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Abstract: This paper considers the consensus problem for a network of agents that have double integra-
tor dynamics. A protocol is proposed to achieve a consensus-based rendezvous of agents that depends
only on the sign of the relative positions and the sign of the individual velocity. The problem is for-
mulated in terms of differential inclusions with Filippov solutions. A detailed analysis of the Filippov
set-valued map of the vector field of the closed-loop system is provided, based on which the proposed
protocol is proven to attain the consensus of the agent positions with double integrator dynamics. To
prove the convergence, the invariant set of the trajectories of agents is investigated based on a general-
ized theory of the invariance principle. Numerical examples are provided to illustrate the convergence
of the agents via the proposed protocol.
Keywords: consensus control, discontinuous dynamical systems, Filippov solutions, stability, invari-
ance principle.

1. Introduction

Consensus problems of agents over networks have been receiving a great deal of attention in the last
two decades as an approach to solving problems such as formation, distributed estimation, and deci-
sion making in complex and large-scale systems. It is widely known that linear protocols can achieve
consensus for agents that have single or double integrator dynamics based on relative feedback of the
state variables (see, e.g. Ren & Beard (2008)). There are plenty of advanced works to cope with issues
such as time delays and time-varying and switching communication topologies. Moreover, nonlinear
discontinuous protocols have been studied for the consensus control of single and double integrators
with binary or quantized relative positions and velocities. These protocols are attractive from an en-
gineering point of view, allowing coarse measurements and reducing the amount of communication.
Stability analysis for discontinuous dynamical systems based on differential inclusions has been applied
to prove a consensus under such protocols, where the Filippov solution has been employed in many of
the literature. In Cortés (2006) and Chen et. al. (2011), finite-time convergent protocols are presented
for agents with single integrator dynamics. For problems with single integrator dynamics, Dimarogonas
& Johansson (2010), Ceragioli et. al. (2011), and Frasca (2012) proposed protocols that work with quan-
tized relative values of the state variable. In Guo & Dimarogonas (2013), quantized relative feedback
is investigated for both single and double integrator dynamics. For double integrators, the convergence
to a consensus point with logarithmically quantized measurements is proved. However, the agents with
uniform quantizers, including quantizers that output binary values, are only shown to approach some
neighborhood of a consensus point.

In this paper, we consider the consensus problem for a network of agents that have double integrator
dynamics. The proposed protocol achieves a consensus-based rendezvous. Namely, each agent gathers
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the relative positions of communicable agents and applies the protocol to determine the control input by
also taking into account its own velocity. In particular, the protocol only depends on the sign of the rel-
ative positions and the sign of the individual velocity. We also consider the case where an exact velocity
is available. The problem involves discontinuous dynamics because of the discretized feedback of the
relative positions. We formulate the consensus problem in terms of differential inclusions and analyze
the system in the framework of the Filippov solution (Filippov (1988)). The stability analysis methods
of Shevitz & Paden (1994), Fischer et. al. (2013), and Bacciotti & Ceragioli (1999) are employed, with
certain modifications for the problem. We provide a detailed analysis of the Filippov set-valued map of
the vector field of the closed-loop system. This reveals that the set-valued map is compact, convex, and
symmetric with respect to a certain point, by which the generalized time derivative (Shevitz & Paden
(1994)) of a Lyapunov-like function is proved to be included in a singleton with a negative element.
After showing stability using this approach, we investigate the trajectories of the agents to clarify that
any point of the ω-limit set (Shevitz & Paden (1994), Bacciotti & Ceragioli (1999)) of any trajectory is
indeed a consensus point. These results orchestrate to conclude that the proposed protocol attains the
consensus-based rendezvous via feedback with binary relative positions.

The rest of the paper is organized as follows. In Section 2, we formulate the consensus control
problem with an agent network and propose a protocol with binary relative positions and a binary or
linear velocity. Section 3 is devoted to preliminaries on the Filippov solution for differential inclusions
and stability analysis. Based on the methods provided in Section 3, we prove the consensus of the
feedback system in Section 4 by showing results on an analysis of the Filippov set-valued map and
stability analysis based on the invariant principle. Section 5 presents numerical examples that illustrate
the protocol. Lastly, we conclude the paper in Section 6.

Notation. For a set S ⊂ R
n, coS is the convex hull of S and coS is the convex closure of S. The k-

norm of x = (x1,x2, . . . ,xn) ∈R
n is written as |x|k = (∑k

i=1 |xi|k)1/k, while the Euclidean norm is denoted
by |x| without the subscript. The elements of Rn are regarded as a column vector if they appear in
expressions with matrices and xT denotes the transpose of x. The identity matrix of Rn×n is denoted by
In. Let Br(x) stand for an open ball with center x and radius r. The distance between x ∈R

n and Y ⊂R
n

is dist(x,Y ) = infy∈Y |x− y|. Let μ(S) denote the Lebesgue measure of S ⊂ R
n.

2. Formulation of the consensus problem

Let A = {1,2, . . . ,n} be the set of agents and E ⊂ {(i, j) ∈ A ×A } be the set of pairs of agents in A
that can communicate with each other to obtain information on their relative position. We assume that
graph G = (A ,E ) is undirected and connected. Let J i = { j ∈ A : (i, j) ∈ E } be the set of the agents
connected to agent i. The dynamics of each agent is given by

ṗi = qi, q̇i = ui, i = 1,2, . . . ,n, (2.1)

where pi ∈R is the position, qi ∈R is the velocity, and ui is the force, which is the control input. Without
loss of generality, only scalar variables pi and qi are considered for each agent. We assume that agent i
can only measure the sign of its velocity qi and the sign of relative positions p j − p j to agents j ∈ J i.
The goal of the control is to drive the agents to converge to a consensus point for their position, namely,

⎧⎨
⎩

lim
t→∞

(pi(t)− p j(t)) = 0, i = 1,2, . . . ,n, i �= j,

lim
t→∞

qi(t) = 0, i = 1,2, . . . ,n.
(2.2)
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For this purpose, assuming the availability of the measurements of each agent stated above, we set
control input ui as a consensus protocol, given as follows:

ui =−αsi(p)−β vi(q), i = 1,2, . . . ,n, (2.3)

where α and β are constants satisfying α > β > 0. Functions si(·) and vi(·) are defined as

si(p) = ∑
j∈J i

sgn(pi − p j), vi(q) = sgnqi, i = 1,2, . . . ,n, (2.4)

where sgn is the signum function, defined for a ∈R as

sgna =

⎧⎨
⎩

1, a > 0,
0, a = 0,

−1, a < 0.

Setting

p =

⎡
⎢⎢⎢⎣

p1

p2

...
pn

⎤
⎥⎥⎥⎦ , q =

⎡
⎢⎢⎢⎣

q1

q2

...
qn

⎤
⎥⎥⎥⎦ , u =

⎡
⎢⎢⎢⎣

u1

u2

...
un

⎤
⎥⎥⎥⎦ , s(p) =

⎡
⎢⎢⎢⎣

s1(p)
s2(p)

...
sn(p)

⎤
⎥⎥⎥⎦ , v(q) =

⎡
⎢⎢⎢⎣

v1(q)
v2(q)

...
vn(q)

⎤
⎥⎥⎥⎦ ,

the closed-loop system is represented as

ẋ = f (x), x ∈ R
2n, (2.5)

where

x =
[

p
q

]
, f (x) =

[
q

−αs(p)−β v(q)

]
. (2.6)

This system has discontinuities at points for which pi = p j, j ∈ J i and qi = 0, i = 1,2, . . . ,n.
After giving the main results on the consensus (2.2) with protocol (2.3)–(2.4), we mention on the

case where vi(q) in (2.4) is replaced with

vi(q) = qi, i = 1,2, . . . ,n (2.7)

and the condition on the gains is relaxed to α,β > 0, where the condition α > β is not required. The
protocol with (2.7) can be implementable if each agent has a precise internal sensor to detect its velocity.
With this linear v(q), it is shown in Subsection 4.5 that the agents can attain the average consensus, i.e.
each pi(t) converges to the average of pi(0), i = 1,2, . . . ,n if the average of qi(0), i = 1,2, . . . ,n is zero.

3. Preliminaries for the Lyapunov methods for discontinuous dynamical systems

This section is devoted to the preliminaries for the Lyapunov methods for the stability analysis of dis-
continuous dynamical systems within the framework of Filippov (1988).
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3.1 Differential inclusions with Filippov solution

We formulate a differential inclusion for system (2.5) and consider the Filippov solution. For notational
simplicity, in this section, we let x ∈ R

n in (2.5). The Filippov set-valued map is defined as

K[ f ](x) =
⋂

δ>0

⋂
μ(N)=0

co f (Bδ (x)\N).

DEFINITION 3.1 (Filippov (1988)) A function x(t) is called a Filippov solution of the differential equa-
tion ẋ = f (x), x ∈ R

n, over [t0, t1] with t0 < t1 with initial condition x(t0) = x0, if x(t) is absolutely
continuous and satisfies the following differential inclusion:

ẋ(t) ∈ K[ f ](x(t)) (3.1)

for almost all t ∈ [t0, t1] satisfying x(t0) = x0.

If f : Rn → R
n is Lebesgue measurable and locally essentially bounded (i.e. f ∈ L∞

loc(R
n,Rn)),

Filippov set-valued map (3.1) is upper semicontinuous with F(x) being non-empty, bounded, closed,
and convex at each x. Hence, there exists at least one Filippov solution x(t) satisfying an initial condition
x(t0) = x0, defined for t ∈ [t0, t1] with some t1 > t0 (Filippov (1988)). The following calculus for the
Filippov set-valued maps is exploited in the following section (Bacciotti & Ceragioli (1999), see also
Paden & Sastry (1997)).

LEMMA 3.1 Map K has the following properties:

(i) If f ∈C(Rn,Rn), K[ f ](x) = { f (x)} ∀x ∈R
n.

(ii) If f ,g ∈ L∞
loc(R

n,Rn), K[ f + g](x) ⊂ K[ f ](x)+K[g](x) ∀x ∈ R
n. If f also belongs to C(Rn,Rn),

K[ f + g](x) = K[ f ](x)+K[g](x) ∀x ∈ R
n.

(iii) If G ∈C(Rn,Rm×n) and u ∈ L∞
loc(R

n,Rn), K[Gu](x) = G(x)K[u](x) ∀x ∈ R
n.

3.2 Chain rule with differential inclusions

We handle a Lyapunov-like function and its derivatives along Filippov solutions for a differential in-
clusion. For this, we invoke a generalized theory on the derivatives of functions (Clarke (1983)).
For a function V : Rn → R

m, the right directional derivative V ′(x,w) of V at x ∈ R
n to the direction

w ∈ R
n is defined as V ′(x,w) = limt→0+{V (x+wt)−V (x)}/t. The right directional derivative may

not exist. The generalized directional derivative of V at x ∈ R
n to direction w ∈ R

n is V ◦(x,w) =
limsupy→x,t→0+{V (y+wt)−V(y)}/t, which, in contrast, always exists.

DEFINITION 3.2 (Clarke (1983)) A function V : Rn → R
m is said to be regular at x ∈ R

n if it exists for
all w ∈R

n and satisfies V ′(x,w) =V ◦(x,w).

Clarke’s generalized gradient of V for a locally Lipschitz continuous function V : Rn →R is defined
as

∂V (x) = co
{

lim
k→∞

∂V (xk)

∂x

∣∣∣∣ lim
k→∞

xk = x, xk �∈ NV

}
, (3.2)

where NV is the set of x ∈R
n in which ∂V (x)/∂x does not exist. Since V is locally Lipschitz continuous,

NV has zero measure. Moreover, the following is true:

∂V (x) = K
[

∂V
∂x

]
(x). (3.3)
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LEMMA 3.2 (Shevitz & Paden (1994)) Let x(t) be a Filippov solution of ẋ = f (x) defined on [t0, t1]
and V : Rn → R be a locally Lipschitz continuous and regular function. Then, V (x(t)) is absolutely
continuous with respect to t, whereas dV (x(t))/dt exists for almost every t ∈ [t0, t1] and

dV (x(t))
dt

∈ ˙̃V (x(t))

holds for almost every t ∈ [t0, t1], where

˙̃V (x) =
⋂

ξ∈∂V (x)

ξTK[ f ](x).

REMARK 3.1 From the statement of this lemma, ˙̃V (x) may be empty for some x, while, for every
solution x(·), ˙̃V (x(t)) is not empty for almost all t ∈ [t0, t1].

3.3 Stability and invariance

In the following section, we consider a Lyapunov-like function V (x) that is positive if velocity q is not
zero or position p is not at a position of consensus. This motivates the following modified version of
Corollary 2 of Fischer et. al. (2013), as a generalization of the LaSalle-Yoshizawa Theorem to discon-
tinuous systems.

LEMMA 3.3 Let f ∈ L∞
loc(R

n,Rn) and V : Rn → R be locally Lipschitz continuous and regular. Let
C ∈ R

m×n be a constant matrix. Suppose that, for every r > 0,

Mr = sup
|Cx|�r

| f (x)| < ∞, (3.4)

and that

W1(Cx) �V (x)�W2(Cx), (3.5)

d �−W3(Cx) ∀d ∈ ˙̃V (x) (3.6)

hold for all x ∈R
n, where W1,W2 : Rm →R are continuous positive definite functions and W3 : Rm → R

is a positive semidefinite function. Then, any Filippov solution of ẋ = f (x) with the initial condition
x(0) = x0 for any x0 ∈ R

n is defined for all t � 0 and Cx(t) is bounded for all t � 0. Moreover, it holds
that

lim
t→∞

∫ t

0
W3(Cx(τ))dτ exists and is finite, and (3.7)

lim
t→∞

W3(Cx(t)) = 0. (3.8)

Proof. The lemma is proved similarly to that of the original result of Fischer et. al. (2013). Details are
given in Appendix A. �

To prove the convergence of x(t), we invoke a generalization of the invariance principle to discon-
tinuous systems, based on the notion of ω-limit points of trajectories and weak invariant sets.

DEFINITION 3.3 (Filippov (1988)) Let x(t) be an arbitrary maximal solution of (3.1) starting from an
arbitrary initial point x0 ∈R

n. A point ξ ∈R
n is said to be an ω-limit point of x if there exists a sequence

tk ∈ R that satisfies limk→∞ tk = ∞ and limk→∞ x(tk) = ξ . The ω-limit set Ω(x) of x(·) ⊂ R
n is defined

as the set of all ω-limit points of x(·).
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DEFINITION 3.4 (Filippov (1988), Bacciotti & Ceragioli (1999)) A set S ⊂ R
n is said to be the weakly

invariant set for (3.1) if, for every y0 ∈ S, there exists a maximal solution y(·) of (3.1) with y(0) = y0
and y(t) ∈ S for all t for which y(t) is defined.

Once the state is proved to be bounded, the following lemma, which is based on Chapter 3 of
Filippov (1988), will be useful for considering the convergence of x(t).

LEMMA 3.4 (Filippov (1988), Bacciotti & Ceragioli (1999)) Let x(·) be an arbitrary solution to (3.1).
Then, the ω-limit set Ω(x) is weakly invariant. If {x(t) : t � 0} is bounded, then Ω(x) �= /0 and Ω(x) is
bounded and connected. Moreover, dist(x(t),Ω(x))→ 0 as t → ∞.

4. Proof of the consensus

Using the material provided in Section 3, we prove the following main result of the consensus defined
in (2.2). The rest of this section is mainly devoted to the proof of Theorem 4.1:

THEOREM 4.1 Suppose that α > β > 0. The consensus-based rendezvous (2.2) of system (2.1) is then
achieved with protocol (2.3)–(2.4), where the solution of closed-loop system (2.5) is in the sense of
Filippov for differential inclusion (3.1).

In Subsection 4.1, we investigate Filippov set-valued map (3.1) for closed-loop system (2.5). Sub-
section 4.2 considers a candidate of a Lyapunov-like function V for system (2.5), where we call V
‘Lyapunov-like’ because it is only positive semidefinite. Clarke’s generalized gradient is analyzed to
obtain a singleton that includes ˙̃V (x). In addition, the equilibrium is determined in this Subsection.
Lemma 3.3 is then applied in Subsection 4.3 to show that p(t) is bounded and q(t) converges to zero.
Subsection 4.4 concludes the consensus based on an application of the invariance principle, where the
ω-limit set of the Filippov solutions of (2.5) proves the convergence to a consensus point. In Subsection
4.5, we show a corollary to Theorem 4.1 for the protocol with the linear feedback of q defined in (2.7).

4.1 Filippov set-valued map

From Lemma 3.1, we have

K[ f ](x) =
[

q
−αK[s](p)−β K[v](q)

]
(4.1)

for vector field (2.6), where it is immediate to see that

K[v](q) =

⎡
⎢⎢⎢⎣

Sgnq1

Sgnq2

...
Sgnqn

⎤
⎥⎥⎥⎦ , Sgnqi =

⎧⎨
⎩

{1}, qi > 0,
[−1,1], qi = 0,
{−1}, qi < 0.

Next, let ei denote the i-th standard basis of Rn and let E+ = {(i, j) ∈ E : i < j}. Then,

s(p) =
n

∑
i=1

eisi(p) =
n

∑
i=1

∑
j∈J i

ei sgn(pi − p j) = ∑
(i, j)∈E

ei sgn(pi − p j)

= ∑
(i, j)∈E+

(ei − e j)sgn(pi − p j),
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where the last equality is because of the undirectedness of E ; both (i, j) and ( j, i) are contained in E if
either one is. Using this, observe that

K[s](p) =
⋂

δ>0

⋂
μ(N)=0

co{s(Bδ (p)\N)}

=
⋂

δ>0

⋂
μ(N)=0

co
{

∑
(i, j)∈E+

(ei − e j)sgn((pi + di)− (p j + d j)) : d ∈ Bδ (0)\N
}

=
⋂

δ>0

⋂
μ(N)=0

co
{

∑
(i, j)∈E eq

+ (p)

(ei − e j)sgn((pi − p j)+ (di − d j))

+ ∑
(i, j)∈E

neq
+ (p)

(ei − e j)sgn((pi − p j)+ (di− d j)) : d ∈ Bδ (0)\N
}
, (4.2)

where E eq
+ (p) and E neq

+ (p) are defined as

E eq
+ (p) = {(i, j) ∈ E+ : pi = p j}, E neq

+ (p) = {(i, j) ∈ E+ : pi �= p j}.
Because Bδ (0) is monotonically increasing in δ , one can replace

⋂
δ>0 with

⋂
0<δ<δ for any δ > 0.

Here, let us set

δ = δ (p) =
1
4

min{|pi − p j| : (i, j) ∈ E neq
+ (p)},

which is strictly positive. Because this yields |di − d j| < 2δ (p) in (4.2), the sgn(·) in the latter sum in
(4.2) is constant independently of di − d j, while pi − p j vanishes in the former sum. Therefore,

RHS of (4.2)

=
⋂

0<δ<δ(p)

⋂
μ(N)=0

co
{

∑
(i, j)∈E

eq
+ (p)

(ei − e j)sgn(di − d j) : d ∈ Bδ (0)\N
}

+ ∑
(i, j)∈E

neq
+ (p)

(ei − e j)sgn(pi − p j). (4.3)

Obviously, from the definition of E neq
+ (p), the second term of (4.3) is s(q). Let Seq(p) denote the first

term of (4.3); if E eq
+ (p) = /0, let Seq(p) = {0}. Then,

Seq(p) =
⋂

0<δ<δ(p)

⋂
μ(N)=0

co
{

∑
(i, j)∈E

eq
+ (p)

(ei − e j)sgn(di − d j) : d ∈ R
n \N

}

=
⋂

μ(N)=0

co
{

∑
(i, j)∈E

eq
+ (p)

(ei − e j)sgn(di − d j) : d ∈ R
n \N

}
(4.4)

= co
{

∑
(i, j)∈E

eq
+ (p)

(ei − e j)sgn(di − d j) : d ∈ R
n, di �= d j if i �= j

}
. (4.5)

To obtain (4.4), we replaced Bδ (0) with R
n since sgn(·) is homogeneous of order zero. Hence the

intersection with respect to δ in (4.4) can be removed. The last equality in (4.5) is obtained in Appendix
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B, where the set in (4.5) is a convex hull of a finite number of points in R
n and hence Seq(p) is compact

and convex. We note that Seq(p) is symmetric with respect to the origin, i.e. if s0 ∈ Seq(p), −s0 ∈ Seq(p).
In fact, from Carathéodory’s Theorem (e.g. Rockafellar (1970)), if s0 ∈ Seq(p), there exist ak ∈ R and
dk ∈R

n, k = 1,2, . . . ,n+ 1, such that

s0 =
n+1

∑
k=1

ak ∑
(i, j)∈E

eq
+ (p)

(ei − e j)sgn(di
k − d j

k),
n+1

∑
k=1

ak = 1, ak � 0, k = 1,2, . . . ,n+ 1

and di
k �= d j

k if i �= j. Obviously, −s0 = ∑n+1
k=1 ak ∑(i, j)∈E

eq
+ (p)(ei − e j){sgn((−di

k)− (−d j
k))} ∈ Seq(p),

simply because −dk ∈ R
n and −di

k �=−d j
k if i �= j.

The results so far are summarized in the following lemma.

LEMMA 4.1 It holds that

K[s](p) = Seq(p)+ s(p), (4.6)

where Seq(p) is represented as in (4.5). Moreover, Seq(p) is compact, convex, and symmetric with
respect to the origin.

4.2 Candidate of a Lyapunov-like function

As a candidate of a Lyapunov-like function for system (2.5), we consider

V (x) = αV1(p)+V2(q), (4.7)

where

V1(p) =
n

∑
i=1

∑
j∈J i

|pi − p j|= 2 ∑
(i, j)∈E+

|pi − p j|, V2(q) =
1
2

n

∑
i=1

|qi|2.

These V1, V2, and V are convex and hence they are regular. Let us apply (3.3) and Lemma 3.1 to V to
get

∂V (x) = K
[

∂V
∂x

]
(x) =

⎡
⎣ αK

[
∂V1

∂ p

]
(p)

q

⎤
⎦=

[
α∂V1(p)

q

]
,

where the second equality owes to the fact that ∂V/∂x is the sum of a discontinuous (but locally essen-
tially bounded) function ∂V1/∂ p and a continuous function ∂V2/∂q = q (Paden & Sastry (1997)).

If V1 is differentiable at p,

∂V1

∂ p
(p) =

⎡
⎢⎢⎢⎢⎣

...
∑
j∈Ji

sgn(pi − p j)

...

⎤
⎥⎥⎥⎥⎦ =

n

∑
i=1

ei ∑
j∈Ji

sgn(pi − p j)

= ∑
(i, j)∈E

ei sgn(pi − p j) = ∑
(i, j)∈E+

(ei − e j)sgn(pi − p j). (4.8)
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Define NV as the set of d ∈ R
n such that ∂V1

∂ p is not differentiable at p+ d and observe that

K
[

∂V1

∂ p

]
(p)

=
⋂

δ>0

⋂
μ(N)=0

co
{

∂V1

∂ p
(w) : w ∈ Bδ (p)\N,

∂V1

∂ p
is differentiable at w

}

=
⋂

δ>0

⋂
μ(N)=0

co
{

∑
(i, j)∈E+

(ei − e j)sgn((pi + di)− (pi + p j)) : d ∈ (Bδ (0)\NV )\N,

}

=
⋂

μ(N)=0

co
{

∑
(i, j)∈E

eq
+ (p)

(ei − e j)sgn(di − d j) : d ∈ (Rn \NV )\N
}

+ ∑
(i, j)∈E

neq
+ (p)

(ei − e j)sgn(pi − p j), (4.9)

which is obtained in a similar way to the set in Lemma 4.1. Appendix C fills the gap between (4.9) and

K
[

∂V1

∂ p

]
(p) = Seq(p)+ s(p), (4.10)

where Seq(p) is characterized as in Lemma 4.1. We can now state the following intermediate result of
stability.

LEMMA 4.2 For V defined as (4.7), it holds that

∂V1(p) = Seq(p)+ s(p), ∂V (x) =
[

α∂V1(p)
q

]
, ˙̃V (x)⊂ {−β |q|1}. (4.11)

Proof. The first and the second equalities have been shown above. Let us consider ˙̃V :

˙̃V (x) =
⋂

ξ̂∈∂V (x)

ξ̂TK[ f ](x)

=
⋂

ξ∈Seq(p)

[
α(ξ + s(p))

q

]T
K[ f ](x)

=
⋂

ξ∈Seq(p)

[
α(ξ + s(p))

q

]T[ q

−α(Seq(p)+ s(p))−β K[v](q)

]

⊂ αqT
⋂

ξ∈Seq(p)

(ξ − Seq(p))−β |q|1

= αqT
⋂

ξ∈Seq(p)

⋃
η∈Seq(p)

{ξ −η}−β |q|1 = {−β |q|1},

where qT K[v](q) = |q|1 is obvious from Lemma 3.1 and the last equality is obtained via the lemma
below, which exploits the fact that Seq(p) is bounded and symmetric with respect to the origin. Thus, ˙̃V
has at most a single value −β |q|1. �
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LEMMA 4.3 Suppose that a set S ⊂R
n is not empty, symmetric with respect to the origin, and bounded.

Then,

S1 =
⋂
ξ∈S

⋃
η∈S

{ξ −η}= {0}.

Proof. By definition, x ∈ S1 ⇐⇒ (∀ξ ∈ S) (∃η ∈ S) x = ξ −η ⇐⇒ (∀ξ ∈ S) ξ − x ∈ S. Moreover,
note that S contains the origin because it is not empty. Thus, it is obvious that 0 ∈ S1 from the symmetry
of S with respect to the origin. Next, assume that x �= 0 belongs to S1. Then, as stated above,

∀ξ ∈ S ξ − x ∈ S. (4.12)

Since 0 ∈ S, choosing ξ = 0 in (4.12) yields −x ∈ S. Setting ξ = −x ∈ S in (4.12), we have −2x ∈ S.
This can be repeated to finally obtain −kx ∈ S for all positive integers k. Because x �= 0, this contradicts
the assumption that S is bounded. Therefore S1 = {0}. �

In the following lemma, we determine the equilibrium points of differential inclusion (3.1) for sys-
tem (2.5), where we say that x is an equilibrium of differential inclusion (3.1) if 0 ∈ K[ f ](x).

LEMMA 4.4 Let p,q ∈ R
n.

(i) The set-valued map K[s](p) contains 0 if and only if p1 = p2 = · · ·= pn.

(ii) If 0 �∈ ∂V1(p), it holds that min{|y| : y ∈ {K[s](p)}i} � 1 for some i with 1 � i � n, where {·}i

stands for the i-th row of the set-valued map.

(iii) Assume α > β > 0. Then, x = [ pT qT ]T is an equilibrium point of differential inclusion (3.1)
for system (2.5) if and only if p1 = p2 = · · ·= pn and q = 0.

Proof. (i) In (3.3) and Lemmas 4.1 and 4.2, K[s](p) = Seq(p)+ s(p) = ∂V1(p). Because V1 is convex,
∂V1 further coincides with the subgradient of V1 (Clarke (1983)):

∂V1(p) = {w ∈ R
n : wT(x− p)+V1(p)�V1(x) ∀x ∈ R

n}.
Hence, 0 ∈ ∂V1(p) iff V1(p) is the minimum of V1. From the definition of V1 and the assumption that
graph G is connected, the minimum of V1 is zero and attained at a point of consensus, i.e. at p with
p1 = p2 = · · ·= pn.

(ii) In view of ∂V1/∂ p at differentiable points, as shown in (4.8), and the definition of Clarke’s
generalized gradient (3.2), each row {K[s](p)}i = {∂V1(p)}i is a closed interval Ji = [mi

1,m
i
2], where

the mi
j are integers. Therefore, if 0 �∈ ∂V1(p), at least for one i, it holds that 0 �∈ Ji, which implies that

mi
1 � 1 or mi

2 �−1. This proves the claim.
(iii) The sufficiency is obvious. To prove the necessity, suppose that 0 ∈ K[ f ](x). From (4.1), we

have q = 0 and 0 ∈ −αK[s](p)−β K[v](q). The latter can be rewritten as 0 ∈ K[s](p)+ (β/α)[−1,1]n.
To conclude 0 ∈ K[s](p), assume that 0 �∈ K[s](p). Then, from (ii), there exists an i with 1 � i � n
such that min{|y| : y ∈ {K[s](p)}i} � 1. This contradicts 0 ∈ K[s](p)+ (β/α)[−1,1]n for the i-th row
because 0 < β/α < 1. Hence 0 ∈ K[s](p). From (i), it holds that p1 = p2 = · · ·= pn. �

4.3 Partial proof of stability via Lemma 3.3

We apply Lemma 3.3 to derive the conclusion of the lemma for system (2.5). Let m0 be the number of
undirected edges of graph G ; m0 = |E+|. Let E be a matrix whose row vectors consist of m0 distinct
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vectors (ei − e j)
T with (i, j) ∈ E+. Define

C =

[
E 0
0 In

]
, y =Cx =

[
E p
q

]
.

Then, by defining y ∈ R
m0+n appropriately as a function of p and q,

V (x) = α
n

∑
i=1

∑
j∈J i

|pi − p j|+ 1
2

n

∑
i=1

|qi|2 = 2α ∑
(i, j)∈E+

|pi − p j|+ 1
2

n

∑
i=1

|qi|2

= 2α
m0

∑
k=1

|yk|+ 1
2

m0+n

∑
k=m0+1

|yk|2.

Thus, setting positive definite functions as

W1(y) =W2(y) = 2α
m0

∑
k=1

|yk|+ 1
2

m0+n

∑
k=m0+1

|yk|2,

we have (3.5). Further, (3.6) holds for

W3(y) =W3(Cx) = β |q|1. (4.13)

Lastly, consider (3.4). Because |q|� r if |Cx|� r,

| f (x)|=
∣∣∣∣∣
[

q

−αs(p)−β v(q)

]∣∣∣∣∣� |q|+α|s(p)|+β |v(q)|� r+αn(n− 1)+β n< ∞. (4.14)

Thus, the assumptions of Lemma 3.3 are confirmed for the closed-loop system. Hence, E p(t) and q(t)
are bounded and q(t)→ 0 as t → ∞ for every solution x(t) = [ p(t)T q(t)T ]T of (2.5).

Moreover, the boundedness of the average position is derived from Lemma 3.3. Define

p̄(t) =
1
n

n

∑
i=1

pi(t), q̄(t) =
1
n

n

∑
i=1

qi(t),

which are the averages of p(t) and q(t), respectively. Let 1 = [ 1 1 · · · 1 ]T ∈R
n and observe that

˙̄p(t) ∈ 1
n
[ 1T 0 ]K[ f ](x(t)) = K

[
1
n
[ 1T 0 ] f

]
(x(t)) = {q̄(t)},

i.e. ˙̄p(t) = q̄(t). Because (3.7) holds for W3(Cx) = |q|1, we see that p̄(t) is bounded as

|p̄(t)− p̄(0)|=
∣∣∣∣
∫ t

0
q̄(τ)dτ

∣∣∣∣�
∫ t

0
|q̄(τ)|dτ � 1

n

∫ t

0
|q(τ)|1dτ =

1
β n

∫ t

0
W3(Cx(τ))dτ < ∞.

Because graph G is connected, the boundedness of E p(t) shown above implies that the distance between
every two agents is bounded. Combining this with the boundedness of p̄(t), we see that p(t) is bounded.
The results are summarized below.

LEMMA 4.5 Position p(t) is bounded for t � 0 and velocity q(t) tends to 0 as t → ∞.
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4.4 Proof of the consensus

Based on the results shown so far in the previous subsections, we finish the proof of Theorem 4.1 by
showing the first condition in (2.2).

Proof of Theorem 4.1. (i) Let x0 ∈ R
2n be arbitrary and let x(t) be any Filippov solution to (2.5)

with x(0) = x0. From Lemma 4.5, x(t) is bounded for all t � 0. Consider the ω-limit set Ω(x). From
Lemma 3.4, Ω(x) is not empty and is bounded, connected, and weakly invariant. This implies with the
boundedness of x(t) that there exists a maximal Filippov solution z(t) of (2.5) that lies in Ω(x) for all
t � 0. Furthermore, it holds that limt→∞ dist(x(t),Ω(x)) = 0.

(ii) Let x(t) = [ p(t)T q(t)T ]T, where q(t) → 0 (t → ∞) from Lemma 4.5. Hence, Ω(x) ⊂
{[ pT 0T ]T ∈ R

2n : p ∈ R
n}. Moreover, it holds that V1(p) is constant in Ω(x). This can be proved

as in the proof of Theorem 3 of Bacciotti & Ceragioli (1999); Recall that V (x(t)) is monotonically
decreasing and bounded below. Hence, there exists a scalar c0 such that

lim
t→∞

V (x(t)) = c0 � 0. (4.15)

Let ξ ∈ Ω(x). There then exists a sequence tk satisfying

0 � t1 < t2 < t3 < · · · , lim
k→∞

tk = ∞, lim
k→∞

x(tk) = ξ .

Combining this with (4.15), we see V (ξ ) =V (limk→∞ x(tk)) = limk→∞ V (x(tk)) = c0. Thus, V (ξ ) = c0
for all ξ ∈ Ω(x). Because the lower n components are zero in set Ω(x), we have, for c = c0/α � 0,

Ω(x) ⊂
{[

p
0

]
∈R

2n : V1(p) = c
}
. (4.16)

(iii) Here, we determine c in (4.16). Let z(t) = [ pz(t)T qz(t)T ]T, pz(t),qz(t)∈R
n be an arbitrary

solution of (2.5) such that the whole trajectory of x(t) is included in Ω(x). It holds from (4.16) that
qz(t) = 0 and V1(pz(t)) = c for all t � 0. Because ṗz(t) = qz(t) for almost all t � 0 and qz(t) = 0 for
all t � 0, pz(t) = pz(0) = p0 for all t � 0. Moreover, it holds that q̇z(t) = 0 ∈ −αK[s](p0)−β K[v](0).
As in the proof of (iii) of Lemma 4.4, we can see that p1

0 = p2
0 = · · · = pn

0 or p0 = a1 for some a ∈ R,
and also V1(p0) = 0. Because V1(p) is constant in Ω(x), as shown in (4.16), and z(0) = [ a1T 0 ]T

belongs to Ω(x), we have V1(p) = c = 0. This result of c = 0 allows us to rewrite the right-hand side of
(4.16) as

Ω(x)⊂
{[

a1
0

]
∈ R

2n : a ∈ R

}
. (4.17)

(iv) Lastly, since limt→∞ dist(x(t),Ω(x)) = 0, we conclude that limt→∞ p(t) = a1 for some a ∈ R.
This completes the proof. �

4.5 Average consensus with linear velocity feedback

We consider the case where v(q) is set as in (2.7). Then, K[ f ](x) in (4.1) becomes

K[ f ](x) =
[

q
−αK[s](p)−β q

]
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and (4.11) holds for |q|2 instead of |q|1. Further, W3(x) = β |q|1 is replaced with W3(x) = β |q|2 and an
upper bound of | f (x)| is given as

| f (x)|=
∣∣∣∣∣
[

q

−αs(p)−β q

]∣∣∣∣∣�
∣∣∣∣∣
[

q

−β q

]∣∣∣∣∣+α|s(p)|�
√

1+β 2r+αn(n− 1)< ∞.

The proof of item (iii) of Lemma 4.4 is easier with v(q) = q, by which 0 ∈ −αK[s](p)−β K[v](q) is
reduced to 0 ∈ K[s](p) if q = 0, and here we do not need the assumption 0 < β/α < 1.

The boundedness of the average position shown in Subsection 4.3 is also valid with more detailed
expressions. Because graph G is undirected,

1Ts(p) =
n

∑
i=1

∑
j∈J i

sgn(pi − p j) = ∑
(i, j)∈E

sgn(pi − p j) = 0,

which yields with Lemma 3.1 that

˙̄q(t) ∈ 1
n
[ 0 1T ]K[ f ](x(t)) = K

[
1
n

1T(−αs[p]−β q)
]
(x(t)) = {−β q̄(t)}.

Therefore, ˙̄q(t) =−β q̄(t), and hence

q̄(t) = e−β t q̄(0), p̄(t) = p̄(0)+
1
β
(1− e−β t)q̄(0).

Thus, the average position p̄(t) is bounded, which implies x(t) is bounded. Moreover, if initial average
velocity q̄(0) is zero, average position p̄(t) is equal to average initial position p̄(0) for all t � 0, which
means that protocol (2.3) with v(q) = q attains an average consensus. The results are summarized below.

COROLLARY 4.1 Suppose that α,β > 0. Then, the consensus-based rendezvous of the agents in the
sense of (2.2) is achieved in system (2.1) by a protocol with control input ui = −αsi(p)− β qi, i =
1,2, . . . ,n. Moreover, this protocol realizes the average consensus of the position: limt→∞ pi(t) = p̄(0),
i = 1,2, . . . ,n, if the average of the initial velocities of the agents is zero.

5. Numerical examples

Let us consider the graph shown in Fig. 1 with six agents. The graph is undirected and connected. The
gains are set as α = 1 and β = 0.5. The input (2.3) with vi(q) = β sgnqi is shown in Fig. 2, where the
initial values are as follows:

p1(0) = 3, p2(0) = 4, p3(0) =−3, p4(0) = 1, p5(0) = 0, p6(0) = 1,
q1(0) = 3, q2(0) =−2, q3(0) = 1, q4(0) =−5, q5(0) =−1, q6(0) = 4,

for which the averages of the initial position and velocity are p̄(0) = 1 and q̄(0) = 0, respectively. We
can see in Fig. 2 that consensus (2.2) is attained. Fig. 3 shows the responses with the same settings, but
vi(q) is linear. In addition to (2.2), the positions converge to the average of the initial values.

We demonstrate that there exists a problem instance that indeed needs the condition α > β for
consensus. Consider graph G = (A ,E ) with A = {1,2}, E = {(1,2),(2,1)}, which is the simplest
one. Let us set the gains as α = 1 and β = 0.5 or β = 2. The responses of the positions are shown in
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FIG. 1. Graph for the example of six agents
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FIG. 2. Position p(t) (left) and velocity q(t) (right) of agents with sgnqi feedback
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FIG. 3. Position p(t) (left) and velocity q(t) (right) of agents with linear qi feedback

Fig. 4, where the initial values are set as p1(0)= 2, p2(0)= 1, q1(0)= 2, q2(0)=−2. While the distance
between the positions converges to zero with β = 0.5, the agents stall and do not attain consensus with
β = 2. In fact, the equilibria for β = 2 are given by q1 = q2 = 0 and Sgn(p1 − p2)∩ [−2,2] �= /0. The
latter condition can be satisfied by any p1 and p2 and hence consensus is not guaranteed, as happens in
Fig. 4.
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FIG. 4. Position p(t) with β = 0.5 (left) and β = 2 (right)

6. Conclusion

In this paper, we showed a protocol that attains a consensus-based rendezvous of agents that have double
integrator dynamics, where only the sign of the relative positions and the sign of the velocity are needed
for the protocol. We analyzed the closed-loop system via Lyapunov methods extended to the Filippov
solution of differential inclusions. In particular, to prove the consensus, we utilized the symmetry of
the Filippov set-valued map of the closed-loop system and provided analysis of the ω-limit set of the
trajectories. Numerical examples showed that the consensus of position is achieved by the proposed
protocol.

REFERENCES

BACCIOTTI, A. & CERAGIOLI, F. (1999) Stability and stabilization of discontinuous systems and nonsmooth
Lyapunov functions, ESIAM: Control, Optimisation and Calculus of Variations, 4, 361–376.

CERAGIOLI, F., DE PERSIS, C. & FRASCA, P. (2011) Discontinuities and hysteresis in quantized average consen-
sus, Automatica, 47, 1916–1928.

CHEN, G., LEWIS, F. L. & XIE, L. (2011) Finite-time distributed consensus via binary control protocols, Auto-
matica, 47, 1962–1968.

CLARKE, F. H. (1983) Optimization and Nonsmooth Analysis, Wiley and Sons.
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Appendix

A. Proof of Lemma 3.3

As stated in Subsection 3.1, for any x0 ∈R
n, there exists at least one Filippov solution x(t) with x(0) = x0

for t ∈ [0, t1] for some t1 > 0. Then,

V (x(t))−V (x0) =

∫ t

0

dV(x(τ))
dτ

dτ �−
∫ t

0
W3(Cx(τ))dτ � 0 (A.1)

holds for all t ∈ [0, t1] with W1(Cx(t)) � V (x(t)) � V (x0). Because W1 is positive definite, |Cx(t)| � r
holds for some r > 0. From (3.4), | f (x(t))| � Mr is valid as far as x(t) exists. This implies that x(t) is
defined for all t � 0 and Cx(t) is bounded.

Now, from (A.1), we have
∫ t

0 W3(Cx(τ))dτ � V (x0) < ∞ for all t � 0. Because W3 is positive
semidefinite, the LHS is monotonically increasing in t. This means that limt→∞

∫ t
0 W3(Cx(τ))dτ ex-

ists and is finite, as claimed in (3.7). Moreover, Cx(t) is absolutely continuous with respect to t and
bounded and W3(x) is continuous in x. Hence, W3(Cx(t)) is uniformly continuous in t. From Barbalat’s
Lemma (e.g. Khalil (1996)), it holds that W3(Cx(t))→ 0 as t → ∞. Thus, (3.8) is proved.

B. Proof of (4.5)

Consider the set in (4.4):

S(4.4) =
⋂

μ(N)=0

co
{

∑
(i, j)∈E

eq
+ (p)

(ei − e j)sgn(di − d j) : d ∈ R
n \N

}
.

Let Di j = {d ∈ R
n : di = d j}, which is an (n− 1)-dimensional subspace of Rn and hence μ(Di j) = 0

and Di j is closed. There are n(n− 1)/2 different such subspaces, and we define

D =
⋃

1�i< j�n

Di j. (B.1)

Then, D is a closed null set. It is obvious that

S(4.4) =
⋂

μ(N)=0

S(N), S(N) =

{
∑

(i, j)∈E
eq
+ (p)

(ei − e j)sgn(di − d j) : d ∈ (Rn \D)\N
}
. (B.2)
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Next, consider the following set, which includes S(N):

S0 =

{
∑

(i, j)∈E
eq
+ (p)

(ei − e j)sgn(di − d j) : d ∈ R
n \D

}
.

To show the opposite inclusion, suppose that s0 ∈ S0. Then, there exists a ds ∈ R
n \D such that

s0 = ∑
(i, j)∈E eq

+ (p)

(ei − e j)sgn(di
s − d j

s ).

Recall that Rn \D is open. It then holds that

s0 = ∑
(i, j)∈E

eq
+ (p)

(ei − e j)sgn(di − d j) ∀d ∈ Brs(ds)

for some rs > 0. Because an open set has a positive measure, we have Brs(ds) \N �= /0 for any null set
N. Hence, there exists a dN ∈ Brs(ds)\N such that

s0 = ∑
(i, j)∈E

eq
+ (p)

(ei − e j)sgn(di
N − d j

N),

which implies that s0 ∈ S(N). Therefore, S0 = S(N) holds for all null sets N. This yields

S(4.4) =
⋂

μ(N)=0

co S(N) =
⋂

μ(N)=0

co S0 = coS0 = coS0, (B.3)

where coS0 is the set that appears in (4.5).

C. Proof of (4.9)

Here, we consider

S(4.9) =
⋂

μ(N)=0

co
{

∑
(i, j)∈E

eq
+ (p)

(ei − e j)sgn(di − d j) : d ∈ (Rn \NV )\N
}
,

where the only difference from S(4.4) is that NV is also removed. For the null set D defined in (B.1), we
also have the following:

S(4.9) =
⋂

μ(N)=0

co
{

∑
(i, j)∈E

eq
+ (p)

(ei − e j)sgn(di − d j) : d ∈ (Rn \D)\N
}

=
⋂

μ(N)=0

co S(N) = coS0,

where the last two equalities are shown in (B.2) and (B.3), respectively.


