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Abstract: A dynamic backstepping method is proposed to design controllers for nonlinear systems in the 
pure-feedback form, for which the traditional backstepping method suffers from solving the implicit 
nonlinear algebraic equation. The idea of this method is to augment the (virtual) controls as states during 
each recursive step. As new dynamics are included in the design, the resulting controller is in the dynamic 
feedback form. Procedure of deriving the controller is detailed, and one more Lyapunov design is executed 
in each step compared with the traditional backstepping method. Under appropriate assumptions, the 
proposed control scheme achieves the uniformly asymptotically stability. The effectiveness of this method 
is illustrated by the stabilization and tracking numerical examples. 
 

1. Introduction 
The backstepping controller design methodology provides an effective tool of designing controllers 

for a large class of nonlinear systems with a triangular structure. Krstic, Kanellakopoulos, and Kokotovic 

[1] systematically developed this approach, from considering the exact model to encompassing the 

uncertain bounded nonlinearities and parameterized uncertainties. The basic idea behind backstepping is to 

break a design problem on the full system down to a sequence of sub-problems on lower order systems, 

and recursively use some states as “virtual controls” to obtain the intermediate control laws with the 

Control Lyapunov Function (CLF). Starting from lower order system and dealing with the interaction after 

augmentation of new dynamics make the controller design easy. The advantages of backstepping control 

include the guaranteed global of regional stability, the stress on robustness, and computable transient 

performance. 

The backstepping method has received a great deal of interest since its proposition, and has been 

widely applied to the control problems arising from the aerospace engineering [2][3][4], mechanical 

engineering [5][6], etc. Along with these years of studies, this method has been evolved to be fairly 

systematical and inclusive. For example, techniques like the nonlinear damping [1], the variable structure 

control [7], the neural network adaptive control [8], and the fuzzy adaptive control [9] are synthesized to 

address various uncertainties, including the matching and un-matching. To resolve the problem of 

“explosion of terms”, the dynamics surface control [10] and the constrained backstepping control [3] are 

further established. To address the deficiency of state information, the output feedback backstepping 
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control is developed [1]. For the problem of control saturation, the limiting filters [3] and the boundedness 

propagation [11] are employed in the recursive design.  

Nonetheless, within the extensive researches of backstepping method, the plants studied are usually 

in the form of strict-feedback. For the more general pure-feedback plants, which have no affine appearance 

of state variables to be used as virtual controls and the actual control, its usage may be restricted because 

the intractable implicit algebraic equations are encountered. Kanellakopoulos et al. [12] studied the 

adaptive control of parametric pure-feedback systems in a special form. Ge and Wang [13] used the neural 

networks to approximate the (virtual) controls out of the implicit algebraic equations, and proved that the 

control error will be ultimately bounded. Wang et al. [14] used the similar strategy and employed the 

input-to-state stability analysis and small-gain theorem to solve the “circularity problem” airing from the 

general pure-feedback problems. For a special class of pure-feedback system, Zou and Hou [15] employed 

filtered signals to circumvent algebraic loop problems and applied the compensator to counteract the 

resulting approximation errors. Wang et al. [16] exploited the mean value theorem to deduce the affine 

form of the pure-feedback plant to design the adaptive backstepping controller. In this paper, we will solve 

the algebraic loop problem from a different view. A dynamic backstepping method with stativization of 

(virtual) control is proposed. It circumvents the implicit algebraic equations and is widely applicable to the 

general pure-feedback nonlinear systems. 

2. Basic backstepping method  
We first briefly review the basic backstepping controller theory, and show its deficiency in treating 

pure-feedback plants. In introducing the method, the control objective is to stabilize the states of system 

towards the origin, which is assumed to be the equilibrium point. For other equilibrium points under the 

set-point control problems, with coordinate transformation they can be placed at the origin. Moreover, 

since the controller design procedure is similar for the high cascade model, for the sake of brevity, we only 

investigate the model of two cascades. For the strict-feedback plant described as 

 1 1 1 1 1 2( ) ( )= +x f x g x x                                                  (1) 

 2 2 1 2 2 1 2( , ) ( , )= +x f x x g x x u                                     (2) 

where 1 2, m∈x x  are the states, m∈u  is the control, 1
m m→f ： , 2

m m m× →f ：  are smooth 

nonlinear vector fields, and the matrix-valued functions 1
m m m×→g ： , 2

m m m m×× →g ：  are 

smooth and have inverse. The basic backstepping design procedure is summarised as follows. 

Step 1: Consider Eq. (1). Regard 2x  as the virtual control in this equation and denote it with 2dx . 

The Lyapunov design is carried out as 
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f x g x x κ x
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             (3) 

where 1 1( )κ x  is the expected dynamics that satisfies the following two conditions: i) it drives 1 0V <  when 

1 ≠x 0 , and ii) the resulting virtual control solution is continuous and ( ) ( )1
1 1 1( ) ( ) ( )− − + =g 0 f 0 κ 0 0 . 

Usually it may be set that 1 1 1 1( ) = −κ x K x , where 1K  is a positive gain matrix.  

Step 2: Consider Eqs. (1) and (2) together, and construct a synthetic CLF to obtain 

( )
( )

T T
2 1 1 2 2 2 2

T T
1 2 1 1 1 1 1 2 2 2 2 2

T T T
1 1 1 1 1 2 2 2 2 2 1 1 1

2 1 2 2 1 2 2 1

1 1CLF : ( ) ( )
2 2

Drving decrease: ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ( ) )
0

Algebraic control equation: ( , ) ( , ) ( ,

d d

d d

d d d

V

V V

= + − −

⇓

= + + − −

= + + − − +

≤

⇓
+ =

x x x x x x

x f x g x x x x x x

x f x g x x x x x x g x x

f x x g x x u κ x x

( )

2

1
2 2 2 1 2

)

Explicit control expression: ( , )−

⇓

= − +u g f γ x x

   (4) 

where 2 1 2( , )κ x x  is the expected dynamics that driving 2 0V <  when 2 2d≠x x , and a common choice is 

that T
2 1 2 2 2 2 1 1 1 2( , ) ( ) ( )d d= − − − +κ x x K x x g x x x , where 2K  is a positive gain matrix. The resulting 

controller law u  achieves the asymptotically stabilization since 2 0V <  except 1

2

⎡ ⎤
=⎢ ⎥

⎣ ⎦

x
0

x
. 

Now consider the plant in the pure-feedback form like 

 1 1 1 2( , )x = f x x                                     (5) 

 2 2 1 2( , , )=x f x x u                                 (6) 

where 1 2, m∈x x  are the states, m∈u  is the control. Proceeding accordingly as Step 1 we may obtain 

the algebraic control equation 
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 11 11 2( , ( ))d = κf xx x                                    (7) 
However, different from the strict-feedback system that has a affine structure, for the pure-feedback 

system, it may be not possible to get the explicit expression of 2dx  due to the implicit nonlinear form of 

Eq. (7), and this confines the application of the traditional backstepping method. 

3. Dynamic backstepping method 
To gain a systematic solution for the controller design problems on pure-feedback systems, a 

dynamic backstepping method is proposed. We first present the stabilizing control law and then expound 

the procedure to help understanding. 

3.1 Main results 

Assumptions that make the results rigorous are first presented. 

Assumption 1: The exact solution for the implicit nonlinear algebraic control equation exists, such as the 

existence of 2dx  that rigorously nullifying Eq. (7). 

Assumption 2: For the controlled domain D  that contains the origin, the Jacobi matrixes 1

2

∂
∂
f
x

, 1

2d

∂
∂
f
x

 and 

2∂
∂
f
u

 are invertible. 

Assumption 3: For the controlled domain D  that contains the origin, 1 1 1 1( , ) ( , )≠f x a f x b  when ≠a b . 

Assumption 1 guarantees the theoretic existence of controller law that stabilizes the closed-loop 

system under the frame of backstepping design. Assumption 2 is related to Assumption 1 with the implicit 

function theorem [17]. Also note that 2dx  is a augmented state in the proposed method, and 
2d

∂
∂
f
x

 is 

invertible when 2dx  is close to 2x , which is described in the assumed domainD . Assumption 3 is used to 

deduce a general result for the controlled plant in this section, and it may be removed under certain 

situations, which will be shown in Sec. 4. 

 

Theorem 1: Consider the pure-feedback cascade plant of the form 

1 1 1 2( , )x = f x x                                                                              (8) 

 2 2 1 2( , , )=x f x x u                                (9) 
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where 1 2, m∈x x  are the states, m∈u  is the control, and (i 1,2)i =f  are smooth vector fields. If 

Assumption 1 holds, then the following dynamic feedback control law stabilizes the plant in the domain 

D , where Assumptions 2 and 3 hold. 

( )

2 2 2
1 1 2 2 1 2 2T 1 1 2 22 2

T2 2 000
1 1 2

1 1 2 1 1 2
2

( , ) ( , , )

d ,
( , ) ( , ) ( , )

d
dt

v t

d

t
−

=

⎧ ∂ ∂ ∂ ⎫⎛ ⎞+ +⎪ ⎪⎜ ⎟∂ ∂ ∂∂ ∂⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎜ ⎟= − − =⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎛ ⎞∂⎪ ⎪⎜ ⎟+ −⎜ ⎟⎪ ⎪⎜ ⎟∂⎝ ⎠⎝ ⎠⎩ ⎭

∫

h h hf x x f x x u x
x x xh hu K h u u

u u f x x f x x f x x
x

  (10) 

where 2dx  is a augmented state and its dynamics is 

 
T 1

1 1 1
2 1 1 1 1 2 1 2 2 000

2 2 1
( , ) d ,

t
d v d d dt

d d
t

−

=

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎪ ⎪= − − + =⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
∫

h h hx K h f x x x x x
x x x

               (11) 

0u  and 2 0dx  are the initial values for the augmented states. The other relevant quantities are 

 1 1 2 1 1 2 1 1( , ) ( , ) ( )d d= −h x x f x x κ x                                     (12) 

 2 1 2 2 2 1 2 2 1 2 2( , , , ) ( , , ) ( , , )d d= −h x x u x f x x u κ x x x                            (13) 

1 1( )κ x  may be arbitrary function that satisfies: i) T
1 1 1( ) 0<x κ x  when 1 ≠x 0 , and ii) the mapping 

2 1 1( )d =x C x  implicitly determined by Eq. (12) is continuous and 1( ) =C 0 0 .  

1
T 1 1 2 1 1 21 1 2 1 1 1 2

2 1 2 2 1 2 2 1 1 2
2 1 1 2

1 1 2
1

( , ) ( , ) ( , )( , ) ( , )( , , ) ( , , ) ( ) d d
d d d

d

− ⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂ ∂
= − + + − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

f x x f x xf x x h f x xκ x x x Γ x x x x h x
x x x x x

f x x  (14) 

and 1 2 2( , , )dΓ x x x  may be arbitrary function that satisfies ( )T 1 1 2
1 1 2 1 1 2 1 2 2

2

( , )( , ) ( , ) ( , , ) 0d d
∂

− <
∂

f x xf x x f x x Γ x x x
x

 

when 2 2d≠x x . 

3.2 Proof of Theorem 1 

Construct a CLF as 

( ) ( )TT T T
1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 2 2

1 1 1 1( , ) ( , ) ( , ) ( , )
2 2 2 2d dV = + + − − +x x h h f x x f x x f x x f x x h h   (15) 

where 1h  and 2h  are given by Eqs. (12) and (13) respectively. Differentiating Eq. (15) renders 

( ) ( )TT T 1 1
1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2

1 2

T 2 2 2 2
2 1 2 2

1 2 2

( , ) ( , ) ( , ) ( , )d d d
d

d
d

V
⎛ ⎞∂ ∂

= + + + − −⎜ ⎟∂ ∂⎝ ⎠
⎛ ⎞∂ ∂ ∂ ∂

+ + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

h hx x h x x f x x f x x f x x f x x
x x

h h h hh x x x u
x x x u

       (16) 

with certain treatment to deal with the interactions, there is 



6 
 

 

( )

( )

( )

TT T
1 1 1 1 1 1 1 2 1 1 2 1

T
TT 1 1 1

1 1 1 2 2 1 1 2 1 1 2 1
1 2 1

T 1 1 21 1 2
1 1 2 1 1 2 1 1 2

1 1

1 1 2 1 1

( ) ( , ) ( , )

( , ) ( , ) ( , )

( , )( , )( , ) ( , ) ( , )

( , ) ( ,

d

d d d
d

d
d

V + + −

⎛ ⎞ ⎛ ⎞∂ ∂ ∂
+ + + −⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠

⎛ ⎞∂∂
+ − −⎜ ⎟

=

∂ ∂⎝ ⎠

+ −

x x h x f x x f x x x

h h hh f x x x f x x f x x h
x x x

f x xf x xf x x f x x f x x
x x

f x x f

κ

x x( )

( )

T 1 1 21 1 2
2 2 1 2 2 2

2 2
T

T 1 1 2
2 1 1 2 1 1 2

2

T 2 2 2 2
2 1 1 2 2 1 2 2

1 2 2

( , )( , )) ( , , )

( , ) ( , ) ( , )

( , ) ( , , )

d
d d d

d

d

d
d

⎛ ⎞∂∂
−⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∂
+ −⎜ ⎟∂⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂
+ + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

f x xf x x x x x x
x x

f x xh f x x f x x
x

h h h hh f x x f x x u x u
x x x

κ

u

               (17) 

Substituting the differential form of Eq. (11), i.e. 
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f x x f x x hx K h f x x x
x x x

                          (18) 

we obtain 

 

( )

( )

( )

T
T T 1 1 2 1 1 2

1 1 1 1 1 1
2 2

T
T 1

1 1 2 1 1 2 1 1
1

T 1 1 21 1 2
1 1 2 1 1 2 1 1 2

1 1

T 1 1
1 1 2 1 1 2

( , ) ( , )( )

( , ) ( , )

( , )( , )( , ) ( , ) ( , )

( ,( , ) ( , )

d d
v

d d

d

d
d

d

V
⎛ ⎞∂ ∂

= − ⎜ ⎟∂ ∂⎝ ⎠
⎛ ⎞⎛ ⎞∂⎜ ⎟+ − + ⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠
⎛ ⎞∂∂

+ − −⎜ ⎟∂ ∂⎝ ⎠

∂
+ −

f x x f x xx κ x h K h
x x

hf x x f x x x h
x

f x xf x xf x x f x x f x x
x x

f xf x x f x x
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2 2
T
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Substituting Eq. (14) and the differential form of Eq. (10), i.e. 
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              (20) 

we may further obtain that  
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                           (21) 

Since 0V<  for /{ }0D , this proves that the control law given by Eq. (10) will asymptotically stabilize the 

plant described by Eqs. (8) and (9). 

3.3 Design procedure 

Readers may be enlightened by the proof about the controller design, yet to facilitate understanding 

how the control law are constructed, the concrete procedure will be presented. 

Step 1: Consider Eq. (8) only. In this equation regard 2x  as the virtual control and denote it with 2dx , 

a CLF is constructed to obtain the algebraic control equation 

 

T
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T
11 1 1 1 2

1 1 2 1 1

1
2

( , ) 0

( , ) ( )

d

d

V

V

=

⇓

= ≤

⇓
=

x x

x f x x

f x x κ x

                                 (22) 

where 1 1( )κ x  satisfies the conditions in Theorem 1, and generally it may be set to be 1 1 1 1( ) = −κ x K x , 

where 1K  is a positive gain matrix. Since we may not be able to obtain the analytic expression of 

2 1 1* ( )d =x C x  that rigorously satisfy 1 1 2 1 1( , *) ( )d − ≡f x x κ x 0 , we circumvent such problem by 

considering the dynamics of the virtual control 2dx , in the hope that 2dx  will satisfy the implicit algebraic 

equation in a asymptotical way. To realize this, again a CLF is constructed as 

 T
12 11 1 1

1
2

V V= + h h                                  (23) 

where 1h  is given by Eq. (12). Differentiating 12V  and driving 12 0V ≤ , we have 
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h h
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x x                                (24) 

Thus we have the virtual control 2dx  that achieves 1lim 0
t→∞

=h  and 1lim 0
t→∞

=x . For the applicability of the 

equivalent integral form given by Eq. (11), we use Assumptions 1 and 2 to guarantee that 2 *dx  exists and 

the initial value 2 0dx  is close to ( )2 0 1 1 0*( ) ( )d t t=x C x  where 
1

1

2d

−
⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

f
x

, i.e., 
1

1

2d

−
⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

h
x

 exists.  

Step 2: Consider Eqs. (8) and (9) together, and construct a CLF which aims to track 2dx  in virtue of 

Assumption 3 

 ( ) ( )T
21 12 1 1 2 1 1 2 1 1 2 1 1 2

1 ( , ) ( , ) ( , ) ( , )
2 d dV V= + − −f x x f x x f x x f x x                      (25) 

Proceeding similarly through differentiating 21V  and driving 21 0V ≤  gives  
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+ − −⎜ ⎟∂ ∂⎝ ⎠
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2 2 2
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2 1 2 2 1 2 2

( , )( , )) 0

( , , ) ( , , )

d
d d

d

d

⎛ ⎞∂∂
− ≤⎜ ⎟∂ ∂⎝ ⎠

⇓
=

f x xf x x x x
x x

f x u xκx x x

         (26) 

where 2 1 2 2( , , )dκ x x x  is given by Eq. (14) , and a feasible form of 1 2 2( , , )dΓ x x x  may be 

 ( )
T

1 1 2
1 2 2 2 1 1 2 1 1 2

2

( , )( , , ) ( , ) ( , )d d
⎛ ⎞∂

= − −⎜ ⎟∂⎝ ⎠

f x xΓ x x x K f x x f x x
x

                               (27) 

where 2K  is a positive gain matrix. Analogously, we consider the dynamics of the control u  to avoid the 

difficulty in searching its analytic solution. The CLF for the whole plant is constructed as 
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 T
22 21 2 2

1
2

V V= + h h                                          (28) 

where 2h  is given by Eq. (13). 22V  is just the CLF constructed in the proof of Theorem 1. Then the 

controller that guarantee 22V  decreases is 

 

( )

22

2 2 2
1 1 2 2 1 2 2T 1 1 2 22 2

T2 2
1 1 2

1 1 2 1 1 2
2

0

( , ) ( , , )

( , ) ( , ) ( , )

d
d

v

d

V

−

≤

⇓

∂ ∂ ∂⎛ ⎞+ +⎜ ⎟∂ ∂ ∂∂ ∂⎛ ⎞ ⎛ ⎞ ⎜ ⎟= − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎛ ⎞∂⎜ ⎟+ −⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

h h hf x x f x x u x
x x xh hu K h

u u f x x f x x f x x
x

              (29) 

Also by Assumption 2, the existence of 
1

2
−∂⎛ ⎞

⎜ ⎟∂⎝ ⎠

h
u

 is guaranteed. Thus, the equivalent integral form is 

obtained with a reasonable 0u . 

Through the design procedure, it is shown that there are two Lypunov designs during each step. This 

operation along with the augmentation of the dynamics of the (virtual) control is used to solve the implicit 

nonlinear algebraic control equations, i.e.,  1 1 2( , )d =h x x 0  and 2 1 2 2( , , , )d =h x x x u 0 . With the dynamic 

feedback control law, the states and the implicit nonlinear algebraic equations are both driven to be zero. 

4. Further discussion 
4.1 Simplification of controller form 

The controller design presented last section aims at the general situation, and the resulting controller 

is complex in its form. Simplification of the controller is possible upon some conditions on the control 

gains, and this is helpful to alleviate the problem of “explosion of terms”. 

In the second Lyapunov design of Step 1, presume that 1 1 1 1( ) = −κ x K x , then with the condition that 

1vK  satisfies 

 
T T

1 T1 1 1 1 1 1
1 1 1

2 2 1 1 1 1

3 1 3( )
4 4 4v

d d

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
> − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

h h h h h hK K K
x x x x x x

                                 (30) 

the virtual control, i.e., 2dx , may be set as  

 
T

1
2 1 1

2
d v

d

⎛ ⎞∂
= − ⎜ ⎟∂⎝ ⎠

hx K h
x

                                                (31) 

and it also guarantees the stability of the subsystem. This may be verified by substituting Eq. (31) into 12V  

to be 
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T T 1 1
12 1 1 1 2 1 1 2

1 2
T

T T T T1 1 1 1
1 1 1 1 1 1 1 1 1 1

1 2 2

( , )

( )

d d
d

m m v
d d

V

×

⎛ ⎞∂ ∂
= + +⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂
= − + − + − ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

h hx f x x h x x
x x

h h h hx K x h 1 K x h h h K h
x x x x

           (32) 

where m m×1  is m m×  dimensional identity matrix. With the Young’s inequality that 

 

T T T 1 T1 1 1
1 1 1 1 1 1 1 1

1 1 1

T T 1 T T1 1 1 1
1 1 1 1 1

1 1 1 1

1( ) ( ) ( )
4

1 ( ) ( )
4

m m m m m m
−

× × ×

−

∂ ∂ ∂
− ≤ + − −
∂ ∂ ∂

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂
= + − + +⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

h h hh 1 K x x K x h 1 K K 1 K h
x x x

h h h hx K x h K K h
x x x x

      (33) 

 
T

T T 1 T1 1 1
1 1 1 1 1 1 1 1

1 1 1

1 1
2 2

− ⎛ ⎞∂ ∂ ∂
≤ + ⎜ ⎟∂ ∂ ∂⎝ ⎠

h h hh h h K h h K h
x x x

                                         (34) 

we may get  

 
TT

T 1 T1 1 1 1 1 1
12 1 1 1 1 1

1 1 1 1 2 2

3 1 3( )
4 4 4 v

d d
V −

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎜ ⎟= − + + − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

h h h h h hh K K K h
x x x x x x

            (35) 

with the gain condition given by Eq. (30), there is 12 0V < . 

In the first Lyapunov design of Step 2 to derive 2 1 2 2( , , )dκ x x x , if the plant satisfies the Lipschitz 

condition [18]  

 1 1 2 1 1 2 2 2( , ) ( , )d dL− ≤ −f x x f x x x x                              (36) 

where L  is the Lipschitz constant, then with the condition on 2K  that 

 ( )( )
2

1
2 1max eig( ) max(eig( ))

4 m m
L −

×> +K K M 1                       (37) 

where 
1 1T

T 11 1 1 1
1

1 2 2 1
( ) v

d d

− −
−⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂

= ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

h h h hM K
x x x x

, and eig()  represents the operator that solves the 

eigenvalue of matrix, the derived 2 1 2 2( , , )dκ x x x  that guarantee the stability may be simplified as 

 2 1 2 2 2 2 2 2( , , ) ( )d d d= − − +κ x x x K x x x                          (38) 
In this way Assumption 3 is also removed in deriving the controller. To verify it, construct the CLF 

 T
21 12 2 2 2 2

1 ( ) ( )
2 d dV V= + − −x x x x                         (39) 

Its derivative is 
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( )

T T T
21 1 1 1 1 2 2 2 2

T T T 1 1
1 1 1 1 1 1 1 1 2 2

1 2

T T T T1
1 1 2 1 1 2 1 1 2 2 2 2

1

( ) ( )

( ) ( , )

( , ) ( , ) ( ) ( ) ( )

d d

d d
d

d d d

V = + + − −

⎛ ⎞∂ ∂
= + + +⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∂
+ − + + − −⎜ ⎟∂⎝ ⎠

x x h h x x x x

h hx x h x h f x x x
x x

hf x x f x x h x x x x x
x

κ           (40) 

Presuming 1 1 1 1( ) = −κ x K x  and 2dx  is given by Eq. (24), then 

 

( )

T
T T 1 1

21 1 1 1 1 1 1
2 2

T T T T1
1 1 2 1 1 2 1 1 2 2 2 2

1
( , ) ( , ) ( ) ( ) ( )

v
d d

d d d

V
⎛ ⎞∂ ∂

= − − ⎜ ⎟∂ ∂⎝ ⎠
⎛ ⎞∂

+ − + + − −⎜ ⎟∂⎝ ⎠

h hx K x h K h
x x

hf x x f x x h x x x x x
x

          (41) 

According to the Young’s inequality, we have 

( ) ( ) ( )T TT 1
1 1 2 1 1 2 1 1 1 1 1 1 2 1 1 2 1 1 1 2 1 1 2

1( , ) ( , ) ( , ) ( , ) ( , ) ( , )
4d d d

−− ≤ + − −f x x f x x x x K x f x x f x x K f x x f x x   (42) 

( )

( ) ( )

TT
T T1 1 1

1 1 2 1 1 2 1 1 1 1
1 2 2

T
1 1 2 1 1 2 1 1 2 1 1 2

( , ) ( , )

1 ( , ) ( , ) ( , ) ( , )
4

d v
d d

d d

⎛ ⎞⎛ ⎞∂ ∂ ∂
− ≤ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

+ − −

h h hf x x f x x h h K h
x x x

f x x f x x M f x x f x x

    (43) 

Further with the Lipschitz condition (36) and the gain condition (37), it will be found that 21 0V < . In 

addition, we may also use the first-order approximation of 1 1 2 1 1 2( , ) ( , )d−f x x f x x  in Eq. (41) to derive  

 
T

T1 1
2 1 2 2 2 2 2 1 1 2

2 1
( , , ) ( ) ( )d d d

d

⎛ ⎞ ⎛ ⎞∂ ∂
= − − − + +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

h hx x x K x x h x x
x x

κ                                (44) 

which is more complex but may require a smaller 2K .  

In general, the larger the control gains are, the simpler the form of the controller might be. With these 

simplifications during the design, the form of final control law may be simplified. 

4.2 System containing strict-feedback dynamics 

We have considered the problem where analytic expressions of all the (virtual) controls are not 

available, yet the design method proposed is also applicable to include the situation where some explicit 

expression of the (virtual) control may be obtained. Variation of such case may be abundant, but the key is 

to employ the dynamic backstepping whenever it is necessary. For example, consider plant of the form 

1 1 1 2( , )x = f x x                                                                                 (45) 

2 2 1 2 2 1 2( , ) ( , )= +x f x x g x x u                                                        (46) 
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This plant contains a strict-feedback dynamics where the actual control u  may be directly derived. In the 

design procedure, Step 1 is same as that in Sec. 3.3, and it contains two Lyapunov designs. In Step 2, the 

CLF is same as Eq. (25) and through the algebraic control equation 

 2 1 2 2 1 2 2 1 2 2( , ) ( , ) ( , , )d+ =f x x g x x u κ x x x                             (47) 
we may directly get the control law 

 ( )1
2 2 1 2 2 1 2 2( , ) ( , , )d
−= − +u g f x x κ x x x                            (48) 

where 2 1 2 2( , , )dκ x x x  is same to that in Eq (14). In this step, only one Lypunov design is required. The 

proof for the closed-loop stability is similar to that in Sec. 3.2, by nullifying the term regarding the implicit 

algebraic control equation arising from the second step.  

4.3 One treatable singularity case 

Before giving Theorem 1, we presented Assumption 2 as a precondition. For one special case where 

Assumption 2 fails, the method is also applicable. Consider a scalar illustrative example 

 3
1 1 1( )x x x u u= + +                                        (49) 

where 1x  is the state and u  is the control. The algebraic control equation may be in the following form as  

 3
1 1 1 1( )h x x u u K x= + + +                                     (50) 

where 1K  is a scalar positive control gain. Apparently, Assumption 2 is not satisfied at the origin and there 

are infinite solutions of u  when 1x =0. However, for such case, a continuous mapping 1* ( )u C x=  

determined by Eq. (50) maybe exist. Actually this problem is solvable, by transforming the former 

algebraic control equation to  

 3
1 1

1

1 ( )h h x u u K
x

= = + + +                              (51) 

then a definite control under the dynamic backstepping frame may be determined.  

Now we consider a general case of the i -th level dynamics of the cascade pure-feedback system 

 1 1( ,..., , )i i i i+x = f x x x                                                                   (52) 

For the right-hand function, if the virtual control 1i+x  may take arbitrary value that the following equation 

holds 

 1( ,..., , )i i+ =f 0 0 x 0                                                                      (53) 
then to avoid singularity, the algebraic control equation may be formulate as  

 1( ,..., )i i i= =h R x x h 0                                                                  (54) 
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which satisfies that 
( 1)

i

i d+

∂
≠

∂
h 0

x
 at the controlled domain D  and where 

1 ( 1) 1 2( ,..., , ) ( ,..., , ,..., )i i i i d i i d id+= − κh f x x x x x x x  is the original implicit equation, and 1( ,..., )iR x x  is a 

matrix-valued function. Note that for the virtual control ( 1)i d+x , it should be guaranteed that the mapping 

( 1) 1 2( ,..., , ,..., )i d i i d id+ =x C x x x x  implicitly determined by Eq. (54) is continuous and satisfies 

( ,..., )i =C 0 0 0  through setting 1 2( ,..., , ,..., )i i d idxκ x x x . The modification will be employed in the 

Lyapunov design to deduce the control law as 

 T
2 1

1
2i i i iV V= + h h                                              (55) 

and 

( ) ( )T
(i 1)1 2 1 1 1 ( 1) 1 1 1 ( 1)

1 ( ,..., , ) ( ,..., , ) ( ,..., , ) ( ,..., , )
2i i i i i i i d i i i i i i dV V+ + + + += + − −f x x x f x x x f x x x f x x x  (56) 

where the modified term 1 1 1 1 1( ,..., , ) ( ,..., ) ( ,..., , )i i i i i i i+ +=f x x x R x x f x x x  aims to guarantee the validity of 

Assumption 3, i.e., 1 1( ,..., , ) ( ,..., , )i i i i≠f x x a f x x b  when ≠a b . 

4.4 Tracking problem 

In the preceding we focused on the stabilization problem, and the proposed approach is also 

applicable to the tracking problem. For the pure-feedback cascade plant given by Eqs. (8) and (9), presume 

that the reference signal is r  and the output function is 

 1=y x                                           (57) 
with extra consideration about the effect of reference signal, the design procedure that achieves 

asymptotically tracking is similar to the stability controller design. The CLF constructed during the design 

procedure is  

 T
11 1 1

1 ( ) ( )
2

V = − −x r x r                                      (58) 

and the resulting (virtual) control, i.e., 2dx  and u , are similar to the stabilization controller but includes 

the dynamics of r . Similarly, lim( ) 0
t→∞

− =y r  are guaranteed through the Lyapunov principle. 

5. Illustrative examples 

5.1 Example 1: Stabilization of pure-feedback system 
A nonlinear system in the pure-feedback form from Refs. [14] and [15] is considered 
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3
2

1 1 2

3

2 1 2

5

7

xx x x

ux x x u

= + +

= + +

                                               (59) 

where 1x , 2x  are the states and u  is the control. The control objective is to stabilize the states to the origin. 

According to the dynamic backstepping controller design procedure in Sec. 3.3, the implicit nonlinear 

algebraic control equations are 

 1 2 11

3
2

1 5
d

d
x Kh x x x= + + +                                                    (60) 

 
( ) ( ) ( )( )

( ) ( )

3
2 3 3

1 2 2 22

22
1 1 1 1

2 2 2 2

2
22

2
1 1 1

1 0.6 0.2 0.2
7

1 1 0.6
1 0.6

2 2(1 ) v

d d

d

h

K K x K

ux x u K x x x

h

x

h K

x

x
x

⎛ ⎞− − + + +

= + + + + + − +

⎛ ⎞
+ +⎜ ⎟

+⎝
⎜
⎝⎠

⎟
⎠

                (61) 

The control gains (in scalar form) 1K , 2K , 1vK  and 2vK  are all set to be 1. The initial states of the system 

are arbitrarily set to be 1

2 0

0.5
0

t

x
x

=

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

, and the initial conditions for the augmented dynamics are 

2 0 0d tx
=
=  and 0 0tu = = . The simulation results about the states are plotted in Fig. 1. It is shown that the 

stats are stabilized to the origin as expected. The virtual control 2dx  and control u , which are augmented 

states in the controller, are plotted in Fig. 2. The profiles about the implicit algebraic control equations, i.e., 

1h  and 2h , are presented in Fig. 3, showing that they approaches zero rapidly. 

0 2 4 6 8 10
-1

-0.5

0

0.5

1

t (s)

x 1 , 
x 2 

 

 

State x1

State x2

 
Fig. 1 The states profiles in Example 1 
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Fig. 2 The virtual control and control profiles in Example 1 
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Implicit algebraic control equation h1
Implicit algebraic control equation h2

 
Fig .3 The implicit algebraic control equation profiles in Example 1 

5.2 Example 2: Stabilization of system containing strict-feedback dynamics 

A simplified Jet engine model from Ref. [1], which includes the strict-feedback dynamics, are 

considered. The dynamic equations are 

 

2 2

2 3

(2 )
3 1 3 3
2 2

R R R

R R

u

σ σ φ φ

φ φ φ φ ψ

ψ

= − − +

= − − − − −

= −

                                    (62) 

where R , φ , ψ  are the states and u  is the control. For this plant, the dynamics regarding R  is in the 

pure-feedback form and the dynamics regarding φ  and ψ  are in the strict-feedback form. Thus within the 

proposed controller design scheme, it requires three steps and the first step includes two Lyapunov designs. 
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In Ref. [1], the controller is artfully designed by using the input-to-state stability of dynamics regarding R . 

Here it is addressed under a unified frame. However, this work does not aim to show the superiority in 

performance of the proposed method. It is just used to indicate its capacity to deal with a model including 

the pure-feedback dynamics.  

Especially in designing the controller, 1( )Rκ  is set to be 3
1 1( )R RKκ = −  for the requirement that the 

augmented state dφ  continuously approaches zero when R  approaches zero. Also, the treatable singularity 

is avoided by employing a modified implicit algebraic control equation as 

 2 2
1 1 1

1 (2 )h h R K R
R

σ σ φ φ= = − − + +                               (63) 

The scalar control gains 1K , 2K , 3K  and 1vK  are all set to be 1. The initial states of the system are 

arbitrarily set to be 

0

2
5
5

t

R
φ
ψ

=

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

, and the initial condition for the augmented dynamics is 0 0d tφ
=
= . 

Figure 4 gives the profiles of the states, and all of them are stabilized to the origin. The profiles regarding 

virtual control dφ  (a augmented state) and dψ  (function of R , φ , and dφ ), and control u ( function of R , 

φ , ψ , and dφ ) are presented in Fig. 5. At the initial time, the values of dψ  and u  are large while dφ  

increases fast from zero, the initial condition prescribed. For the implicit nonlinear equation 1h , its profile 

is given in Fig. 6 and it approaches zero as expected. 
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Fig. 4 The states profiles in Example 2 
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Fig. 5 The virtual control and control profiles in Example 2 
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Fig .6 The implicit algebraic control equation profile in Example 2 

5.3 Example 3: Signal tracking 

Again consider the pure-feedback model given in Example 1. The tracking problem is defined in Refs. 

[14] and [15], with the famous van der Pol oscillator taken as the reference model. 

 2
d
d 0.2(1 )

rr
rt r r r

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥ − + −⎣ ⎦ ⎣ ⎦

                                         (64) 

This model yields a limit cycle trajectory for any initial states except 
0
0

r
r
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

. The output of the 

controlled system is 1x , and the control objective is to make 1x  follow the reference signal r . The 
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dynamic backstepping controller is designed similarly as Example 1, along with extra consideration on the 

reference signal. Now the implicit nonlinear algebraic control equations are 

 
3

2 11
2

1 1 5
( )d

d
xh x K r rx x −= + + −+                                  (65) 

( ) ( ) ( )( )
( ) ( )

2

22
1 1

3
2 3 3

1 2 2 2 2 2 2 2

2
22 1 1 1 1 1 1

2

1 0.6 0.2 0.2
7

1 1 0.6
1 0

2 2(1 )
.6

2

d

v

d

d

h

K K x K

ux x u

h

K x x x x

K h r K rx
x

r

x= + + + + + − +

⎛ ⎞
+ +⎜ ⎟

+⎝

⎛ ⎞− − + + + − − − ⎟
⎠⎠

⎜
⎝

  (66) 

The control gains 1K , 2K , 1vK  and 2vK  are all again set to be 1. The initial conditions for the reference 

model and the controlled system are 
0

0.5
0

t

r
r

=

⎡ ⎤
=

⎡ ⎤
⎢ ⎥
⎣

⎢ ⎥
⎣⎦ ⎦

 and 1

2 0

0.5
0

t

x
x

=

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

, respectively. The initial 

conditions for the augmented dynamics are also 2 0 0d tx
=
=  and 0 0tu = = . Figure 7 plots the output 

trajectory in the tracking and the tracking error, showing that the nearly exact tracking performance is 

achieved. The periodical virtual control 2dx  and control u  are presented in Fig. 8. Figure 9 gives the 

profiles of 1h  and 2h . They also approaches zero quickly. 
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Fig. 7 The tracking results to the reference signal in Example 3 
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Fig. 8 The virtual control and control profiles in Example 3 
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Fig .9 The implicit algebraic control equation profiles in Example 3 

6. Conclusion 
A general backstepping controller design frame is developed for the pure-feedback system. The idea 

is to introduce new dynamics to describe the (virtual) control and it solves the implicit nonlinear algebraic 

equation in an asymptotically way, from a control-based view. Situations where controller may be 

simplified are discussed, which will alleviate the problem of “explosion of terms”. This paper provides the 

solution for the general pure-feedback system controller design problem with exact model, and it may be 

extended to address the problems with uncertainties, as the adaptive backstepping method studied on the 

strict-feedback systems. Moreover, consideration on the control saturation and time delay may also be 

investigated. These problems will be studied in the future to further complete this method. 
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