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Designers are increasingly using online resources for inspiration. How to best
support design exploration without compromising creativity? We introduce and study
Design Maps, a class of point-cloud visualizations that makes large UI datasets
explorable. Design Maps are computed using dimensionality reduction and clustering
techniques, which we analyze thoroughly in this paper. We present concepts for
integrating Design Maps into design tools, including interactive visualization, local
neighborhood exploration, and functionality to integrate existing solutions to the
design at hand. These concepts were implemented in a wireframing tool for mobile
apps, which was evaluated with actual designers performing realistic tasks. Overall,
designers find Design Maps supporting their creativity (avg. CSI score of 74/100) and
indicate that the maps producing consistent whitespacing within cloud points are the
most informative ones.
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• Design Maps are interactive point-cloud visualizations of large-scale UI datasets.
• Designers prefer consistent whitespace within cloud points.
• Designers find Design Maps supporting their creativity and perspective-taking.
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1. INTRODUCTION

The collection and curation of design examples, or
sources serving as a starting point to influence a final
design (Eckert and Stacey, 2000), is an important aspect
of creative design practice and ideation (Herring et al.,
2009; Stolterman, 2008). Designers traditionally seek
inspiring design examples from external sources, such
as design magazines, books, websites, as well as from
colleagues and other peers’ work (Gonçalves et al., 2014;
Vasconcelos and Crilly, 2016; Wallace et al., 2020).
They take breaks and change environments to incubate
new ideas and obtain distance from solutions at hand.
Recently, designers have been reported to turn to online
resources for inspiration (Koch et al., 2018). They use

search engines and online social design platforms, such
as Behance, Pinterest, and Dribble. These offer example
galleries, curated metadata and discussion on examples,
as well as search functionality. Paradoxically, even if there
is an inexhaustible number of examples available in these
sources, it is nonetheless challenging to find examples that
are relevant to the task at hand (Koch et al., 2018). In
particular, finding relevant user interface (UI) examples,
especially in large-scale datasets, is a highly challenging
task because UIs have aesthetic and functional properties
that are only indirectly reflected by their corresponding
pixels and associated metadata.

We believe that the available methods support design
exploration poorly, because they have been designed
for other purposes. For example, the prevailing search
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method is the familiar keyword-based search. However,
if a designer does not have a specific goal in mind,
or cannot express the defining aspect verbally, this
method fails (Sharmin et al., 2009). Image-based search
is similarly limited in this regard. Overall, designers
using query-based approaches may not get exposed to
a broad set of alternatives (Herring et al., 2009). On
the other hand, browsing galleries curated by people or
generated algorithmically, may have low relevance to the
task at hand. Furthermore, novice designers may struggle
to find appropriate examples if they lack appropriate
annotations. Even when successful, they may struggle
to understand how the particularities of an example
apply to their project (Kang et al., 2018). Generally, it
has been shown that failing to find suitable materials
may compromise the creativity and novelty of produced
ideas (Perttula and Sipilä, 2007). This article contributes
to a line of research to support inspiration-seeking and
exploration in large UI design datasets. For practical
reasons, as explained later, we will focus on mobile UI
designs.

1.1. Background

We introduce and study Design Maps, a novel class of
interactive visualizations of large-scale design datasets.
A Design Map visualizes a design dataset as a colorful
point cloud on a two-dimensional display. Design Maps
are computed using machine learning methods that
yield a low-dimensional representation of a higher
dimensional design space. They use mathematically
defined visuospatial encodings to convey structure, similar
to what geographic maps do. The benefit is that they
can efficiently summarize very large design datasets, in
our case in the order of thousands or tens of thousands
of design objects, being for example web pages, app
screenshots, scene renderings, or layout plans. We should
mention that not every design dataset can be easily
summarized and in fact each one may require a particular
treatment; see ‘Discussion’ section. Therefore, to narrow
down the scope of this paper, we will focus on UI design
datasets and, in particular, mobile UI designs. In ‘Future
work’ section we discuss possible extensions to create
Design Maps for other types of design datasets.

Notice that our approach is orthogonal to query-based
methods. The main difference between Design Maps over
previous concepts, such as interactive design galleries (Lee
et al., 2010) or design querying (Kumar et al., 2013), is
that Design Maps present all design objects (even in a
very large dataset) for interactive exploration. A Design
Map can be panned and zoomed, and individual design
objects inspected and interacted on. In practical terms,
Design Maps allow inspecting several designs in a matter
of seconds, with glance and mouse/finger cursor. Figure 2

and Figure 3 provide examples of Design Maps, here
shown for the purpose of exploring a large dataset of
mobile apps which we use to exemplify the Design Maps
concept and further discuss in Section 4.1.

Our work is motivated by a recent review of research
on fixation in design (Crilly and Cardoso, 2017) that
concluded that there is a need for knowledge on how
and what kinds of stimuli to show and what types
of representations to use, and how to best trade off
nearby vs. distantly related stimuli. Broadly, the goal of
Design Maps is to support inspiration-seeking processes
in design, and in particular the exploration–exploitation
problem therein. By ‘inspiration’ we refer to example
designs that can influence the final design by serving
as a starting point for the design, offer reusable partial
ideas, or patterns (Eckert and Stacey, 2000). Explorative
visualizations in general can help ensure that designers do
not fixate on one design idea but explore the space before
intensifying effort around a design candidate (Tohidi et al.,
2006). However, it is not known how they could help
design exploration.

Empirical research suggests multiple possible benefits
of having design examples available. They can lower
the barrier to entry for novices (Lee et al., 2010;
Woodbury et al., 2017) and, when provided at the
right time, can improve the quantity and quality of
generated ideas (Siangliulue et al., 2015). Design Maps
could inspire designers by serving as a starting point for
the design and offer reusable partial ideas and patterns.
Producing numerous design ideas is believed to increase
the probability to producing creative solutions (Perttula
and Sipilä, 2007). As previously mentioned, key aspects
of a suitable Design Map visualization include: identify
intrinsic dimensions, color codings, and other visual cues
that allow the designer to understand the structure of the
design space and efficiently navigate it.

Design Maps also expose similar examples and diverse
examples. This can help when reaching an impasse in
ideation (Bernard A. Nijstad and Baas, 2010). However,
while design examples can help a designer ‘on a roll’
to explore the design space more, or get ideas ‘when
stuck’, researchers have raised concerns with digital
example galleries (Lee et al., 2010; Marks et al., 1997).
Existing examples found in the web often lack additional
information such as author, purpose, method, or approach
used, which hampers understanding and evaluating of the
quality and credibility of the example (Koch et al., 2018).
Moreover, examples are not often related to the design
at hand and their hit rate may be low overall. While
exposing designers to ideas that are semantically far from
their own can trigger novel combinations of ideas, it is
suggested that far inspirational ideas can harm creativity
if received during productive ideation (Chan et al., 2017).
Furthermore, they can evolve as new data comes in or new
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goals and constraints are learned. Moreover, irrelevant
examples can distract designer and decrease the quality
of produced ideas (Chan et al., 2017). Examples may also
fixate the designer to a predefined idea of a ‘good design’,
resulting in homogeneous design solutions. In addition,
being exposed to too similar design examples can led
to designer’s block. These challenges call for research on
approaches like Design Maps, which can offer an overview
and structure to a dataset, means for quick diversification
and intensification, as well as integration in design tools.
Prior to this work, there has been no study of how different
machine learning methods can be used to visualize design
datasets in a way that support creativity. Further, it is
not known which methods work and what their effect on
designer’s creativity may be.

1.2. Summary of Contributions

We present and compare machine learning methods
to create Design Maps, and study them empirically
in a UI wireframing application in the context of
mobile apps design. The computational problem is
particularly challenging. There is a high number of aspects
differentiating any two designs, and prior to this work
it has not been known which methods are suitable
for inspiration-seeking in UI wireframing. The technical
solutions proposed here build on known clustering and
dimensionality reduction methods from machine learning,
including classic methods like PCA as well as more
recent ones like UMAP and tSNE, to be described later.
These methods have been previously used in complex
visualization problems for example in molecular science
and biology. Off-the-shelf, these methods perform poorly
with pixel input only, because color differences can be
trivial and unrelated to design structure or contents. We
address this problem by using semantic labels describing
the type of each part of a design. In our case, each
UI element is labeled according to their view hierarchy.
The result is a visualization that breaks down the
design dataset into clusters that can be navigated and
positioned against the design at hand. Eventually, the
goal in designing a suitable visualization is to identify
intrinsic dimensions and color and other codings that
allow the designer to understand the structure of the
design space and efficiently navigate it. To this end,
we report differences in each technique’s capability to
distinguish meaningful and recognizable aspects of a given
dataset.

Informed by an interview study we conducted with UI
and graphic designers, aimed at understanding design
practice to inform the concept of Design Maps, we
learned that a passive visualization of a design dataset
is insufficient: the interactive visualizations enabled by
the Design Maps concept should be integrated into design

tools in such a way that designers can directly exploit
the ideas in their project. This allows the designer to
go back and forth between design ideas and their visual
form. Consequently, we developed a wireframing tool for
mobile app design to study how this integration could
be made in practice. In this scenario, designers imagine
and assess possible designs to learn about the problem
at hand (Moggridge, 2006) and finally come up with a
particular visual form (Tohidi et al., 2006), in this case
a wireframe of the envisioned UI layout. Specifically,
we present concepts for integrating them into design
tools, including interactive support for (1) exploring large-
scale visualization, (2) exploring local neighborhoods
of a particular design, and (3) exploiting designs by
incorporating them to an existing wireframe. Finally, we
evaluated our wireframing tool with twelve professional
designers carrying out realistic tasks. To sum up the
results, we observed that PCA and tSNE based maps
are the most informative visualizations, as they produced
consistent whitespacing within cloud points. Overall,
designers found Design Maps to be a valuable means for
interactive exploration.

2. COMPUTATIONAL SUPPORT FOR
INSPIRATION-SEEKING

The concept of Design Maps builds on methods from
machine learning and data visualization, but also relies on
previous research on creativity support tools and design
mining.

2.1. Visualization of large datasets

Data visualizations provide perceptually intuitive sum-
marizations that allow users to interactively explore and
analyze complex datasets, identifying interesting pat-
terns, inferring correlations and causalities, and support-
ing sense-making activities. (For reviews, we recommend
Bikakis (2019) and Card and Mackinlay’s seminal work
about the information visualization landspace (Card and
Mackinlay, 1997)).

A key problem data visualization methods have to
address is the problem of excess information (Moacdieh
and N., 2015). To be perceptually understandable, and fit
on a display, data visualization methods should provide
efficient and effective abstraction and summarization
mechanisms. To this end, many papers report the use
of approximation (i.e. data reduction) techniques, in
which abstractions of data are computed (Bikakis, 2019).
Considering the existing approaches, most of them are
based on (1) sampling and filtering and/or (2) aggregation
(e.g., binning, clustering). By sampling the data, a
system can produce approximate answers fast enough for
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exploratory visualization, at the cost of accuracy and
trust (Moritz et al., 2017). By aggregating the data,
interesting patterns can be identified. Design Maps follow
this latter approach.

2.2. Knowledge discovery in multi-dimensional
data

Previous work has applied machine learning to visualiza-
tion for engineering design purposes, though it is mainly
focused on design decision making rather than on enhanc-
ing creativity. For example, Richardson and Winer (2011)
used self-organizing maps to break the final visualization
up into three maps containing separate contextual infor-
mation, so that researchers can quickly obtain information
about the design space. Cloud Visualization (Eddy and
Lewis, 2002) is a non-interactive representation of sets of
points as clouds aimed at conveying engineering informa-
tion in a multidimensional context. Cityplot (Knerr and
Selva, 2016) presents a superposition of a dimensionally
reduced representation of design decisions and bar plots
representing the multiple criteria of the objective space.
Overall, in trade space exploration of large design data
sets, designers need to select a subset of data of inter-
est and examine data from different data dimensions and
within data clusters at different granularities (Zhang et al.,
2012).

2.3. Collaborative ideation tools

The use of data visualizations for supporting divergent
and convergent thinking has been studied earlier in the
research literature. For example, Dynagrams (Eppler and
Kernbach, 2016) are collaborative visualization tools in
the form of schematic drawings to foster interactive
thinking and deliberation. They help to produce a joint
solution space taking all participants’ contributions into
account. The use of Dynagrams has shown that they work
well as consolidation tools that help to get an overview
to see the big picture, to focus discussions, and to make
better informed decision that are also comprehensible
for others. However, Dynagrams are limited in terms of
the number of concepts that can be represented and the
number of elements they can carry (Eppler and Kernbach,
2016). In contrast, Design Maps are highly scalable and
highly performant, as confirmed by our integration into
a wireframing tool (to be described later) that has
been tested with a dataset comprising near hundred of
thousands data points.

2.4. Interactive computational design

Design Maps build on creativity support tools and
related areas that computationally generate design ideas

related to the designer’s draft of an initial idea, and
show them e.g. in an example gallery next to the
tool. For example, DesignScape (O’Donovan et al.,
2015) aids the design process by making interactive UI
layout suggestions using optimization methods. It uses
two distinct but complementary types of suggestions:
refinement suggestions, which improve the current UI
layout, and brainstorming suggestions, which change
the style. Rewire (Swearngin et al., 2018a) is an
interactive system that helps UI designers leverage
example screenshots. Rewire automatically infers a vector
graphics representation of screenshots, so that each UI
component becomes a separate object with editable shape
and style properties. Scout (Swearngin et al., 2018b) is a
mixed-initiative explorative tool for UI design variations
under high-level constraints based on usability and visual
design principles. Swire (Huang et al., 2019) enables UI
designers to retrieve similar designs by means of sketching.
Finally, GUIComp (Lee et al., 2020) is a design assistant
with real-time multi-faceted feedback that allows a novice
designer to browse UI design datasets and use the relevant
examples they find to guide their designs. Design Maps
borrow some of these ideas, to be discussed in a later
section. In contrast to computational design where novel
designs are generated by the computer, Design Maps only
visualize already existing designs.

2.5. Design mining and exploratory tools

Design Maps also build on design mining; i.e., knowledge
discovery and retrieval techniques to understand design
demographics, automate design curation, and support
data-driven design tools. Design Maps subscribe to
underlying goals of design mining such as scalability
(e.g. how to handle thousands of design examples)
and extensibility (e.g. how to incorporate different
visualization schemes). In this regard, we should mention
Dream Lens (Matejka et al., 2018), which allows searching
and filtering through a large collection of 3D model
design variations, and Webzeitgeist (Kumar et al., 2013),
a platform for large-scale design mining of websites that
inspired a series of query-by-ui-example applications,
including e.g. GUIfetch (Behrang et al., 2018) and
Rico (Deka et al., 2017; Liu et al., 2018). Design Maps
differs from design mining in its attempt to directly
visualize, without querying, a design dataset.

Finally, a large body of research has been conducted
on computational methods that support browsing high-
dimensional data such as movies (Jorge et al., 2017;
Martins et al., 2011) and music (Lübbers and Jarke, 2009;
Pampalk et al., 2002; Vad et al., 2015). However, we are
not aware of any alternative for exploring large datasets
comprising visual material, and concretely UI designs.
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Design Maps thus fill this existing gap in the current
research literature.

3. PRE-STUDY: DESIGNER INTERVIEWS

Prior to implementing Design Maps, we carried out an
interview pre-study to sensitize us to designers’ viewpoint.
We interviewed six professional UI designers (aged 24–
44), to understand the inspiration-seeking practices they
follow. To direct discussions to a concrete domain, we
focused on UIs for mobile apps. Five of the interviewees
had prior experience of at least 2 years in designing mobile
apps, and had worked with wireframes in their initial
design phases. One designer had no experience in mobile
app design but was proficient (4+ years of experience) in
graphical design applications and tools such as those from
Adobe (Photoshop, Illustrator, Indesign) and Sketch.

We used the following general questions to conduct the
interviews:

(i) What are the steps you follow when you are given a
design task by a client?

(ii) Where do you find ideas/inspiration while creating
the initial draft of your design?

(iii) What are the applications you normally use for tasks
such as wireframing or prototyping?

(iv) How do you explore mobile UI designs (and how
many) on app marketplaces like Google Play or App
Store?

By using the questions above as a guiding thread, we
inquired about inspiration-seeking of UI design examples,
and how designers reflect on their everyday practices and
design choices.

3.1. Findings

All the interviewees mentioned that they currently use
some wireframing tool to bring their app designs into
reality after getting the client requirements. “Normally, a
client briefs me with the requirements for his application
and the UI of his interest and then my task is to start
drafting the rough ideas into an appropriate structure
using Sketch. I keep looking for competitor’s app on the
Play store and try to beat them in terms of design and
usability.” They browse app marketplaces and search for
existing applications to know more design details about
their competitors as well as to gain inspiration from other
designs. However, each designer has different methods to
get inspiration, for example: borrowing concept ideas from
websites like Behance, Dribble, Pinterest, and using other
methods like mood boards (Garner and McDonagh-Philp,

2001). “Every designer has their own process... Some
sketch on article, post-its, and some like me use Sketch or
even a whiteboard. It’s important to put everything visually
together so that I get an idea where I can start from.”
Most interviewees said that they look at 10+ apps based
on popularity (number of downloads, number of ratings,
and stars) in the Google Play Store well before they start
sketching their first idea.

Designers mentioned that they had not used any
application that would enable them to explore existing
apps and create wireframes side by side. Interestingly,
the category of a mobile app does not matter very much
to them in terms of inspiration. Instead, designers care
a lot more about visual design characteristics, such as
element structure, aesthetics, typography, and color. “If
I had to design a mobile app, it might be very likely
that even after getting a look at several apps, I may still
choose a design aesthetic seen on a different kind of app
or a web application. It really depends what I can get
in the most efficient ways.” They pointed out that they
would like to interact with a design space visualization
based on some UI similarity. They also pointed out that
it would very valuable if mobile apps could be grouped
together based on some similarity-based features, rather
than category-based. They mentioned that UI design
properties are dependent on the content of the app they
are designing, and that such content is different for every
app. They think it would be highly valuable if apps
could be displayed based on their popularity and provide
designers with some filtering capabilities.

Designers also mentioned that if they could use a
visualization tool for exploring app designs, they would
not explore all existing designs on their own, but instead
would welcome a set of design suggestions based on some
criteria. For example, design recommendations could be
given based on an existing design, akin to the query-
by-image feature used by major image search engines.
Designers also mentioned that it would be extremely
interesting if they could click on a design they like and
then borrow specific parts of it.

At the end of the interview, participants were
shown paper-based mockups of different layout options
for a hypothetical UI wireframing tool. The tool
would feature a visualization panel with Design Maps,
a wireframing panel, and a recommendation panel.
Participants discussed their visual preferences regarding
panel arrangements and how they could interact with
them. In sum, participants provided valuable feedback
about their everyday design practices, what features they
would expect from a wireframing tool, and seemed to be
keen of the Design Maps concept.
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4. DESIGN MAPS

Computing an understandable visualization of a design
dataset is challenging, primarily because a design is a
high-dimensional object and cannot be directly visualized
in two dimensions. There are multiple dimensionality
reduction techniques to achieve this. To the best of
our knowledge, prior to this work they have not been
investigated for the goal of representing UI design
datasets. Moreover, as in any visualization scheme, there
are many visual encodings that can be used to show the
results, ranging from color and marker size to connectors,
etc. Ultimately, a design map should offer intuitive
‘geography’ for navigating that space. Here we discuss
problems and approaches in the computation of Design
Maps, addressing these aforementioned challenges.

4.1. Dataset

To exemplify Design Maps, we use the Rico dataset (Deka
et al., 2017), a repository of ∼10,000 Android mobile
app designs spanning 27 categories. It features ∼72,000
individual screenshots with associated metadata such as
annotations of element types, visual and structural data,
and interactive design properties.1 Rico provides semantic
annotations for ∼3 million UI elements, classified into 25
categories, such as icon, button, text, navigation, etc. A
semantic annotation is an abstract representation of a
given UI, identifying both structural and functional roles
that UI elements play in the screen design (Liu et al.,
2018). Rico also provides semantic screenshots, where
each UI element is rendered as a bounding box with an
associated color code; see Figure 1.

Figure 1: We use the Rico dataset for computing Design
Maps. Examples shown here together with their associated
semantic screenshots.

4.2. Algorithms

In Appendix A.1 we discuss all the algorithmic choices we
took into consideration when creating the Design Maps for
the Rico dataset. To summarize, semantic annotations are
converted to RGB feature vectors and then transformed

1Rico is available at http://interactionmining.org/rico

to a 2D point cloud (Figure A1) using the following
dimensionality reduction techniques (Section A.1.2):

Principal Component Analysis (PCA) Produces the best
linear approximation to the original dataset, often with
even spacing between data points.

Locally Linear Embedding (LLE) Each object is pro-
jected using a linear combination of their nearest neigh-
bors. As a result, the resulting point cloud tends to be
dense.

Uniform Manifold Approximation and Projection (UMAP)
Produces a non-linear representation of the dataset with
minimimun cross-entropy, ensuring that similar objects
lie together and dissimilar objects are spread out.

t-distributed Stochastic Neighbor Embedding (tSNE)
Converts distances between two objects into similarity
probabilities, so that points close to one another in the
original dataset will tend to be close in the resulting
point cloud.

Finally, the point cloud is clustered using the K-
means algorithm (Section A.1.3). As can be observed in
Figure A2, we decided to choose K = 5 clusters since
it seemed to be the best compromise solution in light of
the validity measures we analyzed. These results suggest
that designers exploring the Rico dataset should primarily
focus on 5 large groups of UIs. Therefore, designers can
quickly inspect one cluster by hovering over some UI
examples and if no design is satisficing enough they can
switch to exploring another cluster.

Figures 2 and 3 illustrate the resulting Design Maps we
have created for the Rico dataset, each map comprising
about 72k mobile UI designs. Each cluster found is
highlighted in a different color, chosen at random. All
figures provide three UI examples that are close to their
respective cluster centroids, to illustrate the types of UI
designs that can be expected in each cluster. As can
be observed in the figures, each dimensionality reduction
technique leads to a different map topology, informed by
the mathematical principles we discus in the appendix,
which is further reinforced by the color mapping assigned
after clustering. We should emphasize that the main
purpose of clustering the dimensionality-reduced data is
to delimit the map areas that are likely to group similar
UI designs together. Designers, however, are free (and
encouraged) to explore each map in their way.

We should mention that there is only one map
visualization (PCA, LLE, UMAP, or tSNE) for a given
dataset, since it is created deterministically. On the one
hand, we use the same seed for the random number
generator used by the dimensionality reduction and
clustering algorithms. On the other hand, the order in
which the data is provided to the algorithms does not
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matter, since both dimensionality reduction and clustering
are order-agnostic algorithms. In sum, each visualization
remains the same for the same dataset.

4.3. Integration in a design tool

Informed by the interview study (Section 3) and the
comparison of Design Map visualizations (Section 4), we
sought to develop a prototype to illustrate how Design
Maps could be integrated into a design tool in a readily
actionable manner, in order to empirically learn about
them and how they can support creative processes in
UI design. To this end, we created a design application
that implements the Design Maps idea, see Figure 4.
We named the application ‘MobiSketch’, in reference to
the mobile dataset we used and to make it clear that
this application is just one integration example of Design
Maps. Indeed, because Design Maps are a general-purpose
technique, they can generalize to other design datasets and
even can be implemented in different ways as an end-user
application.

MobiSketch is a web application that exposes 3
graphical components to the user (Figure 4):

(i) A visualization panel, that implements the Design
Maps, enabling thus interactive exploration of
the design space, and provides on-demand app
information.

(ii) A recommendation panel, featuring a set of related
UI screenshots that can be used as the basis for new
designs.

(iii) A wireframing panel, that allows for creating
UI wireframes and even borrowing parts from the
recommended designs.

4.4. Visualization panel

The visualization panel (Figure 4.3) implements all
the Design Maps we have analyzed in Section 4,
based on the examined clustering and dimensionality
reduction techniques. This panel also implements the
visual information-seeking mantra (VISM) (Shneiderman,
1996):

Overview: The user is provided with a map of the design
space, where apps are clustered based on UI semantics
and are represented by a cloud point of size proportional
to app popularity (number of downloads).

Zoom: The user can zoom in on items of interest and pan
the maps, as well as explore nearby recommendations.

Filter: The user can filter out uninteresting items, based
on app stars, number of ratings, downloads, and app
category.

Details on demand: The user can get app details at any
moment by hovering over each cloud point.

Relate: The user can notice how UI designs relate to each
other within each semantic cluster.

History: The user can keep track of the designs they have
browsed, and the actions they have performed over the
wireframing panel.

Extract: The user can select a particular design and
incorporate it to the wireframing panel.

4.5. Recommendation panel

Designers habitually seek inspiration from pre-existing
related designs. However, the diversity of the set of
examples provided is key for inspiring the user (Chan
et al., 2015; Siangliulue et al., 2015). Morevover, in other
contexts, it has been highlighted that users want to be
shown more but “not just more of the same” (Iacobelli
et al., 2010).

Therefore we devised the concept of “creative neighbors”
to recommend within-cluster UIs that are similar to a
given design but not too similar, to foster creativity. In
a nutshell, the creative neighbors algorithm proceeds as
follow: (i) set a threshold distance (we use r/2, where r
is the radius of the candidates hypersphere), (ii) use the
threshold distance to find the closest candidates to the
user-specified design, (iii) sort the candidates found from
larger to smaller distance and choose the top k candidates.
Figure 5 illustrates the result of this procedure.

The design recommendations are presented as a
list of actual UI screenshots from the Rico dataset
(Figure 4.2), so that designers can get inspiration from
real-world mobile apps. Previously selected designs and
recommendations are available as a “design history”, and
they can be easily accessed through scrolling down this
panel. As previously mentioned, it is possible to select a
particular design and incorporate it to the wireframing
panel. We implemented this feature by loading the
semantic annotation of the selected design, which is
available in the Rico dataset as a JSON file, and placing
the corresponding wireframe icons on the drawing canvas.

4.6. Wireframing panel

The Wireframing panel (Figure 4.1) implements a
standard HTML5 canvas element with basic drawing
capabilities and a toolbar that allows for common actions
such as undo/redo, group/ungroup, arrangement, or
alignment. The set of wireframe icons was derived from
the Rico dataset. The wireframe icons are incorporated to
the drawing canvas by means of click or drag and drop.
Once they are placed in the canvas, they can be scaled and
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(a) PCA

(b) LLE

Figure 2: Design Maps are based on clustering and different dimensionality reduction techniques. Each cluster found is
highlighted in a different color. We provide three examples that are close to their respective cluster centroids, to illustrate
the types of UI designs that can be expected in each cluster.
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(a) UMAP

(b) tSNE

Figure 3: Continuation of Figure 2. Design Maps are based on clustering and different dimensionality reduction
techniques. Each cluster found is highlighted in a different color. We provide three examples that are close to their
respective cluster centroids, to illustrate the types of UI designs that can be expected in each cluster.
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Figure 4: We developed a design tool for Design Maps featuring three components: a wireframing panel, comprising a
toolbar (1a) and a canvas component (1b), a recommendations panel, comprising designs related to the user’s selected
design (2), and a visualization panel, comprising different Design Maps of existing mobile apps (3a) and an information
component (3b) about the app UI that is selected on the design map.

argmini d(c, pi)

(a) nearest

argmaxi d(c, pi)

(b) farthest

argmaxi d(c, pi) < τ

(c) creative

Figure 5: Looking for 3 recommendations (denoted in
black color) starting from a point candidate c denoted in
red color: nearest neighbors (a), farthest neighbors (b),
and creative neighbors (c).

moved along the available canvas space. Each icon has an
indicative shape and color, since each icon represents a
particular UI element with a particular semantics.

Once the user has laid out some elements on the
wireframing panel, it is possible to know the closest
semantic cluster where the user’s design lies within, in
the toolbar (Figure 4.1a). Upon clicking on the map
marker icon, MobiSketch automatically places a marker
on the design space map, inspired by the you-are-here
maps (Levine, 1982). This visual hint is meant to narrow
down the search of inspirational UIs, by showing the most
interesting cluster according to their current design. We
implemented this feature with k-nearest-neighbor search
over semantic UI embeddings, for which we followed
the same autoencoder architecture proposed by Liu et
al. (Liu et al., 2018) and used the learned latent space

of each semantic UI as feature vectors. Notice that
nearest-neighbor search cannot be performed directly over
the dimensionality reduced space, since it would require
recomputing e.g. the covariance matrix in the case of PCA
and the conditional point probabilities in the case of tSNE.

5. EVALUATION

The goal of Design Maps is to support creative
processes in UI design, and in particular the exploration-
exploitation problem therein. Design Maps offer a fast
and structured way to navigate and explore a larger
set of designs. However, it is not known how this
affects the process and thinking in design. Therefore, to
investigate this question, we conducted a controlled design
study with professional designers. We used representative,
challenging wireframing tasks. Design Maps were offered
as part of a design tool, especially MobiSketch. This
section details the experimental procedure and reports
both quantitative and qualitative observations.

5.1. Participants

We recruited 12 designers (8 male, 4 female) with ages
ranging from 25–44 years old. None of these participants
took part in the pre-study. We aimed for a representative
sample of end-users, who in our case are UI designers.
Nine participants were professional designers with at least
2 years of experience in mobile app design (Android and
iOS). The remaining three participants were studying
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design courses at the master’s level, and all of them
did internships in a design company. All participants
volunteered under informed consent and agreed to
anonymized publication of results. We anticipated about
one hour per participant, therefore they were compensated
with a cinema voucher upon finishing the study.

5.2. Tasks

We devised three realistic tasks that would be accom-
plished by the participants.

(i) Warm-up task: The first task is a warm-up
condition, in which participants had to create the splash
screen of a photography app. For this task, participants
had to use pen and paper to create the wireframes. They
also could browse any website and take inspiration from
any resource they would like.

(ii) Wireframing from scratch: The second task was
aimed at gathering an overall impression of a dataset by
using Design Maps. The participants had to create a login
screen for an app that sells furniture online. This time
participants had access to the full MobiSketch application,
and were told that the visualization panel is available for
getting inspiration.

(iii) Completing a partial wireframe: The third task
was aimed at testing Design Maps under a design-
constrained scenario, for which participants had to
improve a product page for an app from a fashion
company. This time participants were given a partial
wireframe to begin with and had to complete it. This
task is more complex than the previous task, since the
designer has to build upon a set of design constraints and
is expected to lay out more elements.

5.3. Procedure

At the beginning of each task, participants were given
a design brief about the task at hand. Upon completing
the first task, the experimenter demonstrated the Design
Maps as a standalone application. Participants were told
to explore the four different Design Maps (Figure 2 and
Figure 3) and explain verbally what they think about
each one. Then, the experimenter gave a walkthrough
of the MobiSketch application and let the participants
try themselves the different panels. After this, the
experimenter proceeded with the second and third tasks.

At the end of the experiment, the experimenter
conducted a semi-structured interview focusing on user
experience, perceived issues, and the value proposition
of Design Maps. Participants could also verbalize their
thoughts and how we could improve Design Maps in the

future. We also asked about general satisfaction with the
outcomes produced with the wireframing tool.

In addition, also at the end of the experiment, each
participant was administered the Creativity Support
Index (CSI) questionnaire (Cherry and Latulipe, 2014).
CSI is a standardized psychometric scale for assessing the
perceived creativity support of a system/tool, looking at 6
factors: 1) collaboration, 2) enjoyment, 3) exploration, 4)
expressiveness, 5) immersion, and 6) worthiness of effort.
Since our design tool does not provide any collaboration
capabilities, we skipped this factor and set the two
corresponding scores to “neutral” (value of 5 out of 10 in
the CSI scale) in order not to alter the calculation of the
final CSI score (Cherry and Latulipe, 2014). The CSI score
is a reflection of how well that tool supports creativity for
the particular task or activity the user was engaged in and
that is likely dependent on both individual preferences and
the individual’s level of expertise with the tool.

5.4. Quantitative results

Participants were told to rank the four Design Maps
(Figure 2) in order of preference, from 1 (highest) to
4 (lowest). As can be observed in Table 1, participants
chose often PCA as the most preferred choice to represent
Design Maps. tSNE was on par with UMAP as the
second most preferred option, and LLE was consistently
ranked in the last position of the list (11/12 participants).
When asked about their choices, most of the participants
complained about LLE being too dense. They felt that
having some whitespace or “semantic islands” was helpful.
In the next section we shed more light about these
impressions.

PCA tSNE UMAP LLE

1 2 2.5 4

Table 1. Median user rankings of each visualization.

The Kruskal-Wallis rank sum test revealed a statisti-
cally significant difference between the four Design Maps
presented to the participants (χ2(3) = 27.28, p < .001).
We therefore ran pairwise comparisons using Wilcoxon
rank sum test as post-hoc test, using the Bonferroni
correction to guard against over-testing the data. The
Wilcoxon test revealed no statistically significant differ-
ences between PCA, tSNE, and UMAP; but all of them
significantly scored higher than LLE (p < .001).

Finally, as can be observed in Table 2, users rated
MobiSketch high as a creativity support tool, with an
average score of 73.97 (SD=13.26), which according to
previous work is more than satisfactory (Cherry and
Latulipe, 2014). The authors of the CSI questionnaire
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reported that a score below 50 indicates that the tool does
not support creative work very well. In the next section
we comment on each of the CSI factors separately.

Factor Mean SD 95% Conf. Int.

Collaboration – – –
Enjoyment 16.50 2.84 [14.89, 18.11]
Exploration 15.17 3.01 [13.46, 16.87]
Expressiveness 11.42 2.97 [ 9.74, 13.10]
Immersion 10.67 5.99 [ 7.28, 14.06]
Results Worth Effort 16.25 3.55 [14.24, 18.26]

Total 73.97 13.26 [66.47, 81.48]

Table 2. Creativity Support Index scores, the higher the
better. The maximum score for each factor is 20.

5.5. Qualitative observations and discussion

We begin by distilling comments regarding the different
factors of the CSI questionnaire, then discuss on different
aspects of Design Maps as part of the MobiSketch
wireframing tool.

5.5.1. Overall satisfaction
Participants highly appreciated Design Maps and the
functionality of the recommendation panel. This was
reflected by the average score for the ‘Enjoyment’ factor
of the CSI questionnaire (16.5 out of 20). “I normally
use many applications and websites when I get started to
drawing a layout or a wireframe, the best part which I
felt that I now have access to lot of data in a small space
and I can drag and drop designs directly.” All participants
stated that they would like to use Design Maps for their
professional work. “This would save a lot of time and effort
in crafting the initial designs and if you have a lot of work
on your desk, it can be a quick way to get going and having
something on board!”

5.5.2. Decreasing effort and facilitating exploration
Although few participants (4/12) struggled to find the
designs they wanted in LLE and UMAP-based Design
Maps, they could actually create complete wireframes in
less than ten minutes. The CSI ‘Exploration’ factor had
an average score of 15.17. They felt Design Maps were not
invasive of their creative space and let them take relevant
decisions on the designs they create. “According to me,
designers are artists with a purpose. And I am surprised
that I could use the suggestions to draw a design which I
generally would have designed after browsing the web for
a while on different platforms. Here my purpose is solved
and that is great to be honest!”

5.5.3. Reducing distractions
Participants felt that Design Maps were not deviating
their attention from the actual task. “I am good that
the app is subtle and doesn’t distract me too much.” The
‘Immersion’ factor of the CSI questionnaire has the lowest
score on average (10.67/20), suggesting that participants
were focused more on the activity rather than the tool
itself. “It’s not one of those apps which keep bugging you
even when you don’t want them to. It’s good the way it
works right now.”

5.5.4. Perceived effect on productivity
Most of the participants (8/12) felt that they produced
high-quality results given the amount of time and effort
spent on the design tasks. “If I had the initial wireframes
ready very quickly, then I could focus on more important
features like the functionality and design of my app
workflow.” The CSI ‘Results Worth Effort’ factor had an
average score of 16.25 and most participants were satisfied
with the designs they created using the recommended UIs.
“I am quite satisfied because I did not have to do the boring
stuff of creating the initial wireframes from the designs I
look on web. I just drag and drop it and then build upon
it. It was easy.”

5.5.5. Thoughts on design practice
Most participants (10/12) were happy with the concept
of Design Maps as a visualization and exploration helper.
They acknowledged the fact that Design Maps have the
potential to be widely used e.g. as a plugin to any existing
wireframing tools in the market. “It might be a helper tool
which can be used anytime I want to or I am stuck at some
design or just too lazy to search at different places for
better ideas.” “Overall I think this can be a great addition
to my toolkit that I regularly use.” Three participants
mentioned an interesting use case of Design Maps beyond
the context of wireframing. “This could have a use case
when you are actually designing the visual components of
an app, may be the color, may be the different shapes as
I sometimes take ideas from completely random designs.
For instance, you can ask me to draw a cooking app and
I can take ideas from a photo editing app, who knows!”

Participants used the Design Maps extensively to
explore the UI designs they wanted while performing
the assigned tasks and used the recommendation panel
to create their initial wireframes very quickly. While
participants did not fully understand the structural
differences of the four visualizations produced by each
dimensionality reduction algorithm, they stated that
Design Maps do encourage exploration and allow designers
to get inspiration from many different designs at a single
place. Because having too much information on the screen
can become overwhelming, one participant suggested to
incorporate semantic zooming, so that the selection and
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structure of the data can change whenever they delve
deeper into some clusters.

On another line, color is an important visual demarcator
while exploring large datasets and most participants
(9/12) asked the significance of the color scheme used
in Design Maps. When they realized that each color
represented a semantic cluster, they felt we could have
made a better use of those, for example to highlight app
similarity. However these concerns can be considered as
improvements for the next iteration of Design Maps, and
should thus not be seen as detrimental to their utility,
as indicated by the participants both quantitatively and
qualitatively.

Finally, participants appreciated the feature of showing
the current design creation in the visualization panel,
and mentioned that they really would like to use it to
know their position in the Design Maps. “There is no
way to quantify this information now in any existing
tool I’ve ever used, so I would use it for sure.” One
participant also suggested that this feature could be used
to even evaluate designers’ work based on the designs they
produce. In the supplementary materials accompanying
this submission, we show some of the wireframes created
by the participants.

5.5.6. Design recommendations
Sometimes the recommended designs were not similar
to the designs our participants were searching for. For
example, because Design Maps perform clustering based
on UI semantics, a background image with a text on
top of it can be either a login screen, a pop up screen,
or a modal window. This can be frustrating if designers
get very dissimilar suggestions constantly. However, this
was taken as an opportunity by three participants, who
acknowledged that those examples would help them to
assess more diverse designs, that otherwise they would
have not thought of.

5.5.7. Suggestions for improvement
A few participants (4/12) mentioned they would like to
see the evolution of their designs, i.e, an art board where
there are all the previous designs they created. This can
be also used by the users to save all the liked designs from
the recommendation panel. Other participants (2/12)
commented on the fact that they do not only look for
visual inspirations on mobile app marketplaces, but also
they like test the usability and workflow of the different
apps. Based on this observation, they suggested that
MobiSketch could make this process more seamless by e.g.
adding a link to each mobile app from Google Play so that
designers can simply click on the link within MobiSketch.

6. DISCUSSION

While there is a lot of previous work on information
visualization and dimensionality reduction techniques, as
well as applications in broad areas of sciences, little
work has been conducted to understand what types of
visualizations can benefit exploration of design datasets
without compromising designer’s creativity. In this paper
we have looked at the problem that there is a huge
amount of design-related contents available on the Web,
possibly to the extent that it is overwhelming, and in
fact designers report struggling finding appropriate design
examples (Koch et al., 2018).

Our results suggest that Design Maps have potential
for supporting and encouraging design exploration. Design
Maps allow designers to quickly get inspiration from
several UI designs at the same place and at the same
time. Our results also suggest that Design Maps can
help designers explore diverse design examples that are
meaningful. Since designers use prototypes for testing and
evaluation (Deininger et al., 2017), Design Maps, when
integrated in interactive design tools, can transport the
wireframe to code that can be used in testing. Beyond
finding an individual example, designers can also use
Design Maps to store, organize, and maintain collections
of inspirational materials (Keller et al., 2009).

Design Maps support exploration by projecting a
high-dimensional design dataset into a few navigable
dimensions on a display. We found that Design Maps
that produce consistent whitespace within cloud points
like tSNE and PCA resulted in better performance in
terms of finding the UI designs that designers were looking
for. The key characteristic of tSNE is that it solves
the so-called crowding problem, but PCA is a linear
projection and unexpectedly it was highly appreciated
by the participants. On the contrary, Design Maps that
produce consistent whitespace between cloud points (such
as UMAP) or dense areas (such as LLE) were perceived
as less helpful by designers.

We should mention that the position of UI designs is
determined by the underlying dimensionality reduction
algorithm but no axis labels are shown in the resulting
design map. This was a deliberate choice in order
not to mislead end-users. Take for example a PCA-
generated Design Map: each axis represents “directions
of maximum variance” (Bishop, 2006), which is difficult
to communicate to and interpret by designers; e.g.
What does variance mean for UI design? Is it an
intrinsic property of a design dataset? May it guide
visual inspection meaningfully? Previous work on music
visualization projected high-dimensional data in two
orthogonal axes with well-defined semantics, such as
tempo vs timbre (Zhu and Lu, 2005) and arousal vs
valence (Kim et al., 2011). For UI datasets, however,
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we find it challenging to find a straightforward semantic
mapping like those. Therefore, we eventually decided not
to show axis labels in Design Maps.

We firmly believe that it is vital to study computational
methods that can support designers cognitive and creative
processes as opposed to automation of tasks. The type of
machine learning techniques we have used in this work is
not aiming at automating design, nor at being a proactive
collaborative partner, but instead it is leveraged as a
cognitive aid that helps structuring and navigating a
complex design dataset. For example, by moving further
away within a cluster, we have observed that the designs
change in some determinate way; a property that can
benefit divergent and convergent thinking. A virtue of
a Design Map is that its use is entirely controlled by
the designer, who can turn to it when needed, but is
not required to act on it. Another virtue over previous
approaches, like query-based search, is that design ideas
can be skimmed very rapidly. The designers from our final
evaluation reported this to be particularly helpful. We
believe that this work has barely scratched the surface
of the many kinds of work enabled by Design Maps.

Our participants reported highly appreciating Design
Maps and the functionality enabled by the wireframing
application, as reflected by the CSI ‘Enjoyment’ and
‘Exploration’ factors. They used the Design Maps
extensively to explore the UI designs they wanted and
used the recommendation panel to quickly create their
initial wireframes. They rated the Design Maps high on
performance as they believed they produced good results
given the efforts they have put into the wireframing tool.

Research on divergent thinking and creative ideation
suggests that being exposed to numerous examples
will give researchers a concise but thorough picture
of the many options available (Hocevar, 1979; Hocevar
and Bachelor, 1989). Although irrelevant examples can
negatively affect the quality of design ideas, and prior
to this study it was not known if machine learning
based visualizations can be supportive. Participants
reported that Design Maps helped them avoid deviating
their attention from the actual task. However, although
‘Exploration’ factor was high, ‘Expressiveness’ and
‘Immersion’ factors were relatively low.

We felt that designers were unable to internalize a
high-fidelity mental model of the design space, which is
understandable given the otherwise huge number of design
examples available at a glance (more than 72,000 cloud
points shown at once). However, they stated that Design
Maps do encourage exploration and allow designers to
get inspiration from many different designs at their own
convenience. This finding deserves new ways of creating
novel demarcators, which we discuss in the next section.

Finally, participants reported having used Design Maps
extensively to explore the UI designs they wanted and find

design examples that are meaningful and relevant to the
design at hand. Most of the participants felt that they
produced high-quality results given the amount of time
and effort spent on the design tasks. This was further
supported by the CSI ‘Results Worth Effort’ factor. We
conclude that Design Maps, when integrated as part of a
design tool, help designers reflect on their design choices.

6.1. Future work

While it is possible to create Design Maps from any
design dataset comprising images only, we have observed
that the resulting maps are more informative if we
consider semantic information instead. Therefore, any
domain that can provide labeled images together with
their structural information is a good candidate for
Design Maps. One such domain is e.g. websites, since
existing URLs can be crawled and then processed to
generate a screenshot together with the associated HTML
structure. Another domain of interest are designs created
with the Sketch application, which is very popular
among professional UI designers. Sketch files are highly
structured, so they could be used with little engineering
effort to create Design Maps. We should also mention
other popular professional applications among graphic
designers, such as PhotoShop or InDesign, that produce
images from structured data (e.g. layers in PhotoShop or
XML nodes in InDesign) and therefore these applications
could benefit from Design Maps if integrated e.g. as a
plugin. Obviously, not every design dataset can be easily
summarized as a Design Map, at least not without any
modification of our existing solution. These include e.g.
3D objects, physical designs, motion captures, etc. As
previously hinted, we need two basic components to create
Design Maps in the same way as we did in this paper:
(1) a collection of design images, for previsualization
purposes, and (2) associated structural information, which
can be featurized for later dimensionality reduction
and clustering. Therefore, different design datasets may
require a particular treatment, such as the ones we
have discussed at the beginning of this section, namely:
websites, Sketch projects, and related graphic design
applications.

We plan to investigate hierarchical techniques for our
design maps to allow for progressive exploration (Bikakis,
2019). Hierarchical visualization techniques have been
extensively used in large graphs visualization, where
the graph is recursively decomposed into smaller sub-
graphs that form a hierarchy of abstraction layers.
Progressiveness can significantly improve efficiency in
exploration scenarios, where it is common that users
attempt to find something interesting, without knowing
what exactly they are searching for beforehand. Also,
we took note and will make a better use of color in
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the future, for example using a warm-color palette to
indicate how cluttered is a cluster, to express similar
design objects, or encode additional metadata about the
dataset at hand. Further visual encoding techniques could
be explored to better structure the outputs, such as
marker sizes, symbols, or contours. We could even make
an explicit use of geographic metaphors, for example,
creating correspondents of streets, districts, elevations,
lakes, etc. It would be interesting to consider what
categories or features might be added to the source dataset
to accomplish this goal, though we acknowledge that some
datasets may be limited, feature-wise. Therefore we leave
these ideas as opportunities for future work.

Beyond the benefits on exploration, which our results
suggest, several intriguing effects remain open. First,
Design Maps could provide an overview of the design space
via analogical transfer. It is known that the perception of
analogues (structural similarities) among design instances
can drive transfer of solutions in design (Gentner and
Colhoun, 2010; Gick and Holyoak, 1983). Browsing a
design map could help designers internalize a model of
the design space that diversifies their thinking (Gomes
et al., 2006). Further, example-driven analogical transfer
is argued to be a cross-cutting aspect of creative design,
shown for example in drawing (Chinmay Kulkarni and
Klemmer, 2010), ideation (Siangliulue et al., 2015), and
writing (Venables and Summit, 2003).

Design Maps allow designers to get a higher-level
representation of a dataset that could be used like a
mental map to find suitable designs. What if all datasets
were shown the same way? That is, every dataset could
be projected in a two-dimensional space with the same
geographical shape. While this could help to transfer the
designer’s knowledge from one dataset to another, we
believe it would eventually cause confusion. We argue
that each dataset should have their own Design Map
representation, to clearly inform the designers that they
are exploring a particular dataset, but we are open to
exploring this possibility in future work.

Further, designers usually take into account multi-
faceted aspects of design features while seeking for
inspiration, including e.g. the purpose and functionality
of the design, user interactions and context, requirements
of implementation, etc. It might be beneficial if we
could make a good use of these features, provided
that they are available in the source dataset. Rico, for
example, provides user traces (sequences of interactions),
animations capturing transition effects in response to user
interaction, and rich app metadata (such as marketplace
category, ratings, and number of downloads) that could
be used to create more cohesive clusters.

It is interesting to note that curation activities, like
one can engage in with Design Maps, can develop
cognitive schemata (Lawson, 2004) that enable designers

to recognize patterns in design problems. Leiva et al.
(2020) have recently revised 10k Rico UIs and have
concluded to a curated set of 1460 high-quality designs
that have been categorized according to 20 topics; e.g.
login screen, media player, gallery, etc. As an extension to
this work, it would be interesting to recompute our Design
Maps for these UI categories or even predict automatically
the most likely topics for a set of new, unseen designs.

Finally, getting an overview of a design space can
provide new input for reflection. Recognizing and weighing
alternatives is known to be valuable throughout the
design process (Tohidi et al., 2006). Examples that
complement expert-created rubrics can facilitate a deeper
understanding of design principles among feedback
providers (Kang et al., 2018; Paivio, 1990). Projecting
even further, having such design alternatives can facilitate
comparative reasoning, ground team discussion, and
enable situated exploration (Hartmann et al., 2008).

7. CONCLUSION

We have presented Design Maps, a novel class of
colorful point cloud visualizations that can represent a
large design dataset for interactive exploration. Design
Maps are computed using dimensionality reduction and
clustering techniques, the result being a two-dimensional
representation of a higher dimensional design space that
is broke down into clusters that can be navigated and
positioned against the design at hand.

We exemplified Design Maps to enable large-scale
exploration of mobile apps UIs, for which we devised
wireframing (low-fidelity prototyping) as our use-case
scenario. Professional designers reported that having
Design Maps available in a wireframing tool supports
their creativity. Designers also reported that Design Maps
with equidistant spacing between markers were the most
informative. Besides interactive exploration, Design Maps
enable local neighborhood search and rapid exploitation
of design examples. Both features were highly appreciated
by our participants. Taken together, our results suggest
that Design Maps support exploration and have potential
for inspiration-seeking at large. Looking forward, we
believe this work opens new possibilities to leverage novel
visualization techniques to the benefit of design thinking.

A.1. ALGORITHMS FOR DESIGN MAPS

This section describes the algorithmic choices we took into
consideration for Design Maps, namely dimensionality
reduction and clustering algorithms.
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A.1.1. Feature vectors

First of all, we need to define the features on which Design
Maps computations are carried out. In early explorations,
we quickly learned that clustering raw UI screenshots
(i.e., using only pixel colors of the UI) is inadequate and,
moreover, the resulting clusters are of low quality; i.e.,
as expected, UIs were basically clustered by color rather
than structure. In further explorations we learned that
using semantic screenshots produces more meaningful,
semantically related clusters; e.g. UIs comprising clocks
and calendars were grouped together. This got us closer to
our goal of providing designers with a suitable (abstract)
representation of the design space.

Further, to make clustering computationally effective
without sacrificing image quality, such an abstract
representation of the UI designs is converted to RGB
feature vectors using a downsampled version of the
semantic UI image. Then, the RGB vectors are further
reduced to a small number of dimensions, since it is
highly recommended to do so when the number of
features is very high. This will suppress some noise
and speed up later computations. For this, we used
Principal Component Analysis (PCA) since it is highly
performant. Then, we tried several techniques (to be
discussed later) to compress the PCA-reduced feature
vectors to 2 dimensions. Figure A1 illustrates this process.

a−→ b−→

x1...
xn

 c−→

 x
′
1
...
x′50

 d−→
[
x′′1
x′′2

]

Figure A1: Computation of Design Maps: Each UI
screenshot is replaced by their semantic screenshot
downsampled to 300px height (a), converted to RGB
feature vector (b), PCA-reduced to 50 dimensions to
remove noise (c), then further reduced to 2 dimensions (d)
using different algorithms. The resulting 2D data points
are finally clustered using K-means.

A.1.2. Dimensionality reduction

We have tried several techniques to reduce our feature
vectors to 2 dimensions (step e in Figure A1). All of
the following techniques have proved in earlier research
to be well-suited for reducing high-dimensional data for
visualization in a low-dimensional space of e.g. two or
three dimensions. However, their relative merits in Design
Maps have not been studied before.

At a high level, given a D-dimensional dataset X ∈
RN×D with N observations or data points, dimensionality

reduction creates a projection Z ∈ RN×d of X where
d � D, in a way that the significant structure of the
high-dimensional data X is preserved as much as possible
in the low-dimensional space Z.

A.1.2.1. Principal Component Analysis
PCA is the classic dimensionality reduction technique
in machine learning. The goal of PCA is to reduce the
number of variables (or features) of a dataset, while
preserving as much information as possible. PCA uses
an orthogonal linear transformation z = xTu to convert
a set of (possibly correlated) observations into a set
of linearly uncorrelated observations, called principal
components (Abdi and Williams, 2010). The new data
projection ensures that the greatest variance lies on
the first axis (called the first principal component), the
second greatest variance on the second axis, and so on.
Geometrically speaking, principal components represent
the directions of the data that explain a maximal
amount of variance. Formally, PCA tries to minimizes the
reconstruction error of the original data:

maximize uTk Σuk s.t. ||uk|| = 1 (A.1)

where k is the k-th dimension, µ is the sample mean,
and Σ is the sample covariance. PCA thus finds the
top-k eigenvalues uk of the sample covariance matrix.
Intuitively, PCA produces a point cloud that represents
the best linear approximation to the original dataset.

A.1.2.2. Locally Linear Embedding
LLE seeks a lower-dimensional non-linear projection
(embedding) of the data which preserves distances within
local neighborhoods. It can be thought of as a series of
local PCAs which are globally compared to find the best
projection. LLE is advantageous because, unlike PCA, it
involves no convergence (minimization) criteria. LLE tries
to characterize the local geometry of the data by linear
coefficients that reconstruct each data point x ∈ X from
its neighbors (Roweis and Saul, 2000). Reconstruction
errors are then measured by the cost function:

E(w) =
∑
i

||xi −
∑
j

wijxj ||2 (A.2)

which adds up the squared distances between all the
data points and their reconstructions. The weights wij

summarize the contribution of the jth data point to the
ith reconstruction. Because LLE replaces each feature
vector by a linear combination of their nearest vectors,
the resulting point cloud tends to be dense.

A.1.2.3. Uniform Manifold Approximation and Projec-
tion

UMAP is a non-linear dimensionality reduction technique
that uses local manifold approximations (McInnes et al.,
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2018) to construct a topological representation of
the high-dimensional data P. A manifold is a data
representation that maps a complex space to a simpler,
smoother subset. UMAP iterates by creating several low-
dimensional topological representations Q and selecting
the one that minimizes the cross-entropy between both
representations:

H(P,Q) = −
∑
x∈X
P(x) logQ(x) (A.3)

One of the hyperparameters of UMAP is the desired
separation between close points in the embedding space.
This leads to spreading dissimilar objects out but also
creates potentially densely packed regions for similar
objects in the resulting point cloud.

A.1.2.4. t-distributed Stochastic Neighbor Embedding
tSNE is a non-linear dimensionality reduction technique
that converts the Euclidean distances between two high-
dimensional data points xi and xj into conditional
probabilities that represent similarities (van der Maaten
and Hinton, 2008):

p(j|i) =
exp

(
−||xi − xj ||2/2σ2

i

)∑
k 6=i exp (−||xi − xk||2/2σ2

i )
(A.4)

where σi is the variance of a Gaussian centered at xi,
and for the low-dimensional counterparts zi and zj of the
high-dimensional data points:

q(j|i) =
exp

(
−||zi − zj ||2

)∑
k 6=i exp (−||zi − zk||2)

(A.5)

And finally minimizes the sum of Kullback-Leibler
divergences over all data points:

C(X ,Z) =
∑
i

∑
j

p(j|i) log
p(j|i)
q(j|i)

(A.6)

The tSNE algorithm adapts its notion of distance to
regional density variations in the data. As a result, it
naturally expands dense areas, and contracts sparse ones,
evening out the point cloud. The main advantage of tSNE
is the ability to preserve the local structure of the data.
This means that points which are close to one another in
the high-dimensional dataset will tend to be close to one
another in the resulting 2D point cloud.

A.1.3. Clustering

Clustering algorithms allow for discovering “natural”
groups in a dataset, where objects in a group are similar
to each other and different from objects in other groups.
The idea is to divide a dataset X = {x1, . . . , xN} of N

feature vectors into a set
∏

= {C1, . . . , CK} of K disjoint
homogeneous classes with 1 < K � N . One way to tackle
this problem is to define a criterion function that measures
the quality of the clustering partition and then find a
partition

∏∗ that optimizes such a criterion function.
There exist several algorithms for data clustering,

among which we used the K-means algorithm, which
is known for its simplicity, relative robustness, and fast
convergence to local minima. The most common version
of this algorithm, generally attributed to Lloyd (Lloyd,
1982), uses a heuristic minimum-distance criterion, where
in each iteration all the data points are assigned to
their closest cluster mean (centroid) and convergence
is achieved when the assignments no longer change.
There exists, however, a more interesting version, often
attributed to Duda and Hart (Duda and Hart, 1973),
which uses a sample-by-sample iterative optimization
refinement scheme. At each step, the sum of squared errors
is evaluated and the considered sample is reallocated
to a different cluster if and only if that reassignment
decreases the overall cluster variance. Clearly, such
a greedy optimization guarantees that the resulting
partition corresponds to a local minimum. In this article
we follow this approach.

The cost function that K-means tries to minimize is the
sum of squared errors within clusters, which emphasizes
the local structure of the data (Veenman et al., 2002):

SSEw =

K∑
j=1

∑
x∈Cj

||x− µj ||2 (A.7)

where µj is the centroid of cluster Cj .
A fundamental choice in clustering techniques is that

of the similarity metric. However, K-means implicitly
assumes Euclidean distances, since the algorithm mini-
mizes within-cluster variance and it is equal to the sum of
squared Euclidean distances of each cluster member to its
centroid. In fact one cannot use arbitrary distance func-
tions, otherwise the algorithm may not converge. There-
fore, we use the Euclidean distance over the 2-dimensional
feature vector space.

A.1.4. Creating Design Maps

Armed with the theoretical and mathematical knowledge
previously introduced, we are now ready to create different
Design Maps, discuss the challenges they face, and
illustrate how the look like in practice.

Clustering a design dataset may help further under-
standing the underlying structure in it. In Design Maps,
the main purpose of clustering the above-mentioned
dimensionality-reduced data is to delimit the map areas
that are likely to group similar UI designs together. This
can provide designers with a better visual understanding
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Figure A2: Evaluation of UI clustering results as a function of the number of clusters K, for different dimensionality
reduction techniques.

of a large dataset, since the clusters found can be assigned
a distinct color and therefore they can be easily noticed
at a glance.

Because K-means is an unsupervised learning algo-
rithm, it can make inferences about the data using only
the feature vectors, without having to label every data
instance. As a downside, however, the algorithm requires
as input the value of K because the “best” value of K
depends a lot on the dataset. Therefore, in order to find a
suitable K we used the elbow criterion (Leiva and Vidal,
2010) or ‘knee point detection’: one should choose K so
that adding another cluster does not give much better
modeling of the data. To achieve this goal, the algorithm
is increasingly run from K = 1 to K = N and stops as
soon as some key measure does not improve w.r.t. the pre-
vious value of K. Figure A2 illustrates this process.

Since the K-means algorithm minimizes the SSEw

(Equation A.7), we will choose as best configuration the
one that does not improve significantly the percentage of
variance explained from one step to another.

The fitness of a clustering configuration can be mea-
sured in multiple ways. We explore these to understand
the different dimensionality reduction techniques. In addi-
tion to the sum of squared errors within clusters, we report
macro-measures of the clustering geometry such as mean
and standard deviation of cluster radius. These measures
provide an overview of each clustering configuration and
help to quantify the impact of adding or removing a new
cluster.

We also report several well-known evaluation mea-
sures for clustering configurations: Davies-Boulding
index (Davies and Bouldin, 1979), Ball & Hall index (Ball
and Hall, 1965), Hartigan index (Hartigan, 1975), and
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WB-index (Zhao and Fränti, 2014). These evaluation mea-
sures favor clustering configurations with high similarity
within a cluster (compactness) and low similarity between
clusters (separation). However, according to theoretical
analysis (Liu et al., 2010), some of these measures may be
affected by the configuration and structure of the data.
Therefore, a thorough analysis becomes necessary.

As can be observed in Figure A2, the most suitable
number of clusters gravitates around K = 5 or K = 6 in
most cases; see e.g. the plots in the top row of the figure.
This observation can also be inferred from the geometry of
the clustering configurations: a plateau in the cluster radii
can be easily noticed for both values of K; see middle row
of Figure A2. This is further supported by the different
cluster validity measures, e.g. the Davies-Boulding and
Ball & Hall indices show no noticeable improvement for
K ≥ 6. A similar trend can be observed in the plots
pertaining Hartigan and WB indices. All in all, we decided
to chooseK = 5 since it seemed to be the best compromise
solution in light of the above-mentioned measures. These
results suggest that designers exploring the Rico dataset
should primarily focus on 5 large groups of UIs. Therefore,
designers can quickly inspect one cluster by hovering over
some UI examples and if no design is satisficing enough
they can switch to exploring another cluster.

A.2. MOBISKETCH REMARKS

We would like to emphasize on a couple of key capabilities
of our MobiSketch application that, we believe, will
improve designers’ productivity while navigating Design
Maps. The first key capability is that of filtering, by which
it is possible to reduce the number of design objects shown
on the map by indicating e.g. a minimum or maximum
number of downloads, app ratings, or even indicating
multiple app categories by means of check boxes. The
second key capability is that of copying, by which it
is possible to drag and drop an existing UI preview
(thumbnail) to the design canvas and then borrow the
desired design parts. Figure A1 and Figure A2 illustrate
these filtering and copying capabilities, respectively.

A.3. SUPPLEMENTARY MATERIALS

We provide a video of Design Maps and sample
screenshots of the wireframes created by our participants.
We will release our software to create Design Maps upon
this article’s publication.

ACKNOWLEDGEMENTS

This research was supported by the Academy of Finland
(grant numbers 291556, 310947). We thank Janin Koch

and Antti Salovaara for reviewing an earlier draft of
this manuscript. The calculations presented in this article
were performed using computing resources within the
Aalto University School of Science “Science-IT” project.
Our software is available at https://luis.leiva.name/
designmaps/

REFERENCES

Abdi, H., Williams, L. J., 2010. Principal component analysis.
WIREs Comput. Stat. 2 (4), 433–459.

Ball, G., Hall, D., 1965. ISODATA, a novel method of data
analysis and pattern classification. Tech. rep., Stanford
Research Institute.

Behrang, F., Reiss, S. P., Orso, A., 2018. GUIfetch: Supporting
app design and development through GUI search. In: Proc.
MOBILESoft. pp. 236–246.

Figure A1: Filtering capabilities. In MobiSketch it is
possible to reduce the number of design objects show on
the map by selecting the desired filters, e.g. number of
received app ratings or app categories.

Figure A2: Copying capabilities. In MobiSketch it is
possible to borrow existing design parts from the pool of
recommended designs (central panel) by means of a drag
and drop operation, shown here with a semi-transparent
picture of the thumbnail being dragged.

Interacting with Computers, 2021

https://luis.leiva.name/designmaps/
https://luis.leiva.name/designmaps/


20 L.A. Leiva et al.

Bernard A. Nijstad, Carsten K. W. De Dreu, E. F. R., Baas,
M., 2010. The dual pathway to creativity model: Creative
ideation as a function of flexibility and persistence. Eur. Rev.
Soc. Psychol. 21, 34–77.

Bikakis, N., 2019. Big Data Visualization Tools. Springer.

Bishop, C., 2006. Pattern Recognition and Machine Learning.
Springer-Verlag.

Card, S. K., Mackinlay, J., 1997. The structure of the
information visualization design space. In: Proc. InfoVis. pp.
92–100.

Chan, J., Dow, S. P., Schunn, C. D., 2015. Do the best design
ideas (really) come from conceptually distant sources of
inspiration? Design Stud. 36, 31–58.

Chan, J., Siangliulue, P., Qori McDonald, D., Liu, R.,
Moradinezhad, R., Aman, S., Solovey, E. T., Gajos, K. Z.,
Dow, S. P., 2017. Semantically far inspirations considered
harmful?: Accounting for cognitive states in collaborative
ideation. In: Proc. C&C. pp. 93–105.

Cherry, E., Latulipe, C., 2014. Quantifying the creativity
support of digital tools through the creativity support index.
ACM Trans. Comput.-Hum. Interact. 21 (4), 21:1–21:25.

Chinmay Kulkarni, S. P. D., Klemmer, S. R., 2010. Early and
Repeated Exposure to Examples Improves Creative Work.
Springer.

Crilly, N., Cardoso, C., 2017. Where next for research on
fixation, inspiration and creativity in design? Design Stud.
50, 1–38.

Davies, D. L., Bouldin, D. W., 1979. A cluster separation
measure. IEEE Trans. Pattern Anal. Mach. Intell. 1 (2), 224–
227.

Deininger, M., Daly, S. R., Sienko, K. H., Lee, J. C., 2017.
Novice designers’ use of prototypes in engineering design.
Design Stud. 51, 25–65.

Deka, B., Huang, Z., Franzen, C., Hibschman, J., Afergan,
D., Li, Y., Nichols, J., Kumar, R., 2017. Rico: A mobile
app dataset for building data-driven design applications. In:
Proc. UIST. pp. 845–854.

Duda, R. O., Hart, P. E., 1973. Pattern Classification and
Scene Analysis. John Wiley & Sons.

Eckert, C., Stacey, M., 2000. Sources of inspiration: a language
of design. Design Stud. 21 (5), 523–538.

Eddy, J., Lewis, K. E., 2002. Visualization of multidimensional
design and optimization data using cloud visualization. In:
Proc. DAC. pp. 899–908.

Eppler, M. J., Kernbach, S., 2016. Dynagrams: Enhancing
design thinking through dynamic diagrams. Design Stud. 47,
91–117.

Garner, S., McDonagh-Philp, D., 2001. Problem interpretation
and resolution via visual stimuli: the use of ‘mood boards’
in design education. Int. J. Art Des. Educ. 20 (1), 57–64.

Gentner, D., Colhoun, J., 2010. Analogical Processes in Human
Thinking and Learning. Springer.

Gick, M. L., Holyoak, K. J., 1983. Schema induction and
analogical transfer. Cogn. Psychol. 15 (1), 1–38.

Gomes, P., Seco, N., Pereira, F. C., Paiva, P., Carreiro, P.,
Ferreira, J. L., Bento, C., 2006. The importance of retrieval
in creative design analogies. Knowl.-Based Syst. 19 (7), 480–
488.

Gonçalves, M., Cardoso, C., Badke-Schaub, P., 2014. What
inspires designers? preferences on inspirational approaches
during idea generation. Design Stud. 35 (1), 29–53.

Hartigan, J. A., 1975. Clustering algorithms. John Wiley &
Sons.

Hartmann, B., Yu, L., Allison, A., Yang, Y., Klemmer, S. R.,
2008. Design as exploration: Creating interface alternatives
through parallel authoring and runtime tuning. In: Proc.
UIST. pp. 91–100.

Herring, S. R., Chang, C.-C., Krantzler, J., Bailey, B. P., 2009.
Getting inspired!: Understanding how and why examples are
used in creative design practice. In: Proc. CHI. pp. 87–96.

Hocevar, D., 1979. Ideational fluency as a confounding factor
in the measurement of originality. J. Educ. Psychol. 71 (2),
191–196.

Hocevar, D., Bachelor, P., 1989. A taxonomy and critique of
measurements used in the study of creativity. Springer, pp.
53–75.

Huang, F., Canny, J. F., Nichols, J., 2019. Swire: Sketch-based
user interface retrieval. In: Proc. CHI. pp. 1–10.

Iacobelli, F., Birnbaum, L., Hammond, K. J., 2010. Tell me
more, not just “more of the same”. In: Proc. IUI. pp. 81–90.

Jorge, A., Correia, N., Chambel, T., 2017. Designing
interactive spatiotemporal visualizations to enhance movie
browsing. In: Proc. INTERACT. pp. 352–355.

Kang, H. B., Amoako, G., Sengupta, N., Dow, S. P., 2018.
Paragon: An online gallery for enhancing design feedback
with visual examples. In: Proc. CHI. pp. 606:1–606:13.

Keller, I., Visser, F. S., van der Lugt, R., Stappers, P. J., 2009.
Collecting with cabinet: Or how designers organise visual
material, researched through an experiential prototype.
Design Stud. 30 (1), 69–86.

Kim, J., Lee, S., Kim, S., Yoo, W. Y., 2011. Music mood
classification model based on arousal-valence values. In:
Proc. ICACT. pp. 292–295.

Knerr, N., Selva, D., 2016. Cityplot: Visualization of high-
dimensional design spaces with multiple criteria. J. Mech.
Des. 138 (9), 1–9.

Koch, J., László, M., Lucero, A., Oulasvirta, A., 2018.
Surfing for inspiration: Digital inspirational material in
design practice. In: Design Research Society 2018 Catalyst
(DRS2018). pp. 1247–1260.

Kumar, R., Satyanarayan, A., Torres, C., Lim, M., Ahmad, S.,
Klemmer, S. R., Talton, J. O., 2013. Webzeitgeist: Design
mining the web. In: Proc. CHI. pp. 3083–3092.

Lawson, B., 2004. Schemata, gambits and precedent: some
factors in design expertise. Design Stud. 25 (5), 443–457.

Interacting with Computers, 2021



Design Maps 21

Lee, B., Srivastava, S., Kumar, R., Brafman, R., Klemmer,
S. R., 2010. Designing with interactive example galleries. In:
Proc. CHI. pp. 2257–2266.

Lee, C., Kim, S., Han, D., Yang, H., Park, Y.-W., Kwon, B. C.,
Ko, S., 2020. GUIComp: A GUI design assistant with real-
time, multi-faceted feedback. In: Proc. CHI. pp. 1–13.

Leiva, L. A., Hota, A., Oulasvirta, A., 2020. Enrico: A high-
quality dataset for topic modeling of mobile UI designs. In:
Proc. MobileHCI Extended Abstracts.

Leiva, L. A., Vidal, E., 2010. Assessing users’ interactions for
clustering web documents: A pragmatic approach. In: Proc.
HT. pp. 277–278.

Levine, M., 1982. You-are-here maps: Psychological consider-
ations. Environ. Behav. 14 (2), 221–237.

Liu, T. F., Craft, M., Situ, J., Yumer, E., Mech, R., Kumar, R.,
2018. Learning design semantics for mobile apps. In: Proc.
UIST. pp. 569–579.

Liu, Y., Li, Z., Xiong, H., Gao, X., Wu, J., 2010. Understanding
of internal clustering validation measures. In: Proc. ICDM.
pp. 911–916.

Lloyd, S., 1982. Least squares quantization in PCM. IEEE
Trans. Inf. Theory 28 (2), 129–137.

Lübbers, D., Jarke, M., 2009. Adaptive multimodal exploration
of music collections. In: Proc. ISMIR. pp. 195–200.

Marks, J., Andalman, B., Beardsley, P. A., Freeman, W.,
Gibson, S., Hodgins, J., Kang, T., Mirtich, B., Pfister, H.,
Ruml, W., Ryall, K., Seims, J., Shieber, S., 1997. Design
galleries: A general approach to setting parameters for
computer graphics and animation. In: Proc. SIGGRAPH.
pp. 389–400.

Martins, P., Langlois, T., Chambel, T., 2011. MovieClouds:
Content-based overviews and exploratory browsing of
movies. In: Proc. MindTrek. pp. 133–140.

Matejka, J., Glueck, M., Bradner, E., Hashemi, A., Grossman,
T., Fitzmaurice, G., 2018. Dream Lens: Exploration and
visualization of large-scale generative design datasets. In:
Proc. CHI. pp. 369:1–369:12.

McInnes, L., Healy, J., Melville, J., 2018. UMAP: Uniform
manifold approximation and projection for dimension
reduction. ArXiv e-prints.

Moacdieh, N., N., S., 2015. Display clutter: a review of
definitions and measurement techniques. Hum. Factors
57 (1), 61–100.

Moggridge, B., 2006. Designing Interactions. MIT Press.

Moritz, D., Fisher, D., Ding, B., Wang, C., 2017. Trust, but
verify: Optimistic visualizations of approximate queries for
exploring big data. In: Proc. CHI. pp. 2904–2915.

O’Donovan, P., Agarwala, A., Hertzmann, A., 2015. Design-
Scape: Design with interactive layout suggestions. In: Proc.
CHI. pp. 1221–1224.

Paivio, A., 1990. Mental representations: A dual coding
approach. Oxford University Press.

Pampalk, E., Rauber, A., Merkl, D., 2002. Content-based
organization and visualization of music archives. In: Proc.
MM. pp. 570–579.

Perttula, M., Sipilä, P., 2007. The idea exposure paradigm in
design idea generation. J. Eng. Design 18 (1), 93–102.

Richardson, T., Winer, E., 2011. Visually exploring a design
space through the use of multiple contextual self-organizing
maps. In: Proc. DAC. pp. 857–866.

Roweis, S., Saul, L., 2000. Nonlinear dimensionality reduction
by locally linear embedding. Science 290 (5500), 2323–2326.

Sharmin, M., Bailey, B. P., Coats, C., Hamilton, K., 2009.
Understanding knowledge management practices for early
design activity and its implications for reuse. In: Proc. CHI.
pp. 2367–2376.

Shneiderman, B., 1996. The eyes have it: a task by data type
taxonomy for information visualizations. In: Proc. IEEE
Symposium on Visual Languages. pp. 336–343.

Siangliulue, P., Chan, J., Gajos, K. Z., Dow, S. P., 2015.
Providing timely examples improves the quantity and
quality of generated ideas. In: Proc. C&C. pp. 83–92.

Stolterman, E., 2008. The nature of design practice and
implications for interaction design research. Int. J. Des. 2 (1),
55–65.

Swearngin, A., Dontcheva, M., Li, W., Brandt, J., Dixon, M.,
Ko, A. J., 2018a. Rewire: Interface design assistance from
examples. In: Proc. CHI. pp. 504:1–504:12.

Swearngin, A., Ko, A. J., Fogarty, J., 2018b. Scout: Mixed-
initiative exploration of design variations through high-level
design constraints. In: Adj. Proc. UIST. pp. 134–136.

Tohidi, M., Buxton, W., Baecker, R., Sellen, A., 2006. Getting
the right design and the design right. In: Proc. CHI. pp.
1243–1252.

Vad, B., Boland, D., Williamson, J., Murray-Smith, R.,
Steffensen, P. B., 2015. Design and evaluation of a
probabilistic music projection interface. In: Proc. ISMIR. pp.
134–140.

van der Maaten, L., Hinton, G., 2008. Visualizing data using
t-SNE. J. Mach. Learn. Res., 2579–2605.

Vasconcelos, L. A., Crilly, N., 2016. Inspiration and fixation:
Questions, methods, findings, and challenges. Design Stud.
42, 1–32.

Veenman, C. J., Reinders, M. J. T., Baker, E. L., 2002. A
maximum variance cluster algorithm. IEEE Trans. Pattern
Anal. Mach. Intell. 24 (9), 1273–1280.

Venables, A., Summit, R., 2003. Enhancing scientific essay
writing using peer assessment. Innov. Educ. Teach. Int.
40 (3), 281–290.

Wallace, S., Le, B., Leiva, L. A., Haq, A., Kintisch, A.,
Bufrem, G., Chang, L., Huang, J., 2020. Sketchy: Drawing
inspiration from the crowd. Proc. ACM Hum.-Comput.
Interact. 4 (CSCW2).

Woodbury, R., Mohiuddin, A., Cichy, M., Mueller, V.,
2017. Interactive design galleries: A general approach to

Interacting with Computers, 2021



22 L.A. Leiva et al.

interacting with design alternatives. Design Stud. 52, 40–72.

Zhang, X. L., Simpson, T., Frecker, M., Lesieutre, G., 2012.
Supporting knowledge exploration and discovery in multi-
dimensional data with interactive multiscale visualisation.
J. Eng. Des. 23 (1), 23–47.

Zhao, Q., Fränti, P., 2014. WB-index: A sum-of-squares based
index for cluster validity. Data Knowl. Eng. 92, 77–89.

Zhu, J., Lu, L., 2005. Perceptual visualization of a music
collection. In: Proc. ICME. pp. 1058–1061.

Interacting with Computers, 2021


	Introduction
	Background
	Summary of Contributions

	Computational support for inspiration-seeking
	Visualization of large datasets
	Knowledge discovery in multi-dimensional data
	Collaborative ideation tools
	Interactive computational design
	Design mining and exploratory tools

	Pre-study: Designer Interviews
	Findings

	Design Maps
	Dataset
	Algorithms
	Integration in a design tool
	Visualization panel
	Recommendation panel
	Wireframing panel

	Evaluation
	Participants
	Tasks
	Procedure
	Quantitative results
	Qualitative observations and discussion

	Discussion
	Future work

	Conclusion
	Algorithms for Design Maps
	Feature vectors
	Dimensionality reduction
	Clustering
	Creating Design Maps

	MobiSketch remarks
	Supplementary materials

