. Regional boundary controllability with minimum energy control

In this section, we explore the possibility of finding a minimum energy control when the

system (2.1) can be steered from a given initial vector z0 to a target function zb on the

boundary subregion Γ. The method used here is an extension of those in [1, 2, 3, 4, 5].

Consider the following minimization problem







inf
u
J(u) =

∫ b

0
‖u(t)‖2

Rpdt

u ∈ Ub = {u ∈ L2 (0, b;Rp) : pΓγz(b, u) = zb},
(4.1)

where, obviously, Ub is a closed convex set. We then show a direct approach to the solution

of the minimum energy problem (4.1).

Theorem 4.1. If the system (2.1) is regionally approximately boundary controllable on Γ,

then for any zb ∈ H
1

2 (Γ), the minimum energy problem (4.1) has a unique solution given by

u∗(t) = (pΓγH)∗R−1
Γ (zb − pΓγKα(b)z0) , (4.2)

where RΓ = pΓγHH
∗γ∗p∗Γ and H∗ is defined in Eq.(2.9).

9



Proof. To begin with, since the solution of (2.1) excited by the control u∗ is given by

z(t, u∗) = Kα(t)z0 +

∫ t

0

(t− s)α−1Kα(t− s)Bu∗(s)ds, (4.3)

we get that

pΓγz(b, u
∗) = pΓγ

[

Kα(b)z0 +

∫ b

0

(b− s)α−1Kα(b− s)Bu∗(s)ds

]

= pΓγKα(b)z0 + pΓγH (pΓγH)∗R−1
Γ (zb − pΓγKα(b)z0)

= zb.

Next, we show that if the system (2.1) is regionally approximately boundary controllable

on Γ at time b, then the operator RΓ is coercive. In fact, for any z1 ∈ H
1

2 (Γ), there exists a

control u ∈ L2(0, b,Rp) such that

z1 = pΓγ [Kα(b)z0 +Hu] (4.4)

and

〈RΓz1, z1〉H1/2(Γ) = ‖H∗γ∗p∗Γz1‖
2
L2(0,b,Rp)

=
∥

∥B∗(b− ·)α−1K∗
α(b− ·)γ∗p∗Γz1

∥

∥

2

L2(0,b,Rp)

≥ ‖z1‖
2
H1/2(Γ) .

Moreover, since RΓ ∈ L
(

H
1

2 (Γ), H
1

2 (Γ)
)

, by the Theorem 1.1 in [30], it follows that RΓ is

an isomorphism.

Finally, we prove that u∗ solves the minimum energy problem (4.1). For this purpose,

since pΓγz(b, u
∗) = zb, for any u ∈ L2(0, b,Rp) with pΓγz(b, u) = zb, one has

pΓγ [z(b, u
∗)− z(b, u)] = 0, (4.5)

which follows that

0 = pΓγ

∫ b

0

(b− s)α−1Kα(b− s)B [u∗(s)− u(s)]ds = pΓγH [u∗ − u] .

Thus, by

J ′(u∗)(u∗ − u) = 2

∫ b

0

〈u∗(s)− u(s), u∗(s)〉ds

= 2

∫ b

0

〈

u∗(s)− u(s), (pΓγH)∗R−1
Γ (zb − pΓγKα(b)z0)

〉

ds

= 2

∫ b

0

〈

pΓγH [u∗(s)− u(s)] , R−1
Γ (zb − pΓγKα(b)z0)

〉

ds

= 0,

it follows that J(u) ≥ J(u∗), i.e., u∗ solves the minimum energy problem (4.1) and the proof

is complete.
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5. The connection between internal and boundary regional controllability

Based on an intension of the regional controllability of integer order differential equations

developed in [3, 4], we here give a transfer on the internal and boundary regional controlla-

bility of fractional order sub-diffusion equations (2.1) and develop two types of controls, i.e.,

zone or pointwise.

5.1. Internal and boundary regional controllability

In this part, we present a internal and boundary regional controllability transfer of the

problem (2.1). To this end, suppose that z(b, u) ∈ Z and we first define a operator

T : H
1

2 (∂Ω) → H1(Ω) such that γTg = g. ∀g ∈ H
1

2 (∂Ω), (5.1)

which is linear and continuous [31]. Let zb ∈ H
1

2 (Γ) with the extension p∗Γzb ∈ H
1

2 (∂Ω) and

consider the sets

Ω1 =
{

Tp∗Γzb ∈ Z|zb ∈ H
1

2 (Γ)
}

and Ω2 = ∪
zb∈H

1/2(Γ)
Supp Tp∗Γzb. (5.2)

For any r > 0 be arbitrary sufficiently small, consider

Dr = ∪
z∈Γ

B(z, r) and let ωr = Dr ∩ Ω2, (5.3)

where B(z, r) is a ball of radius r centred in z.

Theorem 5.1. If the system (2.1) is exactly(respectively, approximately) controllable on ωr,
then it is also exactly(respectively, approximately) boundary controllable on Γ.

Proof. Let zb ∈ H
1

2 (Γ) be the target function. By utilizing the trace theorem [33], there

exists Tp∗Γzb ∈ Z with a bounded support such that γ(Tp∗Γzb) = p∗Γzb. Then

1) if the system (2.1) is exactly controllable on ωr, for any yb ∈ H1(ωr), there exists a

control u ∈ L2(0, b;Rp) such that

pωrz(b, u) = yb. (5.4)

Then pωrTp
∗
Γzb ∈ H1(ωr) and there exists a control u ∈ L2(0, b;Rp) such that

pωrz(b, u) = pωrTp
∗
Γzb and γpωrz(b, u) = p∗Γzb. (5.5)

Thus pΓγpωrz(b, u) = zb, i.e., the system (2.1) is exactly boundary controllable on Γ.

2) if the system (2.1) is approximately controllable on ωr, for and ε > 0 and any yb ∈

H1(ωr), there exists a control u ∈ L2(0, b;Rp) such that

‖pωrz(b, u)− yb‖H1(ωr)
≤ ε. (5.6)
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Then for any ε > 0, there exists a control u ∈ L2(0, b;Rp) such that

‖pωrz(b, u)− pωrTp
∗
Γzb‖H1(ωr)

≤ ε. (5.7)

Moreover, by the continuity of the trace mapping γ on H1(ωr), one has

‖γ(pωrz(b, u))− γ(pωrTp
∗
Γzb)‖H1(∂ωr)

≤ ε, (5.8)

therefore ‖pΓγ(pωrz(b, u))− zb‖H1(Γ) ≤ ε, Thus (2.1) is approximately boundary controllable

on Γ and the proof is complete.

5.2. Regional boundary target control

This part is concerned with the approach for the control which drives the problem (2.1)

from z0 to zb on Γ. Let zb ∈ H
1

2 (Γ) with the extension p∗Γzb ∈ H
1

2 (∂Ω). By Theorem 5.1, the

problem may be solved by driving the system (2.1) from z0 to yb ∈ H1(ωr) on ωr.

The following two sets will be used in our discussion.

G = {g ∈ H1(Ω) : g = 0 in Ω\ωr} and E = {e ∈ H1(Ω) : e = 0 in ωr}. (5.9)

5.2.1. Case of zone actuator

Let us consider the system (2.1) with a zone actuator (D, f) where D ⊆ Ω is the support

of the actuator and f is its spatial distribution. Then the system can be written in the form














0D
α
t z(x, t) = Az(x, t) + pDf(x)u(t) in Ω× [0, b],

lim
t→0+

0I
1−α
t z(x, t) = z0(x) in Ω,

z(x, t) = 0 on ∂Ω× [0, b].

(5.10)

For any g ∈ G, consider the system














QtD
α
b [(b− t)1−αϕ(x, t)] = A∗Q [(b− t)1−αϕ(x, t)] in Ω× [0, b],

lim
t→0+

QtI
1−α
b [(b− t)1−αϕ(x, t)] = p∗ωr

g(x) in Ω,

ϕ(x, t) = 0 on ∂Ω × [0, b].

(5.11)

where Q is a reflection operator on interval [0, b] such that

Qf(t) := f(b− t). (5.12)

By the argument in [32], we see that the following properties on operator Q hold:

Q0I
α
t f(t) = tI

α
b Qf(t), Q0D

α
t f(t) = tD

α
bQf(t) (5.13)

and

0I
α
t Qf(t) = QtI

α
b f(t), 0D

α
t Qf(t) = QtD

α
b f(t). (5.14)
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Then system (5.11) can be rewritten as














0D
α
t Q [(b− t)1−αϕ(x, t)] = A∗Q [(b− t)1−αϕ(x, t)] in Ω× [0, b],

lim
t→0+

0I
1−α
t Q [(b− t)1−αϕ(x, t)] = p∗ωr

g(x) in Ω,

ϕ(x, t) = 0 on ∂Ω × [0, b]

(5.15)

and its unique mild solution is ϕ(x, t) = (b− t)α−1K∗
α(b− t)p∗ωr

g(x). Moreover, we define the

semi-norm

g ∈ G→ ‖g‖2G =

∫ b

0

(f, ϕ(·, t))2L2(D)dt (5.16)

on G and obtain the following result.

Lemma 5.1. (5.16) defines a norm on G if the system (5.10) is regionally approximately
controllable on ω at time b.

Proof. For any g ∈ G, if the system (5.10) is regionally approximately controllable on ω,

we have

Ker(H∗p∗ω) = Ker
[

(b− s)α−1
(

f,K∗
α(b− s)p∗ωr

g
)

L2(D)

]

= Ker
[

(f, ϕ(·, t))L2(D)

]

= {0}.

It then follows from

‖g‖2G =

∫ b

0

(f, ϕ(·, t))2L2(D)dt = 0 ⇔ (f, ϕ(·, t))L2(D) = 0

that ‖ · ‖G is a norm of space G and the proof is complete.

Moreover, let u(t) = (f, ϕ(·, t))L2(D) and decomposed the system (5.10) into an au-

tonomous system and a homogeneous initial condition one














0D
α
t ψ1(x, t) = Aψ1(x, t) + pDf(x) (f, ϕ(·, t))L2(D) in Ω× [0, b],

lim
t→0+

0I
1−α
t ψ1(x, t) = 0 in Ω,

ψ1(x, t) = 0 on ∂Ω × [0, b]

(5.17)

and














0D
α
t ψ2(x, t) = Aψ2(x, t) in Ω× [0, b],

lim
t→0+

0I
1−α
t ψ2(x, t) = z0(x) in Ω,

ψ2(x, t) = 0 on ∂Ω × [0, b].

(5.18)

Let ∧ be the operator ∧ : G→ E⊥ given by

∧ g = pωrψ1(·, b), ∀g ∈ G. (5.19)

Then for any zb ∈ H1(ωr), the regional control problem on ωr is equivalent to the resolution

of the equation

∧ g = zb − pωrψ2(·, b) (5.20)

and we have the following result.
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Theorem 5.2. Assume that the system (5.10) is regionally approximately controllable on ωr

at time b, then (5.20) admits a unique solution g ∈ G and the control

u∗(t) = (f, ϕ(·, t))L2(D) (5.21)

steers the problem (5.10) to zb on ωr. Moreover, u∗ solves the minimum energy problem

inf
u
J(u) =

∫ b

0

‖u(t)‖2
Rpdt. (5.22)

Proof. From Lemma 5.1, if the system (5.10) is regionally approximately controllable on

ωr at time b, then ‖ · ‖G is a norm of space G. Let the completion of G with respect to the

norm ‖ · ‖G again by G.

Next, we show that (5.20) admits a unique solution in G. For any g ∈ G, by Eq. (5.19),

it follows that

〈g,∧g〉 = 〈g, pωrψ1(·, b)〉

=

〈

g, pωr

∫ b

0

(b− s)α−1Kα(b− s)pDf(·) (f, ϕ(·, s))L2(D)ds

〉

=

∫ b

0

‖ (f, ϕ(·, t))L2(D) ‖
2ds = ‖g‖2G.

Hence, it follows from the Theorem 1.1 in [30] that (5.20) admits a unique solution in G.

Let u = u∗ in problem (5.10), then pωrz(b, u
∗) = zb. Finally, we show that u∗ minimize

the const functional (5.22). For any u1 ∈ L2(0, b,Rp) with pωrz(b, u1) = zb, we have

pωr [z(b, u
∗)− z(b, u1)] = 0. (5.23)

Then

0 = pωr

∫ b

0

(b− s)α−1Kα(b− s)pDf(x) [u
∗(s)− u1(s)]ds.

Moreover, since

J ′(u∗)(u∗ − u1) = 2

∫ b

0

(u∗(s)− u1(s))u
∗(s)ds

= 2

∫ b

0

(u∗(s)− u1(s)) (f, ϕ(·, t))L2(D)ds

= 2

∫ b

0

(

pDf [u
∗(s)− u1(s)] , (b− t)α−1K∗

α(b− t)p∗ωr
g
)

ds

= 2

(

pωr

∫ b

0

(b− s)α−1Kα(b− s)pDf(x) [u
∗(s)− u1(s)]ds, g

)

= 0,

one has J(u) ≥ J(u∗), i.e., u∗ solves the minimum energy problem (5.22) and the proof is

complete.
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5.2.2. Case of pointwise actuator

Consider the system (2.1) with a pointwise internal actuator, which can be written in

the form














0D
α
t z(x, t) = Az(x, t) + δ(x− σ)u(t) in Ω× [0, b],

lim
t→0+

0I
1−α
t z(x, t) = z0 in Ω,

z(x, t) = 0 on ∂Ω× [0, b],

(5.24)

where σ is the actuator support. For any g ∈ G, consider (5.11) and define the semi-norm

g → ‖g‖2G =

∫ b

0

‖ϕ(σ, s)‖2ds, (5.25)

which defines a norm on G if (5.24) is regionally approximately controllable.

Similar to the argument in section 5.2.1, let u(t) = ϕ(σ, t) and we consider the following

system














0D
α
t ψ1(x, t) = Aψ1(x, t) + δ(x− σ)ϕ(σ, t) in Ω× [0, b],

lim
t→0+

0I
1−α
t ψ1(x, t) = 0 in Ω,

ψ1(x, t) = 0 on ∂Ω × [0, b]

(5.26)

and














0D
α
t ψ2(x, t) = Aψ2(x, t) in Ω× [0, b],

lim
t→0+

0I
1−α
t ψ2(x, t) = z0(x) in Ω,

ψ2(x, t) = 0 on ∂Ω × [0, b].

(5.27)

Then the regional control problem on ωr is equivalent to the resolution of the equation

∧ g = zb − pωrψ2(·, b) (5.28)

and we see the following result.

Theorem 5.3. Assume that the system (5.24) is regionally approximately controllable on ωr

at time b, then (5.28) admits a unique solution g ∈ G and the control

u∗(t) = ϕ(σ, t) (5.29)

steers (5.10) to zb on ωr. Moreover, this control minimize the cost functional (5.22).

5.2.3. Simulation

The resolution of the regional boundary control problem may be seen via the following

simplified steps (see the case of pointwise actuator for example).

1) Initial data Ω, Γ, zb and the actuator;

2) Solve the problem (5.28) (→ g);
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Figure 1: Final reached state and target function on Γ ⊆ ∂Ω at time t = 5.

3) Solve the problem (5.11) (→ ϕ(σ, t));

4) Apply the control u∗(t) = ϕ(σ, t).

For example, consider the system (2.16) and let Ω = [0, 1]× [0, 1], Γ = {0} × [1/4, 3/4],

b = 5. For the target function zb on Γ ⊆ ∂Ω, we assume that

zb(0, y) =















0, 0 ≤ y < 1/4;

0.017 + 4(y − 1/4)2(y − 3/4)2, 1/4 ≤ y ≤ 3/4;

0, 3/4 < y ≤ 1

(5.30)

and the actuator is supposed to be located in D = {0} × {0.5} ⊆ Ω.

Figure 1 shows how the final reached state is very close to the target function on Γ ⊆ ∂Ω

at time t = 5 when α = 0.4, 0.6, 0.8, 1.0. This also implies that time fractional diffusion

systems can offer better performance compared with those using integer order distributed

parameter systems. Moreover, when α = 0.4, the corresponding control input, which is

calculated by the formula (5.29), is presented at Figure 2.

6. CONCLUSIONS

In this paper, the regional boundary controllability of the Riemann-Liouville time frac-

tional diffusion systems of order α ∈ (0, 1] is discussed, which is motivated by many realistic

situation encountered in various applications. The results here provide some insights into

the qualitative analysis of the design of fractional order diffusion equations, which can also

be extended to complex fractional order distributed parameter dynamic systems. Various
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Figure 2: Control input function, which is calculated by the formula (5.29).

open questions are still under consideration. The problem of constrained control as well as

the case of fractional order distributed parameter dynamic systems with more complicated

regional sensing and actuation configurations are of great interest. For more information on

the potential topics related to fractional order distributed parameter systems, we refer the

readers to [34] and the references therein.
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